Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques

Many researchers have reported about the problems in modeling low‐magnitude flows while developing artificial neural network (ANN) rainfall‐runoff models trained using popular back propagation (BP) method and have suggested the use of alternative training methods. This paper presents the results of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research Jg. 40; H. 4
Hauptverfasser: Jain, Ashu, Srinivasulu, Sanaga
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Blackwell Publishing Ltd 01.04.2004
Schlagworte:
ISSN:0043-1397, 1944-7973
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Many researchers have reported about the problems in modeling low‐magnitude flows while developing artificial neural network (ANN) rainfall‐runoff models trained using popular back propagation (BP) method and have suggested the use of alternative training methods. This paper presents the results of a new approach employing real‐coded genetic algorithms (GAs) to train ANN rainfall‐runoff models, which are able to overcome such problems. The paper also presents a new class of models termed gray box models that integrate deterministic and ANN techniques for hydrologic modeling. Daily rainfall and streamflow data from the Kentucky River watershed were employed to test the new approach. Many standard statistical measures were employed to assess and compare various models investigated. The results obtained in this study demonstrate that ANN rainfall‐runoff models trained using real‐coded GA are able to predict daily flow more accurately than the ANN rainfall‐runoff models trained using BP method. The proposed approach of training ANN models using real‐coded GA can significantly improve the estimation accuracy of the low‐magnitude flows. It was found that the gray box models that are capable of exploiting the advantages of both deterministic and ANN techniques perform better than the purely black box type ANN rainfall‐runoff models. A partitioning analysis of results is needed to evaluate the performance of various models in terms of their efficiency in modeling and effectiveness in accurately predicting varying magnitude flows (low, medium, and high flows).
AbstractList Many researchers have reported about the problems in modeling low‐magnitude flows while developing artificial neural network (ANN) rainfall‐runoff models trained using popular back propagation (BP) method and have suggested the use of alternative training methods. This paper presents the results of a new approach employing real‐coded genetic algorithms (GAs) to train ANN rainfall‐runoff models, which are able to overcome such problems. The paper also presents a new class of models termed gray box models that integrate deterministic and ANN techniques for hydrologic modeling. Daily rainfall and streamflow data from the Kentucky River watershed were employed to test the new approach. Many standard statistical measures were employed to assess and compare various models investigated. The results obtained in this study demonstrate that ANN rainfall‐runoff models trained using real‐coded GA are able to predict daily flow more accurately than the ANN rainfall‐runoff models trained using BP method. The proposed approach of training ANN models using real‐coded GA can significantly improve the estimation accuracy of the low‐magnitude flows. It was found that the gray box models that are capable of exploiting the advantages of both deterministic and ANN techniques perform better than the purely black box type ANN rainfall‐runoff models. A partitioning analysis of results is needed to evaluate the performance of various models in terms of their efficiency in modeling and effectiveness in accurately predicting varying magnitude flows (low, medium, and high flows).
Author Jain, Ashu
Srinivasulu, Sanaga
Author_xml – sequence: 1
  givenname: Ashu
  surname: Jain
  fullname: Jain, Ashu
  email: ashujain@iitk.ac.in
  organization: Department of Civil Engineering, Indian Institute of Technology, Kanpur, India
– sequence: 2
  givenname: Sanaga
  surname: Srinivasulu
  fullname: Srinivasulu, Sanaga
  organization: Department of Civil Engineering, Indian Institute of Technology, Kanpur, India
BookMark eNp9kVFvFCEUhYmpidvWN38ATz51FIYZWB7NqlXTWLPR1PhCGOayxTKwBaa1_8if6cxuY0yT-nQD9zv3JOccooMQAyD0gpJXlNTydU0Iu1gTUrO2fYIWVDZNJaRgB2hBSMMqyqR4hg5z_kkIbVouFuj3W7gBH7cDhIKjxWAtmOJuAOvQzy9n3LxK2gWrva_SGKK1eIg9-IzH7MIGu1Bgk3RxMcw3eiiQBhdcLs6c4ATaV2bie7yBANMf1n4TkyuXQ97Z6FTcbKQ9DjCm3Si3MV3hAuYyuOsR8jF6OvlneH4_j9C39---rj5UZ-enH1dvzirdsKatBOk6zmva9nzZ1laTmoIUTS862XXQAe-IaaWoGTHcLi0A9J00Ui-5XMoGDDtCL_d3tynOvkUNLhvwXgeIY1aUU0EEJxNY70GTYs4JrDKu7DIoU1heUaLmUtS_pUyikweibXKDTneP4fcet87D3X9ZdbFeraeuZ1G1F035w6-_Ip2uFBdMTOTnU_WF_ahJS76rT-wPFAyyOg
CitedBy_id crossref_primary_10_1029_2007WR006734
crossref_primary_10_1186_s12911_020_01157_3
crossref_primary_10_1016_j_jhydrol_2022_128122
crossref_primary_10_1029_2007WR006737
crossref_primary_10_1061__ASCE_HE_1943_5584_0000040
crossref_primary_10_1002_hyp_5823
crossref_primary_10_1016_j_jhydrol_2006_10_002
crossref_primary_10_1016_j_jhydrol_2009_12_013
crossref_primary_10_1016_j_jhydrol_2007_12_014
crossref_primary_10_1016_j_compag_2015_04_007
crossref_primary_10_1007_s00271_019_00647_1
crossref_primary_10_1061__ASCE_1084_0699_2007_12_1_52
crossref_primary_10_1007_s00477_008_0262_2
crossref_primary_10_1016_j_jhydrol_2010_06_037
crossref_primary_10_1016_j_jhydrol_2005_11_059
crossref_primary_10_1016_j_envsoft_2010_02_003
crossref_primary_10_1016_j_aquaeng_2020_102085
crossref_primary_10_1016_j_jhydrol_2017_04_045
crossref_primary_10_1016_j_jhydrol_2012_10_019
crossref_primary_10_1080_15715124_2019_1570934
crossref_primary_10_1007_s12665_015_4562_9
crossref_primary_10_1002_hyp_70011
crossref_primary_10_1016_j_fuel_2024_131321
crossref_primary_10_1016_j_jhydrol_2007_04_004
crossref_primary_10_1029_2007WR005875
crossref_primary_10_1007_s00477_016_1338_z
crossref_primary_10_1080_02626667_2010_546358
crossref_primary_10_3390_w14121917
crossref_primary_10_1002_2013WR014127
crossref_primary_10_1016_j_rser_2015_01_022
crossref_primary_10_1016_j_jhydrol_2010_10_001
crossref_primary_10_1007_s00521_014_1684_z
crossref_primary_10_1016_j_neucom_2008_12_032
crossref_primary_10_1029_2006WR004930
crossref_primary_10_1061__ASCE_HE_1943_5584_0000445
crossref_primary_10_3390_w8050197
crossref_primary_10_1016_j_jhydrol_2023_130421
crossref_primary_10_1080_02626667_2013_800944
crossref_primary_10_1080_0305215X_2016_1230207
crossref_primary_10_1061__ASCE_0899_1561_2008_20_9_628
crossref_primary_10_1007_s12273_021_0837_0
crossref_primary_10_1029_2008WR007030
crossref_primary_10_1016_j_jhydrol_2011_06_019
crossref_primary_10_1016_j_compag_2010_01_001
crossref_primary_10_1016_j_envsoft_2014_11_028
crossref_primary_10_1007_s11269_017_1878_0
crossref_primary_10_1088_1742_6596_52_1_012059
crossref_primary_10_1002_hyp_5517
crossref_primary_10_1016_j_jhydrol_2023_129421
crossref_primary_10_1007_s00271_019_00659_x
crossref_primary_10_1016_j_agwat_2022_107529
crossref_primary_10_1002_hyp_6686
crossref_primary_10_1007_s11081_020_09538_3
crossref_primary_10_1061__ASCE_HZ_2153_5515_0000270
crossref_primary_10_1109_ACCESS_2021_3092074
crossref_primary_10_1002_eco_206
crossref_primary_10_1080_02626667_2015_1055271
crossref_primary_10_1007_s11269_009_9436_z
crossref_primary_10_1007_s00704_013_1029_3
crossref_primary_10_1016_j_atmosres_2018_05_012
crossref_primary_10_1016_j_envpol_2007_02_002
crossref_primary_10_1016_j_engappai_2012_05_023
crossref_primary_10_1016_j_amc_2015_06_059
crossref_primary_10_1016_j_jher_2018_01_002
crossref_primary_10_1111_jawr_12093
crossref_primary_10_5194_hess_17_253_2013
crossref_primary_10_1016_j_jhydrol_2019_124229
crossref_primary_10_1016_j_envsoft_2014_05_010
crossref_primary_10_3390_horticulturae8111016
crossref_primary_10_1016_j_envsoft_2015_05_013
crossref_primary_10_1002_hyp_6954
crossref_primary_10_1002_rra_2819
crossref_primary_10_1029_2004WR003562
crossref_primary_10_1111_lre_12175
crossref_primary_10_1016_j_eswa_2014_02_047
crossref_primary_10_1016_j_jhydrol_2009_09_037
crossref_primary_10_1016_j_agwat_2017_10_005
crossref_primary_10_1016_j_scitotenv_2019_135934
crossref_primary_10_1016_j_jhydrol_2011_01_017
crossref_primary_10_1029_2018JD030025
crossref_primary_10_1080_09720502_2021_2016853
crossref_primary_10_1680_wama_2010_163_4_175
crossref_primary_10_1007_s41204_018_0049_8
crossref_primary_10_1016_j_jhydrol_2007_11_013
crossref_primary_10_1016_j_atmosres_2017_06_014
crossref_primary_10_1016_j_ins_2017_08_003
crossref_primary_10_1029_2005WR003971
crossref_primary_10_1061__ASCE_HE_1943_5584_0001725
crossref_primary_10_3390_jmse6040135
crossref_primary_10_1061__ASCE_1084_0699_2009_14_1_75
crossref_primary_10_1061__ASCE_HE_1943_5584_0000599
crossref_primary_10_1007_s11069_015_1625_x
crossref_primary_10_31545_intagr_205684
crossref_primary_10_1007_s12517_022_09744_6
crossref_primary_10_2166_nh_2023_229
crossref_primary_10_1080_09715010_2009_10514968
crossref_primary_10_1007_s40710_017_0226_y
crossref_primary_10_1007_s00477_015_1040_6
crossref_primary_10_3390_atmos9070251
crossref_primary_10_1080_15376510902918392
crossref_primary_10_3390_math10224263
crossref_primary_10_1016_j_jhydrol_2004_07_014
crossref_primary_10_1623_hysj_52_3_414
crossref_primary_10_1080_02626667_2016_1252986
crossref_primary_10_2166_wcc_2022_302
crossref_primary_10_1016_j_asoc_2006_03_002
crossref_primary_10_1016_j_atmosenv_2020_117754
crossref_primary_10_3390_w9010048
crossref_primary_10_1061__ASCE_IR_1943_4774_0000343
crossref_primary_10_1016_j_envsoft_2008_09_005
crossref_primary_10_1007_s12665_022_10353_5
crossref_primary_10_1007_s00477_022_02276_1
crossref_primary_10_1061__ASCE_HE_1943_5584_0001475
crossref_primary_10_1177_0309133312444943
crossref_primary_10_1016_j_jksus_2022_102149
crossref_primary_10_1061__ASCE_1084_0699_2004_9_6_551
crossref_primary_10_1061__ASCE_1084_0699_2004_9_6_553
crossref_primary_10_2166_wcc_2024_465
crossref_primary_10_1016_j_jhydrol_2009_03_038
crossref_primary_10_1016_j_engappai_2010_04_003
crossref_primary_10_1002_stc_2037
crossref_primary_10_1029_2008WR007194
crossref_primary_10_1007_s11269_012_0202_2
crossref_primary_10_1002_hyp_8040
crossref_primary_10_3390_w15203559
crossref_primary_10_3390_w9070525
crossref_primary_10_1007_s11269_014_0590_6
crossref_primary_10_1016_j_jhydrol_2006_02_034
crossref_primary_10_1061__ASCE_0899_1561_2005_17_6_736
crossref_primary_10_1061__ASCE_0733_9437_2004_130_4_286
crossref_primary_10_1016_j_neunet_2006_01_009
crossref_primary_10_1016_j_asoc_2015_09_049
crossref_primary_10_1016_j_envsoft_2006_06_008
crossref_primary_10_1002_hyp_6764
crossref_primary_10_1623_hysj_52_3_397
crossref_primary_10_1016_j_jhydrol_2005_05_022
crossref_primary_10_3390_su16041376
crossref_primary_10_3390_w11091848
crossref_primary_10_1080_02626667_2018_1483581
crossref_primary_10_1007_s00521_011_0553_2
crossref_primary_10_1080_02626667_2015_1085650
crossref_primary_10_1111_j_1752_1688_2004_tb01610_x
crossref_primary_10_1016_j_jhydrol_2005_03_037
crossref_primary_10_1007_s11600_019_00380_5
crossref_primary_10_3390_w13182525
crossref_primary_10_1016_j_asoc_2004_12_007
crossref_primary_10_1016_j_geoderma_2018_05_035
Cites_doi 10.1061/(ASCE)1084-0699(2002)7:5(392)
10.1002/hyp.5502
10.1080/02626669509491401
10.1080/02626669809492102
10.1007/BF00872489
10.1029/92WR01259
10.1061/(ASCE)1084-0699(2000)5:2(156)
10.1029/WR008i001p00058
10.1061/(ASCE)1084-0699(2003)8:2(93)
10.1016/S0045-7825(99)00389-8
10.1080/02626660209492996
10.1016/S0022-1694(98)00273-X
10.7551/mitpress/5236.001.0001
10.1061/(ASCE)1084-0699(2000)5:2(180)
10.1080/02626669609491511
10.1016/0893-6080(92)90008-7
10.1023/A:1014415503476
10.1038/323533a0
10.1029/1998WR900086
10.1061/(ASCE)1084-0699(1999)4:3(232)
10.1016/S0305-0483(96)00052-7
10.1061/(ASCE)1084-0699(2001)6:2(176)
10.1002/hyp.5517
10.1623/hysj.48.2.163.44699
10.1002/j.1551-8833.2002.tb09507.x
10.1016/S0022-1694(96)03330-6
10.1029/1999WR900264
10.1007/BF00939380
10.1029/95WR01955
ContentType Journal Article
Copyright Copyright 2004 by the American Geophysical Union.
Copyright_xml – notice: Copyright 2004 by the American Geophysical Union.
DBID BSCLL
AAYXX
CITATION
7QH
7TG
7UA
C1K
F1W
H96
KL.
L.G
DOI 10.1029/2003WR002355
DatabaseName Istex
CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 10_1029_2003WR002355
WRCR9735
ark_67375_WNG_P3Z2050X_J
Genre article
GeographicLocations USA, Kentucky, Kentucky R
USA, Kentucky
GeographicLocations_xml – name: USA, Kentucky, Kentucky R
– name: USA, Kentucky
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAIHA
AAIKC
AAMMB
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AETEA
AEUYN
AEUYR
AFBPY
AFFHD
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AIDBO
AIDQK
AIDYY
AIQQE
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
BSCLL
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WIN
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
3V.
A00
AAHHS
AAYOK
ABTAH
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
GROUPED_ABI_INFORM_COMPLETE
WYJ
AAYXX
CITATION
7QH
7TG
7UA
C1K
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-a4345-70bb66215d6852fa021e974d7b9bbebe6b0c597230c6f8feeedb9c9a869894ec3
IEDL.DBID WIN
ISICitedReferencesCount 187
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000221088700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Tue Oct 07 09:53:02 EDT 2025
Sat Nov 29 04:00:58 EST 2025
Tue Nov 18 21:00:06 EST 2025
Wed Jan 22 16:21:03 EST 2025
Tue Nov 11 03:31:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4345-70bb66215d6852fa021e974d7b9bbebe6b0c597230c6f8feeedb9c9a869894ec3
Notes ark:/67375/WNG-P3Z2050X-J
istex:EF256C56573F546439F35FC95053E84333CBAE8C
ArticleID:2003WR002355
Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.Tab-delimited Table 5.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 16170760
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_16170760
crossref_citationtrail_10_1029_2003WR002355
crossref_primary_10_1029_2003WR002355
wiley_primary_10_1029_2003WR002355_WRCR9735
istex_primary_ark_67375_WNG_P3Z2050X_J
PublicationCentury 2000
PublicationDate April 2004
PublicationDateYYYYMMDD 2004-04-01
PublicationDate_xml – month: 04
  year: 2004
  text: April 2004
PublicationDecade 2000
PublicationTitle Water resources research
PublicationTitleAlternate Water Resour. Res
PublicationYear 2004
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Haan, C. T. (1972), A water yield model for small watersheds, Water Resour. Res., 8(1), 58-69.
Minns, A. W., and M. J. Hall (1996), Artificial neural networks as rainfall runoff models, Hydrol. Sci. J., 41(3), 399-417.
Sudheer, K. P., and A. Jain (2004), Explaining the internal behavior of artificial neural network river flow models, Hydrol. Processes, 118(4), 833-844.
Zhang, B., and S. Govindaraju (2000), Prediction of watershed runoff using Bayesian concepts and modular neural networks, Water Resour. Res., 36(3), 753-762.
Wilby, R. L., R. J. Abrahart, and C. W. Dawson (2003), Detection of conceptual model rainfall-runoff processes inside an artificial neural network, Hydrol. Sci. J., 48(2), 163-181.
Jain, A., and S. K. V. P. Indurthy (2003), Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks, J. Hydrol. Eng., 8(2), 1-6.
Deb, K., and R. B. Agarwal (1995), Simulated binary crossover for continuous search space, Complex Syst., 9, 115-148.
Grayson, R. B., I. D. Moore, and T. A. McMahon (1992), Physically based hydrologic modeling: 2. Is the concept realistic? Water Resour. Res., 28(10), 2659-2666.
Jain, A., K. P. Sudheer, and S. Srinivasulu (2004), Identification of physical processes inherent in artificial neural network rainfall runoff models, Hydrol. Processes, 118, 571-581.
Tokar, A. S., and M. Markus (2000), Precipitation runoff modeling using artificial neural network and conceptual models, J. Hydrol. Eng., 5(2), 156-161.
Deb, K. (2000), An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Eng., 186, 311-338.
Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986a), Learning representations by back-propagating errors, Nature, 323, 533-536.
Raman, H., and N. Sunil Kumar (1995), Multivariate modeling of water resources time series using artificial neural networks, Hydrol. Sci. J., 40(2), 145-163.
Sajikumar, N., and B. S. Thandaveswara (1999), A non-linear rainfall-runoff model using an artificial neural network, J. Hydrol., 216, 32-55.
Dawson, D. W., and R. Wilby (1998), An artificial neural network approach to rainfall-runoff modeling, Hydrol. Sci. J., 43(1), 47-65.
Campolo, M., P. Andreussi, and A. Soldati (1999), River Flood forecasting with neural network model, Water Resour. Res., 35(4), 1191-1197.
Duan, Q. Y., V. K. Gupta, and S. Sorooshian (1993), Shuffled complex evolution approach for effective and efficient global optimization, J. Optim. Theory Appl., 76(3), 501-521.
Jain, A., and L. E. Ormsbee (2002), Evaluation of short-term water demand forecast modeling techniques: Conventional methods versus AI, J. Am. Water Works Assoc., 94(7), 64-72.
Jain, A., A. K. Varshney, and U. C. Joshi (2001), Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks, Water Resour. Manage., 15(5), 299-321.
Deb, K., and A. Kumar (1995), Real-coded genetic algorithms with simulated binary crossover: Studies on multimodal and multi-objective problems, Complex Syst., 9(6), 431-454.
Curry, B., and P. Morgan (1997), Neural network: A need for caution, Omega Int. J. Manage. Sci., 25(1), 123-133.
Hsu, K.-L., H. V. Gupta, and S. Sorooshian (1995), Artificial Neural network modeling of the rainfall-runoff process, Water Resour. Res., 31(10), 2517-2530.
Tokar, A. S., and A. Johnson (1999), Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng., 4(3), 232-239.
Shamseldin, A. Y. (1997), Application of a neural network technique to rainfall-runoff modeling, J. Hydrol., 199, 272-294.
Ooyen, A. V., and B. Nichhuis (1992), Improving convergence of back propagation problem, Neural Networks, 5, 465-471.
Thirumaliah, K., and M. C. Deo (2000), Hydrological forecasting using neural networks, J. Hydrol. Eng., 5(2), 180-189.
Lorrai, M., and G. M. Sechi (1995), Neural nets for modeling rainfall-runoff transformations, Water Resour. Manage., 9, 299-313.
Birikundavyi, S., R. Labib, H. T. Trung, and J. Rousselle (2002), Performance of neural networks in daily streamflow forecasting, J. Hydrol. Eng., 7(5), 392-398.
Kumar, A., and K. Minocha (2001), Discussion on rainfall runoff modeling using artificial neural networks, J. Hydrol. Eng., 6(2), 176-177.
Rajurkar, M. P., U. C. Kothyari, and U. C. Chaube (2002), Artificial neural networks for daily rainfall-runoff modeling, Hydrol. Sci. J., 47(6), 865-876.
1995; 31
1995; 9
1972; 8
2000; 5
2002; 94
1997; 25
2002; 7
1997; 199
1996
1999; 4
1998; 43
2002; 47
1995; 40
1986; 323
2001
1990
2000; 36
2000
2001; 6
1993; 76
2003; 8
1999; 35
1992; 28
1986
1996; 41
2003; 48
2000; 186
2001; 15
1999; 216
2004; 118
1989
1988
1992; 5
e_1_2_6_32_1
e_1_2_6_31_1
e_1_2_6_30_1
Rumelhart D. E. (e_1_2_6_29_1) 1986
Deb K. (e_1_2_6_9_1) 1995; 9
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_8_1
Deb K. (e_1_2_6_10_1) 1995; 9
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – reference: Hsu, K.-L., H. V. Gupta, and S. Sorooshian (1995), Artificial Neural network modeling of the rainfall-runoff process, Water Resour. Res., 31(10), 2517-2530.
– reference: Tokar, A. S., and M. Markus (2000), Precipitation runoff modeling using artificial neural network and conceptual models, J. Hydrol. Eng., 5(2), 156-161.
– reference: Sudheer, K. P., and A. Jain (2004), Explaining the internal behavior of artificial neural network river flow models, Hydrol. Processes, 118(4), 833-844.
– reference: Jain, A., and L. E. Ormsbee (2002), Evaluation of short-term water demand forecast modeling techniques: Conventional methods versus AI, J. Am. Water Works Assoc., 94(7), 64-72.
– reference: Minns, A. W., and M. J. Hall (1996), Artificial neural networks as rainfall runoff models, Hydrol. Sci. J., 41(3), 399-417.
– reference: Kumar, A., and K. Minocha (2001), Discussion on rainfall runoff modeling using artificial neural networks, J. Hydrol. Eng., 6(2), 176-177.
– reference: Tokar, A. S., and A. Johnson (1999), Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng., 4(3), 232-239.
– reference: Birikundavyi, S., R. Labib, H. T. Trung, and J. Rousselle (2002), Performance of neural networks in daily streamflow forecasting, J. Hydrol. Eng., 7(5), 392-398.
– reference: Haan, C. T. (1972), A water yield model for small watersheds, Water Resour. Res., 8(1), 58-69.
– reference: Deb, K. (2000), An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Eng., 186, 311-338.
– reference: Jain, A., A. K. Varshney, and U. C. Joshi (2001), Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks, Water Resour. Manage., 15(5), 299-321.
– reference: Dawson, D. W., and R. Wilby (1998), An artificial neural network approach to rainfall-runoff modeling, Hydrol. Sci. J., 43(1), 47-65.
– reference: Sajikumar, N., and B. S. Thandaveswara (1999), A non-linear rainfall-runoff model using an artificial neural network, J. Hydrol., 216, 32-55.
– reference: Lorrai, M., and G. M. Sechi (1995), Neural nets for modeling rainfall-runoff transformations, Water Resour. Manage., 9, 299-313.
– reference: Thirumaliah, K., and M. C. Deo (2000), Hydrological forecasting using neural networks, J. Hydrol. Eng., 5(2), 180-189.
– reference: Rajurkar, M. P., U. C. Kothyari, and U. C. Chaube (2002), Artificial neural networks for daily rainfall-runoff modeling, Hydrol. Sci. J., 47(6), 865-876.
– reference: Ooyen, A. V., and B. Nichhuis (1992), Improving convergence of back propagation problem, Neural Networks, 5, 465-471.
– reference: Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986a), Learning representations by back-propagating errors, Nature, 323, 533-536.
– reference: Curry, B., and P. Morgan (1997), Neural network: A need for caution, Omega Int. J. Manage. Sci., 25(1), 123-133.
– reference: Wilby, R. L., R. J. Abrahart, and C. W. Dawson (2003), Detection of conceptual model rainfall-runoff processes inside an artificial neural network, Hydrol. Sci. J., 48(2), 163-181.
– reference: Duan, Q. Y., V. K. Gupta, and S. Sorooshian (1993), Shuffled complex evolution approach for effective and efficient global optimization, J. Optim. Theory Appl., 76(3), 501-521.
– reference: Deb, K., and R. B. Agarwal (1995), Simulated binary crossover for continuous search space, Complex Syst., 9, 115-148.
– reference: Shamseldin, A. Y. (1997), Application of a neural network technique to rainfall-runoff modeling, J. Hydrol., 199, 272-294.
– reference: Campolo, M., P. Andreussi, and A. Soldati (1999), River Flood forecasting with neural network model, Water Resour. Res., 35(4), 1191-1197.
– reference: Raman, H., and N. Sunil Kumar (1995), Multivariate modeling of water resources time series using artificial neural networks, Hydrol. Sci. J., 40(2), 145-163.
– reference: Grayson, R. B., I. D. Moore, and T. A. McMahon (1992), Physically based hydrologic modeling: 2. Is the concept realistic? Water Resour. Res., 28(10), 2659-2666.
– reference: Zhang, B., and S. Govindaraju (2000), Prediction of watershed runoff using Bayesian concepts and modular neural networks, Water Resour. Res., 36(3), 753-762.
– reference: Deb, K., and A. Kumar (1995), Real-coded genetic algorithms with simulated binary crossover: Studies on multimodal and multi-objective problems, Complex Syst., 9(6), 431-454.
– reference: Jain, A., K. P. Sudheer, and S. Srinivasulu (2004), Identification of physical processes inherent in artificial neural network rainfall runoff models, Hydrol. Processes, 118, 571-581.
– reference: Jain, A., and S. K. V. P. Indurthy (2003), Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks, J. Hydrol. Eng., 8(2), 1-6.
– volume: 323
  start-page: 533
  year: 1986
  end-page: 536
  article-title: Learning representations by back‐propagating errors
  publication-title: Nature
– volume: 36
  start-page: 753
  issue: 3
  year: 2000
  end-page: 762
  article-title: Prediction of watershed runoff using Bayesian concepts and modular neural networks
  publication-title: Water Resour. Res.
– volume: 76
  start-page: 501
  issue: 3
  year: 1993
  end-page: 521
  article-title: Shuffled complex evolution approach for effective and efficient global optimization
  publication-title: J. Optim. Theory Appl.
– volume: 94
  start-page: 64
  issue: 7
  year: 2002
  end-page: 72
  article-title: Evaluation of short‐term water demand forecast modeling techniques: Conventional methods versus AI
  publication-title: J. Am. Water Works Assoc.
– volume: 40
  start-page: 145
  issue: 2
  year: 1995
  end-page: 163
  article-title: Multivariate modeling of water resources time series using artificial neural networks
  publication-title: Hydrol. Sci. J.
– volume: 8
  start-page: 58
  issue: 1
  year: 1972
  end-page: 69
  article-title: A water yield model for small watersheds
  publication-title: Water Resour. Res.
– volume: 5
  start-page: 180
  issue: 2
  year: 2000
  end-page: 189
  article-title: Hydrological forecasting using neural networks
  publication-title: J. Hydrol. Eng.
– volume: 4
  start-page: 232
  issue: 3
  year: 1999
  end-page: 239
  article-title: Rainfall‐runoff modeling using artificial neural networks
  publication-title: J. Hydrol. Eng.
– volume: 9
  start-page: 115
  year: 1995
  end-page: 148
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– volume: 5
  start-page: 465
  year: 1992
  end-page: 471
  article-title: Improving convergence of back propagation problem
  publication-title: Neural Networks
– year: 2001
– year: 1989
– volume: 8
  start-page: 1
  issue: 2
  year: 2003
  end-page: 6
  article-title: Comparative analysis of event based rainfall‐runoff modeling techniques‐deterministic, statistical, and artificial neural networks
  publication-title: J. Hydrol. Eng.
– year: 2000
– year: 1996
– volume: 118
  start-page: 833
  issue: 4
  year: 2004
  end-page: 844
  article-title: Explaining the internal behavior of artificial neural network river flow models
  publication-title: Hydrol. Processes
– year: 1990
– volume: 35
  start-page: 1191
  issue: 4
  year: 1999
  end-page: 1197
  article-title: River Flood forecasting with neural network model
  publication-title: Water Resour. Res.
– volume: 43
  start-page: 47
  issue: 1
  year: 1998
  end-page: 65
  article-title: An artificial neural network approach to rainfall‐runoff modeling
  publication-title: Hydrol. Sci. J.
– volume: 41
  start-page: 399
  issue: 3
  year: 1996
  end-page: 417
  article-title: Artificial neural networks as rainfall runoff models
  publication-title: Hydrol. Sci. J.
– volume: 15
  start-page: 299
  issue: 5
  year: 2001
  end-page: 321
  article-title: Short‐term water demand forecast modeling at IIT Kanpur using artificial neural networks
  publication-title: Water Resour. Manage.
– volume: 6
  start-page: 176
  issue: 2
  year: 2001
  end-page: 177
  article-title: Discussion on rainfall runoff modeling using artificial neural networks
  publication-title: J. Hydrol. Eng.
– year: 1986
– volume: 25
  start-page: 123
  issue: 1
  year: 1997
  end-page: 133
  article-title: Neural network: A need for caution
  publication-title: Omega Int. J. Manage. Sci.
– volume: 31
  start-page: 2517
  issue: 10
  year: 1995
  end-page: 2530
  article-title: Artificial Neural network modeling of the rainfall‐runoff process
  publication-title: Water Resour. Res.
– volume: 28
  start-page: 2659
  issue: 10
  year: 1992
  end-page: 2666
  article-title: Physically based hydrologic modeling: 2. Is the concept realistic?
  publication-title: Water Resour. Res.
– volume: 216
  start-page: 32
  year: 1999
  end-page: 55
  article-title: A non‐linear rainfall‐runoff model using an artificial neural network
  publication-title: J. Hydrol.
– year: 1988
– volume: 5
  start-page: 156
  issue: 2
  year: 2000
  end-page: 161
  article-title: Precipitation runoff modeling using artificial neural network and conceptual models
  publication-title: J. Hydrol. Eng.
– volume: 186
  start-page: 311
  year: 2000
  end-page: 338
  article-title: An efficient constraint handling method for genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 199
  start-page: 272
  year: 1997
  end-page: 294
  article-title: Application of a neural network technique to rainfall‐runoff modeling
  publication-title: J. Hydrol.
– volume: 47
  start-page: 865
  issue: 6
  year: 2002
  end-page: 876
  article-title: Artificial neural networks for daily rainfall‐runoff modeling
  publication-title: Hydrol. Sci. J.
– volume: 7
  start-page: 392
  issue: 5
  year: 2002
  end-page: 398
  article-title: Performance of neural networks in daily streamflow forecasting
  publication-title: J. Hydrol. Eng.
– volume: 48
  start-page: 163
  issue: 2
  year: 2003
  end-page: 181
  article-title: Detection of conceptual model rainfall‐runoff processes inside an artificial neural network
  publication-title: Hydrol. Sci. J.
– volume: 9
  start-page: 431
  issue: 6
  year: 1995
  end-page: 454
  article-title: Real‐coded genetic algorithms with simulated binary crossover: Studies on multimodal and multi‐objective problems
  publication-title: Complex Syst.
– volume: 118
  start-page: 571
  year: 2004
  end-page: 581
  article-title: Identification of physical processes inherent in artificial neural network rainfall runoff models
  publication-title: Hydrol. Processes
– volume: 9
  start-page: 299
  year: 1995
  end-page: 313
  article-title: Neural nets for modeling rainfall‐runoff transformations
  publication-title: Water Resour. Manage.
– ident: e_1_2_6_2_1
  doi: 10.1061/(ASCE)1084-0699(2002)7:5(392)
– volume: 9
  start-page: 431
  issue: 6
  year: 1995
  ident: e_1_2_6_10_1
  article-title: Real‐coded genetic algorithms with simulated binary crossover: Studies on multimodal and multi‐objective problems
  publication-title: Complex Syst.
– ident: e_1_2_6_20_1
  doi: 10.1002/hyp.5502
– ident: e_1_2_6_23_1
– ident: e_1_2_6_27_1
  doi: 10.1080/02626669509491401
– ident: e_1_2_6_6_1
  doi: 10.1080/02626669809492102
– ident: e_1_2_6_22_1
  doi: 10.1007/BF00872489
– ident: e_1_2_6_13_1
  doi: 10.1029/92WR01259
– ident: e_1_2_6_35_1
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(156)
– ident: e_1_2_6_14_1
  doi: 10.1029/WR008i001p00058
– ident: e_1_2_6_17_1
  doi: 10.1061/(ASCE)1084-0699(2003)8:2(93)
– ident: e_1_2_6_37_1
– ident: e_1_2_6_7_1
  doi: 10.1016/S0045-7825(99)00389-8
– ident: e_1_2_6_26_1
  doi: 10.1080/02626660209492996
– volume: 9
  start-page: 115
  year: 1995
  ident: e_1_2_6_9_1
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– ident: e_1_2_6_30_1
  doi: 10.1016/S0022-1694(98)00273-X
– volume-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, Foundations
  year: 1986
  ident: e_1_2_6_29_1
  doi: 10.7551/mitpress/5236.001.0001
– ident: e_1_2_6_36_1
– ident: e_1_2_6_4_1
– ident: e_1_2_6_33_1
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(180)
– ident: e_1_2_6_24_1
  doi: 10.1080/02626669609491511
– ident: e_1_2_6_25_1
  doi: 10.1016/0893-6080(92)90008-7
– ident: e_1_2_6_19_1
  doi: 10.1023/A:1014415503476
– ident: e_1_2_6_28_1
  doi: 10.1038/323533a0
– ident: e_1_2_6_3_1
  doi: 10.1029/1998WR900086
– ident: e_1_2_6_34_1
  doi: 10.1061/(ASCE)1084-0699(1999)4:3(232)
– ident: e_1_2_6_5_1
  doi: 10.1016/S0305-0483(96)00052-7
– ident: e_1_2_6_21_1
  doi: 10.1061/(ASCE)1084-0699(2001)6:2(176)
– ident: e_1_2_6_32_1
  doi: 10.1002/hyp.5517
– ident: e_1_2_6_38_1
  doi: 10.1623/hysj.48.2.163.44699
– ident: e_1_2_6_18_1
  doi: 10.1002/j.1551-8833.2002.tb09507.x
– ident: e_1_2_6_16_1
– ident: e_1_2_6_8_1
– ident: e_1_2_6_31_1
  doi: 10.1016/S0022-1694(96)03330-6
– ident: e_1_2_6_39_1
  doi: 10.1029/1999WR900264
– ident: e_1_2_6_11_1
  doi: 10.1007/BF00939380
– ident: e_1_2_6_12_1
– ident: e_1_2_6_15_1
  doi: 10.1029/95WR01955
SSID ssj0014567
Score 2.2281322
Snippet Many researchers have reported about the problems in modeling low‐magnitude flows while developing artificial neural network (ANN) rainfall‐runoff models...
Many researchers have reported about the problems in modeling low-magnitude flows while developing artificial neural network (ANN) rainfall-runoff models...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms artificial neural networks
conceptual rainfall-runoff models
deterministic techniques
genetic algorithms
optimization
rainfall-runoff modeling
Title Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
URI https://api.istex.fr/ark:/67375/WNG-P3Z2050X-J/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2003WR002355
https://www.proquest.com/docview/16170760
Volume 40
WOSCitedRecordID wos000221088700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231213
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQiwSXAgXUbUvxoe2FRmQTOz9HVFgKqlbVqtWuuFi2Y29XXRKU7CK49RF4EJ6KJ2HG-en20EqIUxLJTqJ4Jv7s-eYbQvaV1orLfuSFJmIeU6HvwRLMeozbKMkCmQTWjfRpPBwmk0l61my4YS5MrQ_RbbihZ7j_NTq4VFUjNoAamciqGo-cXgvmmPeZ88vxp2EXRABsELcBZgQ6De8dur9d7XxrRlrHj_vjFtxcBa1u1hk8-d_3fUo2GrxJ39UG8ow8MPkmedSmI1dw3pRBv_z5nPxeoRDRwtKa7AH_QyrzDK9mLn2SYlkJK-fzP9e_ymVeWEtdQZ2KIot-SlsJChhyvEvWMG6cJPQRBZSKHTGXPqNgvphFSeV8WpSzxeXXyj0K7bmWtqAouOkOjq5OO83Z6gW5GHw4Pz7xmnIOnmQh417sKxVFADGyKOGBlYAuDKxmslilSoEtRcrXHIug-TqyiTUwe6tUpzLBGpfM6PAlWcuL3GwRagCkwDoy0ExJFvRtynyWZbFJFVe6z1WPvGmHVOhG6xxLbsyFi7kHqVgdjR456Fp_qzU-7mh36KyjayTLK-TFxVyMhx_FWfgl8Lk_EZ975HVrPgK8FUMwMjfFshK4msRYKLygs5V7nyfGo-NRGod8-59a75DHN_SiXbK2KJfmFXmovy9mVblH1t-PBhene85V_gIQ6xc5
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CGaSyKW8x5VEvgA1EzSR2HktUGAoMo2rUakZsLNux2xHTpEpmEOz6Cf0Qvoovwdd5MF2AhFglkewkiq_tc3PPPRfgmVRKMjGMvFBH1KMy9D3rghmPMhMlWSCSwLiRHseTSTKfp4dNnVPMhan1Ibofbjgz3HqNExx_SDdqAyiSibSq2dQJtrDr0KfWklgP-m-mo-NxF0iw-CBug8wIdhruu73D3mb_K7tSHz_wtyuQcxO4up1ndOu_3_k2bDegk7yureQOXNP5Xdhqc5Ire97UQj_9fg9-bPCISGFIzfiwiyIReYZXC5dDSbC2hBHL5c-Ly3KdF8YQV1WnIkilPyGtDoUdd7xL1tBunC70K2KhKnbEhPqMWBvGVEoilidFuVidnlXuUWjUtb4FQdVNd3CcddIJz1b34Xj09mj_wGtqOniChpR5sS9lFFmckUUJC4ywEENblyaLZSqlNahI-ophJTRfRSYx2m7hMlWpSLDQJdUqfAC9vMj1QyDaIhXrTAaKSkGDoUmpT7Ms1qlkUg2ZHMDLdky5agTPse7GkrvAe5DyzdEYwPOu9Xkt9PGHdi-ceXSNRPkFyXEx47PJO34Yfg585s_5hwHstvbD7ZTFOIzIdbGuOLqUGBC1L-iM5a_P47Pp_jSNQ7bzT613Yevg6NOYj99PPj6Cm7_5Ro-htyrX-gncUF9Xi6p82syYXxQFGuU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVgioANb0R5jRfABiLSxHaSJZqhvKqqqhi1YmP5OVNRklHSItjxCXwIX8WX4Os4obMACbFKItmJFd8bH-eeey5Cj6RSkooRi1LDSERkGkduC2YjQi3LdSLyxPqZnmTTab5cFrNQ5xRyYVp9iP6HG3iG_16Dg5tTbYPaAIhkAq1qMfeCLfQ8GhBaMOeZg8P5-GjSBxIcPsi6IDOAncB9d3d4vtv_zKo0gBf85Qzk3AWufuUZX_3vMV9DVwLoxC9aK7mOzpnyBrrU5SQ37jzUQj_5ehP92OER4crilvHhPopYlBquVj6HEkNtCSvW65_fvtfbsrIW-6o6DQYq_THudCjcvMNddKDdeF3oZ9hBVegICfUaOxuGVEos1sdVvdqcfGr8o8CoW30LDKqb_uA567gXnm1uoaPxy_cHr6NQ0yESJCU0ymIpGXM4Q7OcJlY4iGHclkZnspDSGRSTsaJQCS1WzObWuCVcFqoQORS6JEalt9FeWZXmDsLGIRW3mUwUkYIkI1uQmGidmUJSqUZUDtHTbk65CoLnUHdjzX3gPSn47mwM0eO-9Wkr9PGHdk-8efSNRP0RyHEZ5YvpKz5LPyQxjZf87RDtd_bDnctCHEaUpto2HLaUEBB1A_TG8tfn8cX8YF5kKb37T6330cXZ4ZhP3kzf3UOXf9ON7qO9Tb01D9AF9XmzauqHwWF-AXiGGmA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+effective+and+efficient+rainfall-runoff+models+using+integration+of+deterministic%2C+real-coded+genetic+algorithms+and+artificial+neural+network+techniques&rft.jtitle=Water+resources+research&rft.au=Jain%2C+Ashu&rft.au=Srinivasulu%2C+Sanaga&rft.date=2004-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=40&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2003WR002355&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_P3Z2050X_J
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon