Full Vector Inversion of Magnetic Microscopy Images Using Euler Deconvolution as Prior Information

Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques have allowed the examination of individual magnetic grains. However, accurately determining the magnetic moments of these grains is difficult an...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Geochemistry, geophysics, geosystems : G3 Ročník 25; číslo 7
Hlavní autori: Souza‐Junior, Gelson F., Uieda, Leonardo, Trindade, Ricardo I. F., Carmo, Janine, Fu, Roger
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.07.2024
Wiley
Predmet:
ISSN:1525-2027, 1525-2027
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques have allowed the examination of individual magnetic grains. However, accurately determining the magnetic moments of these grains is difficult and time‐consuming due to the inherent ambiguity of the data and the large number of grains in each image. Here we introduce a fast and semi‐automated algorithm that estimates the position and magnetization of dipolar sources solely based on the magnetic microscopy data. The algorithm follows a three‐step process: (a) employ image processing techniques to identify and isolate data windows for each magnetic source; (b) use Euler Deconvolution to estimate the position of each source; (c) solve a linear inverse problem to estimate the dipole moment of each source. To validate the algorithm, we conducted synthetic data tests, including varying particle concentrations and non‐dipolarity. The tests show that our method is able to accurately recover the position and dipole moment of particles that are at least 15 μm apart for a source‐sensor separation of 5 μm. For grain concentrations of 6,250 grains/mm3, our method is able to detect over 60% of the particles present in the data. We applied the method to real data of a speleothem sample, where it accurately retrieved the expected directions induced in the sample. The semi‐automated nature of our algorithm, combined with its low processing cost and ability to determine the magnetic moments of numerous particles, represents a significant advancement in facilitating paleomagnetic applications of magnetic microscopy. Plain Language Summary Very small magnetic particles in rocks and other materials can store information about what the Earth's magnetic field was like in the past. But not all particles are good recorders of this magnetic information, and some may have recorded different overlapping directions and strengths. So it is important to measure each particle separately in order to identify and separate the good recorders from the bad ones. A device called a “quantum diamond microscope” is able to measure the magnetic field near the surface of a rock sample at microscopic scale. We propose a new method for processing data from this microscope that is able to find out the individual magnetizations of large amounts of small magnetic particles automatically. We created a computer program to execute the method, which calculates the 3D position and magnetization of each particle using the simple model of a magnetic dipole. We tested the method on simulated data, using fake magnetic particles for which we know the correct magnetization and position, and real data, both of which showed good results in most cases. The method we created has the potential to enable the widespread study of the magnetism of natural materials with more detail than before. Key Points We present a fast algorithm to estimate the position and magnetization of individual sources using only magnetic microscopy data The algorithm was validated using synthetic samples that included both dipolar and non‐dipolar sources with varying depths and intensities The successful application of the algorithm on a speleothem sample represents an advancement of this methodology for paleomagnetic studies
AbstractList Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques have allowed the examination of individual magnetic grains. However, accurately determining the magnetic moments of these grains is difficult and time‐consuming due to the inherent ambiguity of the data and the large number of grains in each image. Here we introduce a fast and semi‐automated algorithm that estimates the position and magnetization of dipolar sources solely based on the magnetic microscopy data. The algorithm follows a three‐step process: (a) employ image processing techniques to identify and isolate data windows for each magnetic source; (b) use Euler Deconvolution to estimate the position of each source; (c) solve a linear inverse problem to estimate the dipole moment of each source. To validate the algorithm, we conducted synthetic data tests, including varying particle concentrations and non‐dipolarity. The tests show that our method is able to accurately recover the position and dipole moment of particles that are at least 15 μm apart for a source‐sensor separation of 5 μm. For grain concentrations of 6,250 grains/mm3, our method is able to detect over 60% of the particles present in the data. We applied the method to real data of a speleothem sample, where it accurately retrieved the expected directions induced in the sample. The semi‐automated nature of our algorithm, combined with its low processing cost and ability to determine the magnetic moments of numerous particles, represents a significant advancement in facilitating paleomagnetic applications of magnetic microscopy. Plain Language Summary Very small magnetic particles in rocks and other materials can store information about what the Earth's magnetic field was like in the past. But not all particles are good recorders of this magnetic information, and some may have recorded different overlapping directions and strengths. So it is important to measure each particle separately in order to identify and separate the good recorders from the bad ones. A device called a “quantum diamond microscope” is able to measure the magnetic field near the surface of a rock sample at microscopic scale. We propose a new method for processing data from this microscope that is able to find out the individual magnetizations of large amounts of small magnetic particles automatically. We created a computer program to execute the method, which calculates the 3D position and magnetization of each particle using the simple model of a magnetic dipole. We tested the method on simulated data, using fake magnetic particles for which we know the correct magnetization and position, and real data, both of which showed good results in most cases. The method we created has the potential to enable the widespread study of the magnetism of natural materials with more detail than before. Key Points We present a fast algorithm to estimate the position and magnetization of individual sources using only magnetic microscopy data The algorithm was validated using synthetic samples that included both dipolar and non‐dipolar sources with varying depths and intensities The successful application of the algorithm on a speleothem sample represents an advancement of this methodology for paleomagnetic studies
Abstract Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques have allowed the examination of individual magnetic grains. However, accurately determining the magnetic moments of these grains is difficult and time‐consuming due to the inherent ambiguity of the data and the large number of grains in each image. Here we introduce a fast and semi‐automated algorithm that estimates the position and magnetization of dipolar sources solely based on the magnetic microscopy data. The algorithm follows a three‐step process: (a) employ image processing techniques to identify and isolate data windows for each magnetic source; (b) use Euler Deconvolution to estimate the position of each source; (c) solve a linear inverse problem to estimate the dipole moment of each source. To validate the algorithm, we conducted synthetic data tests, including varying particle concentrations and non‐dipolarity. The tests show that our method is able to accurately recover the position and dipole moment of particles that are at least 15 μm apart for a source‐sensor separation of 5 μm. For grain concentrations of 6,250 grains/mm3, our method is able to detect over 60% of the particles present in the data. We applied the method to real data of a speleothem sample, where it accurately retrieved the expected directions induced in the sample. The semi‐automated nature of our algorithm, combined with its low processing cost and ability to determine the magnetic moments of numerous particles, represents a significant advancement in facilitating paleomagnetic applications of magnetic microscopy.
Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques have allowed the examination of individual magnetic grains. However, accurately determining the magnetic moments of these grains is difficult and time‐consuming due to the inherent ambiguity of the data and the large number of grains in each image. Here we introduce a fast and semi‐automated algorithm that estimates the position and magnetization of dipolar sources solely based on the magnetic microscopy data. The algorithm follows a three‐step process: (a) employ image processing techniques to identify and isolate data windows for each magnetic source; (b) use Euler Deconvolution to estimate the position of each source; (c) solve a linear inverse problem to estimate the dipole moment of each source. To validate the algorithm, we conducted synthetic data tests, including varying particle concentrations and non‐dipolarity. The tests show that our method is able to accurately recover the position and dipole moment of particles that are at least 15 μm apart for a source‐sensor separation of 5 μm. For grain concentrations of 6,250 grains/mm3, our method is able to detect over 60% of the particles present in the data. We applied the method to real data of a speleothem sample, where it accurately retrieved the expected directions induced in the sample. The semi‐automated nature of our algorithm, combined with its low processing cost and ability to determine the magnetic moments of numerous particles, represents a significant advancement in facilitating paleomagnetic applications of magnetic microscopy.
Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques have allowed the examination of individual magnetic grains. However, accurately determining the magnetic moments of these grains is difficult and time‐consuming due to the inherent ambiguity of the data and the large number of grains in each image. Here we introduce a fast and semi‐automated algorithm that estimates the position and magnetization of dipolar sources solely based on the magnetic microscopy data. The algorithm follows a three‐step process: (a) employ image processing techniques to identify and isolate data windows for each magnetic source; (b) use Euler Deconvolution to estimate the position of each source; (c) solve a linear inverse problem to estimate the dipole moment of each source. To validate the algorithm, we conducted synthetic data tests, including varying particle concentrations and non‐dipolarity. The tests show that our method is able to accurately recover the position and dipole moment of particles that are at least 15 μm apart for a source‐sensor separation of 5 μm. For grain concentrations of 6,250 grains/mm 3 , our method is able to detect over 60% of the particles present in the data. We applied the method to real data of a speleothem sample, where it accurately retrieved the expected directions induced in the sample. The semi‐automated nature of our algorithm, combined with its low processing cost and ability to determine the magnetic moments of numerous particles, represents a significant advancement in facilitating paleomagnetic applications of magnetic microscopy. Very small magnetic particles in rocks and other materials can store information about what the Earth's magnetic field was like in the past. But not all particles are good recorders of this magnetic information, and some may have recorded different overlapping directions and strengths. So it is important to measure each particle separately in order to identify and separate the good recorders from the bad ones. A device called a “quantum diamond microscope” is able to measure the magnetic field near the surface of a rock sample at microscopic scale. We propose a new method for processing data from this microscope that is able to find out the individual magnetizations of large amounts of small magnetic particles automatically. We created a computer program to execute the method, which calculates the 3D position and magnetization of each particle using the simple model of a magnetic dipole. We tested the method on simulated data, using fake magnetic particles for which we know the correct magnetization and position, and real data, both of which showed good results in most cases. The method we created has the potential to enable the widespread study of the magnetism of natural materials with more detail than before. We present a fast algorithm to estimate the position and magnetization of individual sources using only magnetic microscopy data The algorithm was validated using synthetic samples that included both dipolar and non‐dipolar sources with varying depths and intensities The successful application of the algorithm on a speleothem sample represents an advancement of this methodology for paleomagnetic studies
Author Fu, Roger
Trindade, Ricardo I. F.
Souza‐Junior, Gelson F.
Carmo, Janine
Uieda, Leonardo
Author_xml – sequence: 1
  givenname: Gelson F.
  orcidid: 0000-0002-5695-4239
  surname: Souza‐Junior
  fullname: Souza‐Junior, Gelson F.
  email: gelson.ferreira@iag.usp.br
  organization: Universidade de São Paulo
– sequence: 2
  givenname: Leonardo
  orcidid: 0000-0001-6123-9515
  surname: Uieda
  fullname: Uieda, Leonardo
  email: uieda@usp.br
  organization: University of Liverpool
– sequence: 3
  givenname: Ricardo I. F.
  orcidid: 0000-0001-9848-9550
  surname: Trindade
  fullname: Trindade, Ricardo I. F.
  organization: Universidade de São Paulo
– sequence: 4
  givenname: Janine
  orcidid: 0000-0003-3683-3648
  surname: Carmo
  fullname: Carmo, Janine
  organization: Universidade de São Paulo
– sequence: 5
  givenname: Roger
  orcidid: 0000-0003-3635-2676
  surname: Fu
  fullname: Fu, Roger
  organization: Harvard University
BookMark eNp9kUtLAzEUhYMo-Nz5AwJureY1aWYptR0Lii7UbbjJZErKdFKTGaX_3plWQQRdhCSH75zcm3uM9pvQOITOKbmihOXXjDBeTAilRLE9dEQzlo16bbz_43yIjlNaEkJFlqkjZGZdXeNXZ9sQ8bx5dzH50OBQ4QdYNK71Fj94G0OyYb3B8xUsXMIvyTcLPO1qF_Gts6F5D3XXDj5I-Cn6bVQV4goG8RQdVFAnd_a1n6CX2fR5cje6fyzmk5v7EQgu5MgZJYCNyzEoCrmwRvRXkqsyr3IpoKTUVSq3pOTMCjkGUtKSUWGBmxyIVPwEzXe5ZYClXke_grjRAbzeCiEuNMS-odppaezwGKVCEsEAlKiINIRKAxkYw_usi13WOoa3zqVWL0MXm758zYnKJKP96im2o4YPStFV2vp223MbwdeaEj3MRf-cS2-6_GX6LvUPnO_wD1-7zb-sLopiyjiXkn8C3hidlQ
CitedBy_id crossref_primary_10_1190_geo2024_0128_1
Cites_doi 10.1029/2021JB022364
10.1109/MCSE.2007.55
10.1111/j.1365‐2478.2011.00997.x
10.1186/s40623‐019‐0988‐8
10.1190/1.1442774
10.1145/2833157.2833162
10.1029/2021GC009663
10.1002/2016GC006487
10.1029/2020GC009147
10.1088/0957‐0233/25/10/105401
10.5194/npg‐22‐215‐2015
10.7717/peerj.453
10.1016/j.earscirev.2013.04.003
10.5281/zenodo.7690145
10.1190/1.1441278
10.1038/s41592‐019‐0686‐2
10.1073/PNAS.1708344114
10.1130/G48017.1
10.1190/1.2133784
10.1002/2016GC006329
10.5334/jors.148
10.2478/v10126‐012‐0003‐x
10.5281/zenodo.7851748
10.1190/1.1635050
10.1029/2008JB006006
10.1017/CBO9780511612794
10.6084/M9.FIGSHARE.22672978
10.1088/0266‐5611/29/1/015004
10.1109/TSMCB.2012.2228639
10.1029/2022GC010462
10.1029/2007JB004940
10.1038/s41586‐020‐2649‐2
10.21105/joss.00957
10.1190/1.1443174
10.1002/2017GC006946
10.1098/rspb.1980.0020
10.1038/s41598‐020‐65176‐w
10.1146/annurev.earth.35.031306.140211
10.1002/2017GL076634
10.1007/s12665‐019‐8496‐5
10.1029/2022JB024234
10.1038/ncomms5548
10.1002/jgrb.50229
10.1007/s00410‐018‐1539‐1
10.1093/GJI/GGY455
10.1002/2015JB012441
10.6084/M9.FIGSHARE.22965200.V1
10.1190/GEO2012‐0515.1
10.1109/ICTEmSys.2016.7467122
10.1533/9780857097521.2.348
10.1029/2000JB900192
ContentType Journal Article
Copyright 2024 The Authors. Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOA
DOI 10.1029/2023GC011082
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Open Access资源_DOAJ
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1525-2027
EndPage n/a
ExternalDocumentID oai_doaj_org_article_6bc84a21146042aa84f06b016ba5abb3
10_1029_2023GC011082
GGGE23366
Genre researchArticle
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  funderid: 162704/2021‐6
– fundername: Royal Society
  funderid: IES\R3\213141
– fundername: Universidade de São Paulo
  funderid: PRPI 22.1.09345.01.2
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  funderid: 2021/08379‐5
GroupedDBID 05W
0R~
1OC
24P
31~
50Y
5GY
8-1
88I
8CJ
8FE
8FH
8G5
8R4
8R5
AAESR
AAFWJ
AAMMB
AANHP
AAYCA
AAZKR
ABCUV
ABUWG
ACAHQ
ACBWZ
ACCMX
ACGFS
ACGOD
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D1J
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OK1
P-X
P2W
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
Q2X
R.K
ROL
SUPJJ
UB1
WBKPD
ZZTAW
~02
~OA
AAYXX
AFFHD
CITATION
WIN
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-a4346-eb84a27d7a81a94cb44a2098d9f964ad11ef89c0d32c467a0d1d214ca3b9a0683
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001268816200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1525-2027
IngestDate Fri Oct 03 12:42:50 EDT 2025
Sat Aug 23 13:59:44 EDT 2025
Tue Nov 18 19:41:24 EST 2025
Sat Nov 29 07:56:56 EST 2025
Sun Jul 06 04:45:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4346-eb84a27d7a81a94cb44a2098d9f964ad11ef89c0d32c467a0d1d214ca3b9a0683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9848-9550
0000-0003-3683-3648
0000-0002-5695-4239
0000-0001-6123-9515
0000-0003-3635-2676
OpenAccessLink https://doaj.org/article/6bc84a21146042aa84f06b016ba5abb3
PQID 3085621562
PQPubID 54722
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_6bc84a21146042aa84f06b016ba5abb3
proquest_journals_3085621562
crossref_citationtrail_10_1029_2023GC011082
crossref_primary_10_1029_2023GC011082
wiley_primary_10_1029_2023GC011082_GGGE23366
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
20240701
2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geochemistry, geophysics, geosystems : G3
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 5
2013; 29
1990; 55
2021; 22
2021; 126
2013; 123
2020; 17
2014; 25
1992; 57
2011; 59
2020; 10
2018; 45
2017; 114
2007; 35
2009; 114
2014; 5
2023; 24
2018; 3
2014; 2
2013; 118
2007; 9
2020; 48
2005; 70
2022; 127
2019; 71
2013; 43
2019; 78
1997
1996
2016; 121
2020; 585
2016; 17
1982; 47
2007; 112
1980; 207
2023
2022
2000; 105
2020
2013; 78
2015; 22
2003; 68
2019
2018
2016
2017; 18
2015
2019; 216
2014
2020; 21
2019; 174
2012; 42
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
Blakely R. J. (e_1_2_9_8_1) 1996
e_1_2_9_6_1
Carmo J. A. (e_1_2_9_10_1) 2019
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
Gonzalez R. C. (e_1_2_9_25_1) 2018
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
Aster R. C. (e_1_2_9_3_1) 2019
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 114
  start-page: 10356
  issue: 39
  year: 2017
  end-page: 10360
  article-title: Stability of equidimensional pseudo–single‐domain magnetite over billion‐year timescales
  publication-title: Proceedings of the National Academy of Sciences
– volume: 48
  start-page: 1126
  issue: 11
  year: 2020
  end-page: 1130
  article-title: The geochemical and geochronological implications of nanoscale trace‐element clusters in rutile
  publication-title: Geology
– volume: 17
  start-page: 3350
  issue: 8
  year: 2016
  end-page: 3374
  article-title: Estimating the magnetization distribution within rectangular rock samples
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 5
  start-page: 1
  issue: 1
  year: 2014
  end-page: 10
  article-title: Magnetic force microscopy reveals meta‐stable magnetic domain states that prevent reliable absolute palaeointensity experiments
  publication-title: Nature Communications
– volume: 5
  start-page: 10
  issue: 1
  year: 2017
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  end-page: 9
  article-title: Nanoscale 3D quantitative imaging of 1.88 Ga Gunflint microfossils reveals novel insights into taphonomic and biogenic characters
  publication-title: Scientific Reports
– volume: 43
  start-page: 1719
  issue: 6
  year: 2013
  end-page: 1733
  article-title: A generalized Laplacian of Gaussian filter for blob detection and its applications
  publication-title: IEEE Transactions on Cybernetics
– year: 2018
– volume: 126
  issue: 10
  year: 2021
  article-title: Micromagnetic tomography for paleomagnetism and rock‐magnetism
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 45
  start-page: 2995
  issue: 7
  year: 2018
  end-page: 3000
  article-title: Determining individual particle magnetizations in assemblages of micrograins
  publication-title: Geophysical Research Letters
– volume: 17
  start-page: 3754
  issue: 9
  year: 2016
  end-page: 3774
  article-title: Ultra‐high sensitivity moment magnetometry of geological samples using magnetic microscopy
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 174
  start-page: 5
  issue: 1
  year: 2019
  article-title: High‐spatial resolution dating of monazite and zircon reveals the timing of subduction–exhumation of the Vaimok Lens in the Seve Nappe Complex (Scandinavian Caledonides)
  publication-title: Contributions to Mineralogy and Petrology
– year: 2022
– volume: 112
  issue: 9
  year: 2007
  article-title: Paleomagnetic analysis using SQUID microscopy
  publication-title: Journal of Geophysical Research
– year: 1997
– volume: 78
  issue: 16
  year: 2019
  article-title: Hydro‐climate characteristics of the karst system of Wintimdouine cave (Western High Atlas, Morocco): Monitoring and implications for paleoclimate research
  publication-title: Environmental Earth Sciences
– volume: 118
  start-page: 2723
  issue: 6
  year: 2013
  end-page: 2752
  article-title: Fast inversion of magnetic field maps of unidirectional planar geological magnetization
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 17
  start-page: 261
  issue: 3
  year: 2020
  end-page: 272
– volume: 216
  start-page: 760
  issue: 2
  year: 2019
  end-page: 766
  article-title: A uniqueness theorem for tomography‐assisted potential‐field inversion
  publication-title: Geophysical Journal International
– year: 2019
– volume: 35
  start-page: 273
  issue: 1
  year: 2007
  end-page: 311
  article-title: Microsampling and isotopic analysis of igneous rocks: Implications for the study of magmatic systems
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 57
  start-page: 116
  issue: 1
  year: 1992
  end-page: 125
  article-title: Magnetic interpretation using the 3‐D analytic signal
  publication-title: Geophysics
– volume: 29
  issue: 1
  year: 2013
  article-title: Characterizing kernels of operators related to thin‐plate magnetizations via generalizations of Hodge decompositions
  publication-title: Inverse Problems
– volume: 68
  start-page: 1962
  issue: 6
  year: 2003
  end-page: 1968
  article-title: 3D Euler deconvolution: Theoretical basis for automatically selecting good solutions
  publication-title: Geophysics
– volume: 105
  start-page: 25709
  issue: B11
  year: 2000
  end-page: 25727
  article-title: High‐resolution imaging using a high‐Tc superconducting quantum interference device (SQUID) magnetometer
  publication-title: Journal of Geophysical Research
– volume: 114
  issue: 6
  year: 2009
  article-title: Obtaining vector magnetic field maps from single‐component measurements of geological samples
  publication-title: Journal of Geophysical Research
– start-page: 348
  year: 2014
  end-page: 372
– start-page: 1
  year: 2015
  end-page: 6
– volume: 123
  start-page: 1
  year: 2013
  end-page: 17
  article-title: High‐resolution X‐ray computed tomography in geosciences: A review of the current technology and applications
  publication-title: Earth‐Science Reviews
– year: 1996
– volume: 47
  start-page: 31
  issue: 1
  year: 1982
  end-page: 37
  article-title: Euldph: A new technique for making computer‐assisted depth estimates from magnetic data
  publication-title: Geophysics
– volume: 25
  issue: 10
  year: 2014
  article-title: Scanning magnetic tunnel junction microscope for high‐resolution imaging of remanent magnetization fields
  publication-title: Measurement Science and Technology
– volume: 22
  start-page: 215
  issue: 2
  year: 2015
  end-page: 232
  article-title: Estimation of the total magnetization direction of approximately spherical bodies
  publication-title: Nonlinear Processes in Geophysics
– volume: 207
  start-page: 187
  issue: 1167
  year: 1980
  end-page: 217
  article-title: Theory of edge detection
  publication-title: Proceedings of the Royal Society of London. Series B. Biological Sciences
– volume: 71
  start-page: 14
  issue: 1
  year: 2019
  article-title: Using TNT‐NN to unlock the fast full spatial inversion of large magnetic microscopy data sets
  publication-title: Earth, Planets and Space
– start-page: 57
  year: 2016
  end-page: 60
– volume: 42
  issue: 1
  year: 2012
  article-title: Applying the regularized derivatives approach in Euler deconvolution and modeling geophysical data to estimate the deep active structures for the northern Red Sea Rift region, Egypt
  publication-title: Contributions to Geophysics and Geodesy
– volume: 59
  start-page: 1021
  issue: 6
  year: 2011
  end-page: 1034
  article-title: Reconstruction of geologic bodies in depth associated with a sedimentary basin using gravity and magnetic data
  publication-title: Geophysical Prospecting
– volume: 18
  start-page: 3254
  issue: 8
  year: 2017
  end-page: 3267
  article-title: Micrometer‐scale magnetic imaging of geological samples using a quantum diamond microscope
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 22
  issue: 4
  year: 2021
  article-title: Single particle multipole expansions from micromagnetic tomography
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  end-page: 95
– volume: 55
  start-page: 80
  issue: 1
  year: 1990
  end-page: 91
  article-title: Magnetic interpretation in three dimensions using Euler deconvolution
  publication-title: Geophysics
– volume: 121
  start-page: 15
  issue: 1
  year: 2016
  end-page: 26
  article-title: Does size matter? Statistical limits of paleomagnetic field reconstruction from small rock specimens
  publication-title: Journal of Geophysical Research: Solid Earth
– year: 2020
– volume: 2
  year: 2014
– year: 2023
– volume: 70
  start-page: 33ND
  issue: 6
  year: 2005
  end-page: 61ND
  article-title: The historical development of the magnetic method in exploration
  publication-title: Geophysics
– volume: 127
  issue: 5
  year: 2022
  article-title: Mapping magnetic signals of individual magnetite grains to their internal magnetic configurations using micromagnetic models
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 24
  issue: 4
  year: 2023
  article-title: Unraveling the magnetic signal of individual grains in a Hawaiian lava using micromagnetic tomography
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 21
  issue: 8
  year: 2020
  article-title: High‐sensitivity moment magnetometry with the quantum diamond microscope
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 78
  start-page: J87
  issue: 6
  year: 2013
  end-page: J98
  article-title: Estimating the nature and the horizontal and vertical positions of 3D magnetic sources using Euler deconvolution
  publication-title: Geophysics
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  end-page: 362
– volume: 3
  issue: 29
  year: 2018
– ident: e_1_2_9_16_1
  doi: 10.1029/2021JB022364
– ident: e_1_2_9_29_1
  doi: 10.1109/MCSE.2007.55
– ident: e_1_2_9_5_1
  doi: 10.1111/j.1365‐2478.2011.00997.x
– ident: e_1_2_9_41_1
  doi: 10.1186/s40623‐019‐0988‐8
– ident: e_1_2_9_45_1
  doi: 10.1190/1.1442774
– ident: e_1_2_9_33_1
  doi: 10.1145/2833157.2833162
– ident: e_1_2_9_12_1
  doi: 10.1029/2021GC009663
– ident: e_1_2_9_36_1
  doi: 10.1002/2016GC006487
– ident: e_1_2_9_23_1
  doi: 10.1029/2020GC009147
– ident: e_1_2_9_34_1
  doi: 10.1088/0957‐0233/25/10/105401
– ident: e_1_2_9_44_1
  doi: 10.5194/npg‐22‐215‐2015
– ident: e_1_2_9_55_1
  doi: 10.7717/peerj.453
– ident: e_1_2_9_11_1
  doi: 10.1016/j.earscirev.2013.04.003
– ident: e_1_2_9_21_1
  doi: 10.5281/zenodo.7690145
– ident: e_1_2_9_53_1
  doi: 10.1190/1.1441278
– volume-title: Potential theory in gravity and magnetic applications
  year: 1996
  ident: e_1_2_9_8_1
– ident: e_1_2_9_57_1
  doi: 10.1038/s41592‐019‐0686‐2
– ident: e_1_2_9_43_1
  doi: 10.1073/PNAS.1708344114
– ident: e_1_2_9_56_1
  doi: 10.1130/G48017.1
– volume-title: Parameter estimation and inverse problems
  year: 2019
  ident: e_1_2_9_3_1
– ident: e_1_2_9_42_1
  doi: 10.1190/1.2133784
– ident: e_1_2_9_46_1
  doi: 10.1002/2016GC006329
– ident: e_1_2_9_52_1
– ident: e_1_2_9_28_1
  doi: 10.5334/jors.148
– ident: e_1_2_9_48_1
  doi: 10.2478/v10126‐012‐0003‐x
– ident: e_1_2_9_22_1
  doi: 10.5281/zenodo.7851748
– ident: e_1_2_9_30_1
– ident: e_1_2_9_49_1
  doi: 10.1190/1.1635050
– ident: e_1_2_9_35_1
  doi: 10.1029/2008JB006006
– ident: e_1_2_9_18_1
  doi: 10.1017/CBO9780511612794
– ident: e_1_2_9_50_1
  doi: 10.6084/M9.FIGSHARE.22672978
– ident: e_1_2_9_4_1
  doi: 10.1088/0266‐5611/29/1/015004
– ident: e_1_2_9_31_1
  doi: 10.1109/TSMCB.2012.2228639
– ident: e_1_2_9_32_1
  doi: 10.1029/2022GC010462
– volume-title: AGU Fall Meeting Abstracts
  year: 2019
  ident: e_1_2_9_10_1
– ident: e_1_2_9_58_1
  doi: 10.1029/2007JB004940
– ident: e_1_2_9_27_1
  doi: 10.1038/s41586‐020‐2649‐2
– ident: e_1_2_9_54_1
  doi: 10.21105/joss.00957
– ident: e_1_2_9_47_1
  doi: 10.1190/1.1443174
– ident: e_1_2_9_24_1
  doi: 10.1002/2017GC006946
– ident: e_1_2_9_39_1
  doi: 10.1098/rspb.1980.0020
– ident: e_1_2_9_38_1
  doi: 10.1038/s41598‐020‐65176‐w
– ident: e_1_2_9_14_1
  doi: 10.1146/annurev.earth.35.031306.140211
– ident: e_1_2_9_17_1
  doi: 10.1002/2017GL076634
– volume-title: Digital image processing
  year: 2018
  ident: e_1_2_9_25_1
– ident: e_1_2_9_2_1
  doi: 10.1007/s12665‐019‐8496‐5
– ident: e_1_2_9_13_1
  doi: 10.1029/2022JB024234
– ident: e_1_2_9_15_1
  doi: 10.1038/ncomms5548
– ident: e_1_2_9_37_1
  doi: 10.1002/jgrb.50229
– ident: e_1_2_9_6_1
  doi: 10.1007/s00410‐018‐1539‐1
– ident: e_1_2_9_20_1
  doi: 10.1093/GJI/GGY455
– ident: e_1_2_9_7_1
  doi: 10.1002/2015JB012441
– ident: e_1_2_9_9_1
  doi: 10.6084/M9.FIGSHARE.22965200.V1
– ident: e_1_2_9_40_1
  doi: 10.1190/GEO2012‐0515.1
– ident: e_1_2_9_26_1
  doi: 10.1109/ICTEmSys.2016.7467122
– ident: e_1_2_9_51_1
  doi: 10.1533/9780857097521.2.348
– ident: e_1_2_9_19_1
  doi: 10.1029/2000JB900192
SSID ssj0014558
Score 2.450514
Snippet Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques...
Abstract Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Automation
Computer software
Deconvolution
Diamonds
geophysics
Image processing
inverse problems
Magnetic field
Magnetic fields
magnetic microscopy
Magnetism
Magnetization
Microscopy
Palaeomagnetism
Paleomagnetism
Python
Rocks
Sediment samples
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQD4lLW2gR29LKBzhB1Dh2HPtI6ZIiAdoDIG7R2E5WSLBbJbDS_vt6vCZaDkVCHJOME8eeGY_HM98Qsm8arj2r6EQ6IxKhcpEoT5gUrPZGkrbOBH_HzXlxealub_UoOtwwF2aBD9E73FAygr5GAQfTRbABxMjEut_lCS5fyqvgNca4wtINmRj1pwgiD_U5scRPgpv8GPju2_9cbv1iSQrI_S_MzWWjNaw6px_f299P5EO0N-nxgkG2yEo92SYbZajnO_9MDG5B6U1w3VPE3AjeMzpt6AWMJ5jgSC8wZA-TV-b07MFrn46GMAM6fLqvW_obN9SzyL8UOjpq78Kr-qzIL-T6dHh18ieJZRcSEFzIpDZKQFa4AhQDLawR_jLVyulGSwGOsbpR2qaOZ9arWUgdcxkTFrjRkErFd8jqZDqpdwn19k-ts9TJQufC2QK4AuZSnkFq8twWA3L4PPKVjZjkWBrjvgpn45mulkdtQA566r8LLI7_0P3CSexpEEE73Ji24yoKZCWNxd_EpGyvtwCUaFJpvAFsIAdj-IDsPbNAFcW6q7g3UKU3kqT_xlGY7Fc7UpVlOcw4l_Lr28i_kU3_QCzCgvfI6mP7VH8n63b2eNe1PwKT_wNCSfdz
  priority: 102
  providerName: Wiley-Blackwell
Title Full Vector Inversion of Magnetic Microscopy Images Using Euler Deconvolution as Prior Information
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GC011082
https://www.proquest.com/docview/3085621562
https://doaj.org/article/6bc84a21146042aa84f06b016ba5abb3
Volume 25
WOSCitedRecordID wos001268816200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: PCBAR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: M2O
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: M2P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: DRFUL
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: 24P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZa2kq9VNCHui2sfKAniOrYjmMfeWQDErtECBC3aGwnFRJdql1A4tLf3rGTXS0H2ksvkRyNHGv8xf7Gngch27YVBqFiEuWtTKTOZKJRMMnTBkmScd7G847Lk3wy0VdXplop9RV8wrr0wJ3ivivrtAQegmcRXwBatkxZJCoWMrA25vlE1rMwpvr7A5llundzZ9wEC1-UB2Gr0_zJBhTz9D8hl6sUNe4xo3XyrieHdK8b1AZ50UzfkzdlLL77-IHYYC_Sy3jOTkOCjHjURW9bOoYf0xCNSMfBvy5EmjzS45-4VMxp9Amgxf1NM6OHwfp96MFGYU6r2XXsahnC-JFcjIrzg6Okr5GQgBRSJY0N2sl9DjoFI52V2GRGe9MaJcGnadNq45gX3OGaCMynnqfSgbAGmNLiE1mb3k6bz4QiWWkMZ17lJpPe5SA0pJ4JDsxmmcsHZGehuNr1CcRDHYubOl5kc1OvqnlAvi2lf3WJM56R2w9zsJQJ6a7jCwRB3YOg_hcIBmRzMYN1_w_Oa4FsUiGjUfiN3Tirfx1IXZZlwYVQ6sv_GNJX8hZ7l51n7yZZu5vdN1vktXu4u57PhuQll9WQvNovJtXZMGIXW4dno4sTbI35aXxW4fm7-ANvTfD8
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqHiqXQmkR20LrQ3tqoyax49hHHrsBdXeFKkDcrLGdICTYRVlA4t_X4zXRcqAS6jHRxEns8fjzeOYbQr6ZhimvKioRzvCEy4In0gsmZVZ7kKSsM8HfcT4sx2N5caFOYp1TzIWZ80N0DjecGcFe4wRHh3RkG0CSTCz8XR3g-iW9DV7mXpO8ii8f_hmcDbuDBF6EEp1Y5SfBfX6Mffct_Fp8_tmqFMj7nyHORdwaFp7B-n9_8gZ5FzEn3ZsryXvypp5sktUq1PR9_EAMbkPpeXDfU-TdCB40Om3oCC4nmORIRxi2hwksj_T4xlugGQ2hBrR_f1239BA31Q9RhynM6El7FZrqMiM_krNB__TgKImlFxLgjIukNpJDXroSZAaKW8P9ZaqkU40SHFyW1Y1UNnUst97UQuoyl2fcAjMKUiHZFlmaTCf1NqEeA9UqT50oVcGdLYFJyFzKckhNUdiyR348db22kZccy2Nc63A-niu92Gs98r2Tvp3zcbwgt4-j2Mkgi3a4MW0vdZyUWhiLv4mJ2d52AUjepMJ4EGygAGNYj-w86YCOU3ummQepwgMl4d_xM4z2Pz9EV1XVzxkT4tPrxL-St0eno6EeHo9_fyZrXojPw4R3yNJde1_vkhX7cHc1a79Enf8LybT8-Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQNxAvML5EYQM_wBNEJLHj2I-wtmGiqyrEpr1Z549Mk0Y7pduk_ff4XC_qHkCaeEx0cRL7fP75fPc7Qj6YlqmgKioTzvCMy4pnMghmdeEDSFLWmejvOJ7Ws5k8OVHzVOcUc2HW_BC9ww1nRrTXOMH9hWsT2wCSZGLh72Yf1y8ZbPAWxzoyA7I1-jk5mvYHCbyKJTqxyk-G-_wU-x5a-LL5_J1VKZL330Gcm7g1LjyTp__9yTvkScKc9OtaSZ6RB37xnDxsYk3fmxfE4DaUHkf3PUXejehBo8uWHsLpApMc6SGG7WECyw09-B0s0IrGUAM6vjr3HR3hpvo66TCFFZ13Z7GpPjPyJTmajH_tf89S6YUMOOMi80ZyKGtXgyxAcWt4uMyVdKpVgoMrCt9KZXPHShtMLeSucGXBLTCjIBeSvSKDxXLhXxMaMJBXZe5ErSrubA1MQuFyVkJuqsrWQ_Lptuu1TbzkWB7jXMfz8VLpzV4bko-99MWaj-Mvct9wFHsZZNGON5bdqU6TUgtj8TcxMTvYLgDJ21yYAIINVGAMG5LdWx3QaWqvNAsgVQSgJMI7PsfR_ueH6KZpxiVjQry5n_h78mg-mujpwezHW_I4yPB1lPAuGVx2V36PbNvry7NV9y6p_B9WAPx0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full+Vector+Inversion+of+Magnetic+Microscopy+Images+Using+Euler+Deconvolution+as+Prior+Information&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Souza%E2%80%90Junior%2C+Gelson+F.&rft.au=Uieda%2C+Leonardo&rft.au=Trindade%2C+Ricardo+I.+F.&rft.au=Carmo%2C+Janine&rft.date=2024-07-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=25&rft.issue=7&rft_id=info:doi/10.1029%2F2023GC011082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023GC011082
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon