Full Vector Inversion of Magnetic Microscopy Images Using Euler Deconvolution as Prior Information
Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques have allowed the examination of individual magnetic grains. However, accurately determining the magnetic moments of these grains is difficult an...
Uložené v:
| Vydané v: | Geochemistry, geophysics, geosystems : G3 Ročník 25; číslo 7 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington
John Wiley & Sons, Inc
01.07.2024
Wiley |
| Predmet: | |
| ISSN: | 1525-2027, 1525-2027 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques have allowed the examination of individual magnetic grains. However, accurately determining the magnetic moments of these grains is difficult and time‐consuming due to the inherent ambiguity of the data and the large number of grains in each image. Here we introduce a fast and semi‐automated algorithm that estimates the position and magnetization of dipolar sources solely based on the magnetic microscopy data. The algorithm follows a three‐step process: (a) employ image processing techniques to identify and isolate data windows for each magnetic source; (b) use Euler Deconvolution to estimate the position of each source; (c) solve a linear inverse problem to estimate the dipole moment of each source. To validate the algorithm, we conducted synthetic data tests, including varying particle concentrations and non‐dipolarity. The tests show that our method is able to accurately recover the position and dipole moment of particles that are at least 15 μm apart for a source‐sensor separation of 5 μm. For grain concentrations of 6,250 grains/mm3, our method is able to detect over 60% of the particles present in the data. We applied the method to real data of a speleothem sample, where it accurately retrieved the expected directions induced in the sample. The semi‐automated nature of our algorithm, combined with its low processing cost and ability to determine the magnetic moments of numerous particles, represents a significant advancement in facilitating paleomagnetic applications of magnetic microscopy.
Plain Language Summary
Very small magnetic particles in rocks and other materials can store information about what the Earth's magnetic field was like in the past. But not all particles are good recorders of this magnetic information, and some may have recorded different overlapping directions and strengths. So it is important to measure each particle separately in order to identify and separate the good recorders from the bad ones. A device called a “quantum diamond microscope” is able to measure the magnetic field near the surface of a rock sample at microscopic scale. We propose a new method for processing data from this microscope that is able to find out the individual magnetizations of large amounts of small magnetic particles automatically. We created a computer program to execute the method, which calculates the 3D position and magnetization of each particle using the simple model of a magnetic dipole. We tested the method on simulated data, using fake magnetic particles for which we know the correct magnetization and position, and real data, both of which showed good results in most cases. The method we created has the potential to enable the widespread study of the magnetism of natural materials with more detail than before.
Key Points
We present a fast algorithm to estimate the position and magnetization of individual sources using only magnetic microscopy data
The algorithm was validated using synthetic samples that included both dipolar and non‐dipolar sources with varying depths and intensities
The successful application of the algorithm on a speleothem sample represents an advancement of this methodology for paleomagnetic studies |
|---|---|
| AbstractList | Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques have allowed the examination of individual magnetic grains. However, accurately determining the magnetic moments of these grains is difficult and time‐consuming due to the inherent ambiguity of the data and the large number of grains in each image. Here we introduce a fast and semi‐automated algorithm that estimates the position and magnetization of dipolar sources solely based on the magnetic microscopy data. The algorithm follows a three‐step process: (a) employ image processing techniques to identify and isolate data windows for each magnetic source; (b) use Euler Deconvolution to estimate the position of each source; (c) solve a linear inverse problem to estimate the dipole moment of each source. To validate the algorithm, we conducted synthetic data tests, including varying particle concentrations and non‐dipolarity. The tests show that our method is able to accurately recover the position and dipole moment of particles that are at least 15 μm apart for a source‐sensor separation of 5 μm. For grain concentrations of 6,250 grains/mm3, our method is able to detect over 60% of the particles present in the data. We applied the method to real data of a speleothem sample, where it accurately retrieved the expected directions induced in the sample. The semi‐automated nature of our algorithm, combined with its low processing cost and ability to determine the magnetic moments of numerous particles, represents a significant advancement in facilitating paleomagnetic applications of magnetic microscopy.
Plain Language Summary
Very small magnetic particles in rocks and other materials can store information about what the Earth's magnetic field was like in the past. But not all particles are good recorders of this magnetic information, and some may have recorded different overlapping directions and strengths. So it is important to measure each particle separately in order to identify and separate the good recorders from the bad ones. A device called a “quantum diamond microscope” is able to measure the magnetic field near the surface of a rock sample at microscopic scale. We propose a new method for processing data from this microscope that is able to find out the individual magnetizations of large amounts of small magnetic particles automatically. We created a computer program to execute the method, which calculates the 3D position and magnetization of each particle using the simple model of a magnetic dipole. We tested the method on simulated data, using fake magnetic particles for which we know the correct magnetization and position, and real data, both of which showed good results in most cases. The method we created has the potential to enable the widespread study of the magnetism of natural materials with more detail than before.
Key Points
We present a fast algorithm to estimate the position and magnetization of individual sources using only magnetic microscopy data
The algorithm was validated using synthetic samples that included both dipolar and non‐dipolar sources with varying depths and intensities
The successful application of the algorithm on a speleothem sample represents an advancement of this methodology for paleomagnetic studies Abstract Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques have allowed the examination of individual magnetic grains. However, accurately determining the magnetic moments of these grains is difficult and time‐consuming due to the inherent ambiguity of the data and the large number of grains in each image. Here we introduce a fast and semi‐automated algorithm that estimates the position and magnetization of dipolar sources solely based on the magnetic microscopy data. The algorithm follows a three‐step process: (a) employ image processing techniques to identify and isolate data windows for each magnetic source; (b) use Euler Deconvolution to estimate the position of each source; (c) solve a linear inverse problem to estimate the dipole moment of each source. To validate the algorithm, we conducted synthetic data tests, including varying particle concentrations and non‐dipolarity. The tests show that our method is able to accurately recover the position and dipole moment of particles that are at least 15 μm apart for a source‐sensor separation of 5 μm. For grain concentrations of 6,250 grains/mm3, our method is able to detect over 60% of the particles present in the data. We applied the method to real data of a speleothem sample, where it accurately retrieved the expected directions induced in the sample. The semi‐automated nature of our algorithm, combined with its low processing cost and ability to determine the magnetic moments of numerous particles, represents a significant advancement in facilitating paleomagnetic applications of magnetic microscopy. Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques have allowed the examination of individual magnetic grains. However, accurately determining the magnetic moments of these grains is difficult and time‐consuming due to the inherent ambiguity of the data and the large number of grains in each image. Here we introduce a fast and semi‐automated algorithm that estimates the position and magnetization of dipolar sources solely based on the magnetic microscopy data. The algorithm follows a three‐step process: (a) employ image processing techniques to identify and isolate data windows for each magnetic source; (b) use Euler Deconvolution to estimate the position of each source; (c) solve a linear inverse problem to estimate the dipole moment of each source. To validate the algorithm, we conducted synthetic data tests, including varying particle concentrations and non‐dipolarity. The tests show that our method is able to accurately recover the position and dipole moment of particles that are at least 15 μm apart for a source‐sensor separation of 5 μm. For grain concentrations of 6,250 grains/mm3, our method is able to detect over 60% of the particles present in the data. We applied the method to real data of a speleothem sample, where it accurately retrieved the expected directions induced in the sample. The semi‐automated nature of our algorithm, combined with its low processing cost and ability to determine the magnetic moments of numerous particles, represents a significant advancement in facilitating paleomagnetic applications of magnetic microscopy. Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques have allowed the examination of individual magnetic grains. However, accurately determining the magnetic moments of these grains is difficult and time‐consuming due to the inherent ambiguity of the data and the large number of grains in each image. Here we introduce a fast and semi‐automated algorithm that estimates the position and magnetization of dipolar sources solely based on the magnetic microscopy data. The algorithm follows a three‐step process: (a) employ image processing techniques to identify and isolate data windows for each magnetic source; (b) use Euler Deconvolution to estimate the position of each source; (c) solve a linear inverse problem to estimate the dipole moment of each source. To validate the algorithm, we conducted synthetic data tests, including varying particle concentrations and non‐dipolarity. The tests show that our method is able to accurately recover the position and dipole moment of particles that are at least 15 μm apart for a source‐sensor separation of 5 μm. For grain concentrations of 6,250 grains/mm 3 , our method is able to detect over 60% of the particles present in the data. We applied the method to real data of a speleothem sample, where it accurately retrieved the expected directions induced in the sample. The semi‐automated nature of our algorithm, combined with its low processing cost and ability to determine the magnetic moments of numerous particles, represents a significant advancement in facilitating paleomagnetic applications of magnetic microscopy. Very small magnetic particles in rocks and other materials can store information about what the Earth's magnetic field was like in the past. But not all particles are good recorders of this magnetic information, and some may have recorded different overlapping directions and strengths. So it is important to measure each particle separately in order to identify and separate the good recorders from the bad ones. A device called a “quantum diamond microscope” is able to measure the magnetic field near the surface of a rock sample at microscopic scale. We propose a new method for processing data from this microscope that is able to find out the individual magnetizations of large amounts of small magnetic particles automatically. We created a computer program to execute the method, which calculates the 3D position and magnetization of each particle using the simple model of a magnetic dipole. We tested the method on simulated data, using fake magnetic particles for which we know the correct magnetization and position, and real data, both of which showed good results in most cases. The method we created has the potential to enable the widespread study of the magnetism of natural materials with more detail than before. We present a fast algorithm to estimate the position and magnetization of individual sources using only magnetic microscopy data The algorithm was validated using synthetic samples that included both dipolar and non‐dipolar sources with varying depths and intensities The successful application of the algorithm on a speleothem sample represents an advancement of this methodology for paleomagnetic studies |
| Author | Fu, Roger Trindade, Ricardo I. F. Souza‐Junior, Gelson F. Carmo, Janine Uieda, Leonardo |
| Author_xml | – sequence: 1 givenname: Gelson F. orcidid: 0000-0002-5695-4239 surname: Souza‐Junior fullname: Souza‐Junior, Gelson F. email: gelson.ferreira@iag.usp.br organization: Universidade de São Paulo – sequence: 2 givenname: Leonardo orcidid: 0000-0001-6123-9515 surname: Uieda fullname: Uieda, Leonardo email: uieda@usp.br organization: University of Liverpool – sequence: 3 givenname: Ricardo I. F. orcidid: 0000-0001-9848-9550 surname: Trindade fullname: Trindade, Ricardo I. F. organization: Universidade de São Paulo – sequence: 4 givenname: Janine orcidid: 0000-0003-3683-3648 surname: Carmo fullname: Carmo, Janine organization: Universidade de São Paulo – sequence: 5 givenname: Roger orcidid: 0000-0003-3635-2676 surname: Fu fullname: Fu, Roger organization: Harvard University |
| BookMark | eNp9kUtLAzEUhYMo-Nz5AwJureY1aWYptR0Lii7UbbjJZErKdFKTGaX_3plWQQRdhCSH75zcm3uM9pvQOITOKbmihOXXjDBeTAilRLE9dEQzlo16bbz_43yIjlNaEkJFlqkjZGZdXeNXZ9sQ8bx5dzH50OBQ4QdYNK71Fj94G0OyYb3B8xUsXMIvyTcLPO1qF_Gts6F5D3XXDj5I-Cn6bVQV4goG8RQdVFAnd_a1n6CX2fR5cje6fyzmk5v7EQgu5MgZJYCNyzEoCrmwRvRXkqsyr3IpoKTUVSq3pOTMCjkGUtKSUWGBmxyIVPwEzXe5ZYClXke_grjRAbzeCiEuNMS-odppaezwGKVCEsEAlKiINIRKAxkYw_usi13WOoa3zqVWL0MXm758zYnKJKP96im2o4YPStFV2vp223MbwdeaEj3MRf-cS2-6_GX6LvUPnO_wD1-7zb-sLopiyjiXkn8C3hidlQ |
| CitedBy_id | crossref_primary_10_1190_geo2024_0128_1 |
| Cites_doi | 10.1029/2021JB022364 10.1109/MCSE.2007.55 10.1111/j.1365‐2478.2011.00997.x 10.1186/s40623‐019‐0988‐8 10.1190/1.1442774 10.1145/2833157.2833162 10.1029/2021GC009663 10.1002/2016GC006487 10.1029/2020GC009147 10.1088/0957‐0233/25/10/105401 10.5194/npg‐22‐215‐2015 10.7717/peerj.453 10.1016/j.earscirev.2013.04.003 10.5281/zenodo.7690145 10.1190/1.1441278 10.1038/s41592‐019‐0686‐2 10.1073/PNAS.1708344114 10.1130/G48017.1 10.1190/1.2133784 10.1002/2016GC006329 10.5334/jors.148 10.2478/v10126‐012‐0003‐x 10.5281/zenodo.7851748 10.1190/1.1635050 10.1029/2008JB006006 10.1017/CBO9780511612794 10.6084/M9.FIGSHARE.22672978 10.1088/0266‐5611/29/1/015004 10.1109/TSMCB.2012.2228639 10.1029/2022GC010462 10.1029/2007JB004940 10.1038/s41586‐020‐2649‐2 10.21105/joss.00957 10.1190/1.1443174 10.1002/2017GC006946 10.1098/rspb.1980.0020 10.1038/s41598‐020‐65176‐w 10.1146/annurev.earth.35.031306.140211 10.1002/2017GL076634 10.1007/s12665‐019‐8496‐5 10.1029/2022JB024234 10.1038/ncomms5548 10.1002/jgrb.50229 10.1007/s00410‐018‐1539‐1 10.1093/GJI/GGY455 10.1002/2015JB012441 10.6084/M9.FIGSHARE.22965200.V1 10.1190/GEO2012‐0515.1 10.1109/ICTEmSys.2016.7467122 10.1533/9780857097521.2.348 10.1029/2000JB900192 |
| ContentType | Journal Article |
| Copyright | 2024 The Authors. Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union. 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Authors. Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union. – notice: 2024. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7TG 7TN F1W H96 KL. L.G DOA |
| DOI | 10.1029/2023GC011082 |
| DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Open Access资源_DOAJ |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1525-2027 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_6bc84a21146042aa84f06b016ba5abb3 10_1029_2023GC011082 GGGE23366 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 162704/2021‐6 – fundername: Royal Society funderid: IES\R3\213141 – fundername: Universidade de São Paulo funderid: PRPI 22.1.09345.01.2 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo funderid: 2021/08379‐5 |
| GroupedDBID | 05W 0R~ 1OC 24P 31~ 50Y 5GY 8-1 88I 8CJ 8FE 8FH 8G5 8R4 8R5 AAESR AAFWJ AAMMB AANHP AAYCA AAZKR ABCUV ABUWG ACAHQ ACBWZ ACCMX ACGFS ACGOD ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADIYS ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFPKN AGQPQ AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D1J DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OK1 P-X P2W PCBAR PHGZM PHGZT PQQKQ PROAC Q2X R.K ROL SUPJJ UB1 WBKPD ZZTAW ~02 ~OA AAYXX AFFHD CITATION WIN 7TG 7TN F1W H96 KL. L.G |
| ID | FETCH-LOGICAL-a4346-eb84a27d7a81a94cb44a2098d9f964ad11ef89c0d32c467a0d1d214ca3b9a0683 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001268816200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1525-2027 |
| IngestDate | Fri Oct 03 12:42:50 EDT 2025 Sat Aug 23 13:59:44 EDT 2025 Tue Nov 18 19:41:24 EST 2025 Sat Nov 29 07:56:56 EST 2025 Sun Jul 06 04:45:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4346-eb84a27d7a81a94cb44a2098d9f964ad11ef89c0d32c467a0d1d214ca3b9a0683 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9848-9550 0000-0003-3683-3648 0000-0002-5695-4239 0000-0001-6123-9515 0000-0003-3635-2676 |
| OpenAccessLink | https://doaj.org/article/6bc84a21146042aa84f06b016ba5abb3 |
| PQID | 3085621562 |
| PQPubID | 54722 |
| PageCount | 25 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6bc84a21146042aa84f06b016ba5abb3 proquest_journals_3085621562 crossref_citationtrail_10_1029_2023GC011082 crossref_primary_10_1029_2023GC011082 wiley_primary_10_1029_2023GC011082_GGGE23366 |
| PublicationCentury | 2000 |
| PublicationDate | July 2024 2024-07-00 20240701 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geochemistry, geophysics, geosystems : G3 |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2017; 5 2013; 29 1990; 55 2021; 22 2021; 126 2013; 123 2020; 17 2014; 25 1992; 57 2011; 59 2020; 10 2018; 45 2017; 114 2007; 35 2009; 114 2014; 5 2023; 24 2018; 3 2014; 2 2013; 118 2007; 9 2020; 48 2005; 70 2022; 127 2019; 71 2013; 43 2019; 78 1997 1996 2016; 121 2020; 585 2016; 17 1982; 47 2007; 112 1980; 207 2023 2022 2000; 105 2020 2013; 78 2015; 22 2003; 68 2019 2018 2016 2017; 18 2015 2019; 216 2014 2020; 21 2019; 174 2012; 42 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 Blakely R. J. (e_1_2_9_8_1) 1996 e_1_2_9_6_1 Carmo J. A. (e_1_2_9_10_1) 2019 e_1_2_9_4_1 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 Gonzalez R. C. (e_1_2_9_25_1) 2018 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_7_1 Aster R. C. (e_1_2_9_3_1) 2019 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
| References_xml | – volume: 114 start-page: 10356 issue: 39 year: 2017 end-page: 10360 article-title: Stability of equidimensional pseudo–single‐domain magnetite over billion‐year timescales publication-title: Proceedings of the National Academy of Sciences – volume: 48 start-page: 1126 issue: 11 year: 2020 end-page: 1130 article-title: The geochemical and geochronological implications of nanoscale trace‐element clusters in rutile publication-title: Geology – volume: 17 start-page: 3350 issue: 8 year: 2016 end-page: 3374 article-title: Estimating the magnetization distribution within rectangular rock samples publication-title: Geochemistry, Geophysics, Geosystems – volume: 5 start-page: 1 issue: 1 year: 2014 end-page: 10 article-title: Magnetic force microscopy reveals meta‐stable magnetic domain states that prevent reliable absolute palaeointensity experiments publication-title: Nature Communications – volume: 5 start-page: 10 issue: 1 year: 2017 – volume: 10 start-page: 1 issue: 1 year: 2020 end-page: 9 article-title: Nanoscale 3D quantitative imaging of 1.88 Ga Gunflint microfossils reveals novel insights into taphonomic and biogenic characters publication-title: Scientific Reports – volume: 43 start-page: 1719 issue: 6 year: 2013 end-page: 1733 article-title: A generalized Laplacian of Gaussian filter for blob detection and its applications publication-title: IEEE Transactions on Cybernetics – year: 2018 – volume: 126 issue: 10 year: 2021 article-title: Micromagnetic tomography for paleomagnetism and rock‐magnetism publication-title: Journal of Geophysical Research: Solid Earth – volume: 45 start-page: 2995 issue: 7 year: 2018 end-page: 3000 article-title: Determining individual particle magnetizations in assemblages of micrograins publication-title: Geophysical Research Letters – volume: 17 start-page: 3754 issue: 9 year: 2016 end-page: 3774 article-title: Ultra‐high sensitivity moment magnetometry of geological samples using magnetic microscopy publication-title: Geochemistry, Geophysics, Geosystems – volume: 174 start-page: 5 issue: 1 year: 2019 article-title: High‐spatial resolution dating of monazite and zircon reveals the timing of subduction–exhumation of the Vaimok Lens in the Seve Nappe Complex (Scandinavian Caledonides) publication-title: Contributions to Mineralogy and Petrology – year: 2022 – volume: 112 issue: 9 year: 2007 article-title: Paleomagnetic analysis using SQUID microscopy publication-title: Journal of Geophysical Research – year: 1997 – volume: 78 issue: 16 year: 2019 article-title: Hydro‐climate characteristics of the karst system of Wintimdouine cave (Western High Atlas, Morocco): Monitoring and implications for paleoclimate research publication-title: Environmental Earth Sciences – volume: 118 start-page: 2723 issue: 6 year: 2013 end-page: 2752 article-title: Fast inversion of magnetic field maps of unidirectional planar geological magnetization publication-title: Journal of Geophysical Research: Solid Earth – volume: 17 start-page: 261 issue: 3 year: 2020 end-page: 272 – volume: 216 start-page: 760 issue: 2 year: 2019 end-page: 766 article-title: A uniqueness theorem for tomography‐assisted potential‐field inversion publication-title: Geophysical Journal International – year: 2019 – volume: 35 start-page: 273 issue: 1 year: 2007 end-page: 311 article-title: Microsampling and isotopic analysis of igneous rocks: Implications for the study of magmatic systems publication-title: Annual Review of Earth and Planetary Sciences – volume: 57 start-page: 116 issue: 1 year: 1992 end-page: 125 article-title: Magnetic interpretation using the 3‐D analytic signal publication-title: Geophysics – volume: 29 issue: 1 year: 2013 article-title: Characterizing kernels of operators related to thin‐plate magnetizations via generalizations of Hodge decompositions publication-title: Inverse Problems – volume: 68 start-page: 1962 issue: 6 year: 2003 end-page: 1968 article-title: 3D Euler deconvolution: Theoretical basis for automatically selecting good solutions publication-title: Geophysics – volume: 105 start-page: 25709 issue: B11 year: 2000 end-page: 25727 article-title: High‐resolution imaging using a high‐Tc superconducting quantum interference device (SQUID) magnetometer publication-title: Journal of Geophysical Research – volume: 114 issue: 6 year: 2009 article-title: Obtaining vector magnetic field maps from single‐component measurements of geological samples publication-title: Journal of Geophysical Research – start-page: 348 year: 2014 end-page: 372 – start-page: 1 year: 2015 end-page: 6 – volume: 123 start-page: 1 year: 2013 end-page: 17 article-title: High‐resolution X‐ray computed tomography in geosciences: A review of the current technology and applications publication-title: Earth‐Science Reviews – year: 1996 – volume: 47 start-page: 31 issue: 1 year: 1982 end-page: 37 article-title: Euldph: A new technique for making computer‐assisted depth estimates from magnetic data publication-title: Geophysics – volume: 25 issue: 10 year: 2014 article-title: Scanning magnetic tunnel junction microscope for high‐resolution imaging of remanent magnetization fields publication-title: Measurement Science and Technology – volume: 22 start-page: 215 issue: 2 year: 2015 end-page: 232 article-title: Estimation of the total magnetization direction of approximately spherical bodies publication-title: Nonlinear Processes in Geophysics – volume: 207 start-page: 187 issue: 1167 year: 1980 end-page: 217 article-title: Theory of edge detection publication-title: Proceedings of the Royal Society of London. Series B. Biological Sciences – volume: 71 start-page: 14 issue: 1 year: 2019 article-title: Using TNT‐NN to unlock the fast full spatial inversion of large magnetic microscopy data sets publication-title: Earth, Planets and Space – start-page: 57 year: 2016 end-page: 60 – volume: 42 issue: 1 year: 2012 article-title: Applying the regularized derivatives approach in Euler deconvolution and modeling geophysical data to estimate the deep active structures for the northern Red Sea Rift region, Egypt publication-title: Contributions to Geophysics and Geodesy – volume: 59 start-page: 1021 issue: 6 year: 2011 end-page: 1034 article-title: Reconstruction of geologic bodies in depth associated with a sedimentary basin using gravity and magnetic data publication-title: Geophysical Prospecting – volume: 18 start-page: 3254 issue: 8 year: 2017 end-page: 3267 article-title: Micrometer‐scale magnetic imaging of geological samples using a quantum diamond microscope publication-title: Geochemistry, Geophysics, Geosystems – volume: 22 issue: 4 year: 2021 article-title: Single particle multipole expansions from micromagnetic tomography publication-title: Geochemistry, Geophysics, Geosystems – volume: 9 start-page: 90 issue: 3 year: 2007 end-page: 95 – volume: 55 start-page: 80 issue: 1 year: 1990 end-page: 91 article-title: Magnetic interpretation in three dimensions using Euler deconvolution publication-title: Geophysics – volume: 121 start-page: 15 issue: 1 year: 2016 end-page: 26 article-title: Does size matter? Statistical limits of paleomagnetic field reconstruction from small rock specimens publication-title: Journal of Geophysical Research: Solid Earth – year: 2020 – volume: 2 year: 2014 – year: 2023 – volume: 70 start-page: 33ND issue: 6 year: 2005 end-page: 61ND article-title: The historical development of the magnetic method in exploration publication-title: Geophysics – volume: 127 issue: 5 year: 2022 article-title: Mapping magnetic signals of individual magnetite grains to their internal magnetic configurations using micromagnetic models publication-title: Journal of Geophysical Research: Solid Earth – volume: 24 issue: 4 year: 2023 article-title: Unraveling the magnetic signal of individual grains in a Hawaiian lava using micromagnetic tomography publication-title: Geochemistry, Geophysics, Geosystems – volume: 21 issue: 8 year: 2020 article-title: High‐sensitivity moment magnetometry with the quantum diamond microscope publication-title: Geochemistry, Geophysics, Geosystems – volume: 78 start-page: J87 issue: 6 year: 2013 end-page: J98 article-title: Estimating the nature and the horizontal and vertical positions of 3D magnetic sources using Euler deconvolution publication-title: Geophysics – volume: 585 start-page: 357 issue: 7825 year: 2020 end-page: 362 – volume: 3 issue: 29 year: 2018 – ident: e_1_2_9_16_1 doi: 10.1029/2021JB022364 – ident: e_1_2_9_29_1 doi: 10.1109/MCSE.2007.55 – ident: e_1_2_9_5_1 doi: 10.1111/j.1365‐2478.2011.00997.x – ident: e_1_2_9_41_1 doi: 10.1186/s40623‐019‐0988‐8 – ident: e_1_2_9_45_1 doi: 10.1190/1.1442774 – ident: e_1_2_9_33_1 doi: 10.1145/2833157.2833162 – ident: e_1_2_9_12_1 doi: 10.1029/2021GC009663 – ident: e_1_2_9_36_1 doi: 10.1002/2016GC006487 – ident: e_1_2_9_23_1 doi: 10.1029/2020GC009147 – ident: e_1_2_9_34_1 doi: 10.1088/0957‐0233/25/10/105401 – ident: e_1_2_9_44_1 doi: 10.5194/npg‐22‐215‐2015 – ident: e_1_2_9_55_1 doi: 10.7717/peerj.453 – ident: e_1_2_9_11_1 doi: 10.1016/j.earscirev.2013.04.003 – ident: e_1_2_9_21_1 doi: 10.5281/zenodo.7690145 – ident: e_1_2_9_53_1 doi: 10.1190/1.1441278 – volume-title: Potential theory in gravity and magnetic applications year: 1996 ident: e_1_2_9_8_1 – ident: e_1_2_9_57_1 doi: 10.1038/s41592‐019‐0686‐2 – ident: e_1_2_9_43_1 doi: 10.1073/PNAS.1708344114 – ident: e_1_2_9_56_1 doi: 10.1130/G48017.1 – volume-title: Parameter estimation and inverse problems year: 2019 ident: e_1_2_9_3_1 – ident: e_1_2_9_42_1 doi: 10.1190/1.2133784 – ident: e_1_2_9_46_1 doi: 10.1002/2016GC006329 – ident: e_1_2_9_52_1 – ident: e_1_2_9_28_1 doi: 10.5334/jors.148 – ident: e_1_2_9_48_1 doi: 10.2478/v10126‐012‐0003‐x – ident: e_1_2_9_22_1 doi: 10.5281/zenodo.7851748 – ident: e_1_2_9_30_1 – ident: e_1_2_9_49_1 doi: 10.1190/1.1635050 – ident: e_1_2_9_35_1 doi: 10.1029/2008JB006006 – ident: e_1_2_9_18_1 doi: 10.1017/CBO9780511612794 – ident: e_1_2_9_50_1 doi: 10.6084/M9.FIGSHARE.22672978 – ident: e_1_2_9_4_1 doi: 10.1088/0266‐5611/29/1/015004 – ident: e_1_2_9_31_1 doi: 10.1109/TSMCB.2012.2228639 – ident: e_1_2_9_32_1 doi: 10.1029/2022GC010462 – volume-title: AGU Fall Meeting Abstracts year: 2019 ident: e_1_2_9_10_1 – ident: e_1_2_9_58_1 doi: 10.1029/2007JB004940 – ident: e_1_2_9_27_1 doi: 10.1038/s41586‐020‐2649‐2 – ident: e_1_2_9_54_1 doi: 10.21105/joss.00957 – ident: e_1_2_9_47_1 doi: 10.1190/1.1443174 – ident: e_1_2_9_24_1 doi: 10.1002/2017GC006946 – ident: e_1_2_9_39_1 doi: 10.1098/rspb.1980.0020 – ident: e_1_2_9_38_1 doi: 10.1038/s41598‐020‐65176‐w – ident: e_1_2_9_14_1 doi: 10.1146/annurev.earth.35.031306.140211 – ident: e_1_2_9_17_1 doi: 10.1002/2017GL076634 – volume-title: Digital image processing year: 2018 ident: e_1_2_9_25_1 – ident: e_1_2_9_2_1 doi: 10.1007/s12665‐019‐8496‐5 – ident: e_1_2_9_13_1 doi: 10.1029/2022JB024234 – ident: e_1_2_9_15_1 doi: 10.1038/ncomms5548 – ident: e_1_2_9_37_1 doi: 10.1002/jgrb.50229 – ident: e_1_2_9_6_1 doi: 10.1007/s00410‐018‐1539‐1 – ident: e_1_2_9_20_1 doi: 10.1093/GJI/GGY455 – ident: e_1_2_9_7_1 doi: 10.1002/2015JB012441 – ident: e_1_2_9_9_1 doi: 10.6084/M9.FIGSHARE.22965200.V1 – ident: e_1_2_9_40_1 doi: 10.1190/GEO2012‐0515.1 – ident: e_1_2_9_26_1 doi: 10.1109/ICTEmSys.2016.7467122 – ident: e_1_2_9_51_1 doi: 10.1533/9780857097521.2.348 – ident: e_1_2_9_19_1 doi: 10.1029/2000JB900192 |
| SSID | ssj0014558 |
| Score | 2.450514 |
| Snippet | Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy techniques... Abstract Paleomagnetic data is collected from bulk samples, containing a mixture of stable and unstable magnetic particles. Recently, magnetic microscopy... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms Automation Computer software Deconvolution Diamonds geophysics Image processing inverse problems Magnetic field Magnetic fields magnetic microscopy Magnetism Magnetization Microscopy Palaeomagnetism Paleomagnetism Python Rocks Sediment samples |
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQD4lLW2gR29LKBzhB1Dh2HPtI6ZIiAdoDIG7R2E5WSLBbJbDS_vt6vCZaDkVCHJOME8eeGY_HM98Qsm8arj2r6EQ6IxKhcpEoT5gUrPZGkrbOBH_HzXlxealub_UoOtwwF2aBD9E73FAygr5GAQfTRbABxMjEut_lCS5fyqvgNca4wtINmRj1pwgiD_U5scRPgpv8GPju2_9cbv1iSQrI_S_MzWWjNaw6px_f299P5EO0N-nxgkG2yEo92SYbZajnO_9MDG5B6U1w3VPE3AjeMzpt6AWMJ5jgSC8wZA-TV-b07MFrn46GMAM6fLqvW_obN9SzyL8UOjpq78Kr-qzIL-T6dHh18ieJZRcSEFzIpDZKQFa4AhQDLawR_jLVyulGSwGOsbpR2qaOZ9arWUgdcxkTFrjRkErFd8jqZDqpdwn19k-ts9TJQufC2QK4AuZSnkFq8twWA3L4PPKVjZjkWBrjvgpn45mulkdtQA566r8LLI7_0P3CSexpEEE73Ji24yoKZCWNxd_EpGyvtwCUaFJpvAFsIAdj-IDsPbNAFcW6q7g3UKU3kqT_xlGY7Fc7UpVlOcw4l_Lr28i_kU3_QCzCgvfI6mP7VH8n63b2eNe1PwKT_wNCSfdz priority: 102 providerName: Wiley-Blackwell |
| Title | Full Vector Inversion of Magnetic Microscopy Images Using Euler Deconvolution as Prior Information |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GC011082 https://www.proquest.com/docview/3085621562 https://doaj.org/article/6bc84a21146042aa84f06b016ba5abb3 |
| Volume | 25 |
| WOSCitedRecordID | wos001268816200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1525-2027 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1525-2027 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1525-2027 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: PCBAR dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1525-2027 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1525-2027 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: M2O dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1525-2027 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: M2P dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1525-2027 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: DRFUL dateStart: 20000101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1525-2027 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: 24P dateStart: 20220101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELZa2kq9VNCHui2sfKAniOrYjmMfeWQDErtECBC3aGwnFRJdql1A4tLf3rGTXS0H2ksvkRyNHGv8xf7Gngch27YVBqFiEuWtTKTOZKJRMMnTBkmScd7G847Lk3wy0VdXplop9RV8wrr0wJ3ivivrtAQegmcRXwBatkxZJCoWMrA25vlE1rMwpvr7A5llundzZ9wEC1-UB2Gr0_zJBhTz9D8hl6sUNe4xo3XyrieHdK8b1AZ50UzfkzdlLL77-IHYYC_Sy3jOTkOCjHjURW9bOoYf0xCNSMfBvy5EmjzS45-4VMxp9Amgxf1NM6OHwfp96MFGYU6r2XXsahnC-JFcjIrzg6Okr5GQgBRSJY0N2sl9DjoFI52V2GRGe9MaJcGnadNq45gX3OGaCMynnqfSgbAGmNLiE1mb3k6bz4QiWWkMZ17lJpPe5SA0pJ4JDsxmmcsHZGehuNr1CcRDHYubOl5kc1OvqnlAvi2lf3WJM56R2w9zsJQJ6a7jCwRB3YOg_hcIBmRzMYN1_w_Oa4FsUiGjUfiN3Tirfx1IXZZlwYVQ6sv_GNJX8hZ7l51n7yZZu5vdN1vktXu4u57PhuQll9WQvNovJtXZMGIXW4dno4sTbI35aXxW4fm7-ANvTfD8 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYqHiqXQmkR20LrQ3tqoyax49hHHrsBdXeFKkDcrLGdICTYRVlA4t_X4zXRcqAS6jHRxEns8fjzeOYbQr6ZhimvKioRzvCEy4In0gsmZVZ7kKSsM8HfcT4sx2N5caFOYp1TzIWZ80N0DjecGcFe4wRHh3RkG0CSTCz8XR3g-iW9DV7mXpO8ii8f_hmcDbuDBF6EEp1Y5SfBfX6Mffct_Fp8_tmqFMj7nyHORdwaFp7B-n9_8gZ5FzEn3ZsryXvypp5sktUq1PR9_EAMbkPpeXDfU-TdCB40Om3oCC4nmORIRxi2hwksj_T4xlugGQ2hBrR_f1239BA31Q9RhynM6El7FZrqMiM_krNB__TgKImlFxLgjIukNpJDXroSZAaKW8P9ZaqkU40SHFyW1Y1UNnUst97UQuoyl2fcAjMKUiHZFlmaTCf1NqEeA9UqT50oVcGdLYFJyFzKckhNUdiyR348db22kZccy2Nc63A-niu92Gs98r2Tvp3zcbwgt4-j2Mkgi3a4MW0vdZyUWhiLv4mJ2d52AUjepMJ4EGygAGNYj-w86YCOU3ummQepwgMl4d_xM4z2Pz9EV1XVzxkT4tPrxL-St0eno6EeHo9_fyZrXojPw4R3yNJde1_vkhX7cHc1a79Enf8LybT8-Q |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQNxAvML5EYQM_wBNEJLHj2I-wtmGiqyrEpr1Z549Mk0Y7pduk_ff4XC_qHkCaeEx0cRL7fP75fPc7Qj6YlqmgKioTzvCMy4pnMghmdeEDSFLWmejvOJ7Ws5k8OVHzVOcUc2HW_BC9ww1nRrTXOMH9hWsT2wCSZGLh72Yf1y8ZbPAWxzoyA7I1-jk5mvYHCbyKJTqxyk-G-_wU-x5a-LL5_J1VKZL330Gcm7g1LjyTp__9yTvkScKc9OtaSZ6RB37xnDxsYk3fmxfE4DaUHkf3PUXejehBo8uWHsLpApMc6SGG7WECyw09-B0s0IrGUAM6vjr3HR3hpvo66TCFFZ13Z7GpPjPyJTmajH_tf89S6YUMOOMi80ZyKGtXgyxAcWt4uMyVdKpVgoMrCt9KZXPHShtMLeSucGXBLTCjIBeSvSKDxXLhXxMaMJBXZe5ErSrubA1MQuFyVkJuqsrWQ_Lptuu1TbzkWB7jXMfz8VLpzV4bko-99MWaj-Mvct9wFHsZZNGON5bdqU6TUgtj8TcxMTvYLgDJ21yYAIINVGAMG5LdWx3QaWqvNAsgVQSgJMI7PsfR_ueH6KZpxiVjQry5n_h78mg-mujpwezHW_I4yPB1lPAuGVx2V36PbNvry7NV9y6p_B9WAPx0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full+Vector+Inversion+of+Magnetic+Microscopy+Images+Using+Euler+Deconvolution+as+Prior+Information&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Souza%E2%80%90Junior%2C+Gelson+F.&rft.au=Uieda%2C+Leonardo&rft.au=Trindade%2C+Ricardo+I.+F.&rft.au=Carmo%2C+Janine&rft.date=2024-07-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=25&rft.issue=7&rft_id=info:doi/10.1029%2F2023GC011082&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023GC011082 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon |