Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques
Many researchers have reported about the problems in modeling low‐magnitude flows while developing artificial neural network (ANN) rainfall‐runoff models trained using popular back propagation (BP) method and have suggested the use of alternative training methods. This paper presents the results of...
Gespeichert in:
| Veröffentlicht in: | Water resources research Jg. 40; H. 4 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Blackwell Publishing Ltd
01.04.2004
|
| Schlagworte: | |
| ISSN: | 0043-1397, 1944-7973 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Many researchers have reported about the problems in modeling low‐magnitude flows while developing artificial neural network (ANN) rainfall‐runoff models trained using popular back propagation (BP) method and have suggested the use of alternative training methods. This paper presents the results of a new approach employing real‐coded genetic algorithms (GAs) to train ANN rainfall‐runoff models, which are able to overcome such problems. The paper also presents a new class of models termed gray box models that integrate deterministic and ANN techniques for hydrologic modeling. Daily rainfall and streamflow data from the Kentucky River watershed were employed to test the new approach. Many standard statistical measures were employed to assess and compare various models investigated. The results obtained in this study demonstrate that ANN rainfall‐runoff models trained using real‐coded GA are able to predict daily flow more accurately than the ANN rainfall‐runoff models trained using BP method. The proposed approach of training ANN models using real‐coded GA can significantly improve the estimation accuracy of the low‐magnitude flows. It was found that the gray box models that are capable of exploiting the advantages of both deterministic and ANN techniques perform better than the purely black box type ANN rainfall‐runoff models. A partitioning analysis of results is needed to evaluate the performance of various models in terms of their efficiency in modeling and effectiveness in accurately predicting varying magnitude flows (low, medium, and high flows). |
|---|---|
| AbstractList | Many researchers have reported about the problems in modeling low‐magnitude flows while developing artificial neural network (ANN) rainfall‐runoff models trained using popular back propagation (BP) method and have suggested the use of alternative training methods. This paper presents the results of a new approach employing real‐coded genetic algorithms (GAs) to train ANN rainfall‐runoff models, which are able to overcome such problems. The paper also presents a new class of models termed gray box models that integrate deterministic and ANN techniques for hydrologic modeling. Daily rainfall and streamflow data from the Kentucky River watershed were employed to test the new approach. Many standard statistical measures were employed to assess and compare various models investigated. The results obtained in this study demonstrate that ANN rainfall‐runoff models trained using real‐coded GA are able to predict daily flow more accurately than the ANN rainfall‐runoff models trained using BP method. The proposed approach of training ANN models using real‐coded GA can significantly improve the estimation accuracy of the low‐magnitude flows. It was found that the gray box models that are capable of exploiting the advantages of both deterministic and ANN techniques perform better than the purely black box type ANN rainfall‐runoff models. A partitioning analysis of results is needed to evaluate the performance of various models in terms of their efficiency in modeling and effectiveness in accurately predicting varying magnitude flows (low, medium, and high flows). |
| Author | Jain, Ashu Srinivasulu, Sanaga |
| Author_xml | – sequence: 1 givenname: Ashu surname: Jain fullname: Jain, Ashu email: ashujain@iitk.ac.in organization: Department of Civil Engineering, Indian Institute of Technology, Kanpur, India – sequence: 2 givenname: Sanaga surname: Srinivasulu fullname: Srinivasulu, Sanaga organization: Department of Civil Engineering, Indian Institute of Technology, Kanpur, India |
| BookMark | eNp9kVFvFCEUhYmpidvWN38ATz51FIYZWB7NqlXTWLPR1PhCGOayxTKwBaa1_8if6cxuY0yT-nQD9zv3JOccooMQAyD0gpJXlNTydU0Iu1gTUrO2fYIWVDZNJaRgB2hBSMMqyqR4hg5z_kkIbVouFuj3W7gBH7cDhIKjxWAtmOJuAOvQzy9n3LxK2gWrva_SGKK1eIg9-IzH7MIGu1Bgk3RxMcw3eiiQBhdcLs6c4ATaV2bie7yBANMf1n4TkyuXQ97Z6FTcbKQ9DjCm3Si3MV3hAuYyuOsR8jF6OvlneH4_j9C39---rj5UZ-enH1dvzirdsKatBOk6zmva9nzZ1laTmoIUTS862XXQAe-IaaWoGTHcLi0A9J00Ui-5XMoGDDtCL_d3tynOvkUNLhvwXgeIY1aUU0EEJxNY70GTYs4JrDKu7DIoU1heUaLmUtS_pUyikweibXKDTneP4fcet87D3X9ZdbFeraeuZ1G1F035w6-_Ip2uFBdMTOTnU_WF_ahJS76rT-wPFAyyOg |
| CitedBy_id | crossref_primary_10_1029_2007WR006734 crossref_primary_10_1186_s12911_020_01157_3 crossref_primary_10_1016_j_jhydrol_2022_128122 crossref_primary_10_1029_2007WR006737 crossref_primary_10_1061__ASCE_HE_1943_5584_0000040 crossref_primary_10_1002_hyp_5823 crossref_primary_10_1016_j_jhydrol_2006_10_002 crossref_primary_10_1016_j_jhydrol_2009_12_013 crossref_primary_10_1016_j_jhydrol_2007_12_014 crossref_primary_10_1016_j_compag_2015_04_007 crossref_primary_10_1007_s00271_019_00647_1 crossref_primary_10_1061__ASCE_1084_0699_2007_12_1_52 crossref_primary_10_1007_s00477_008_0262_2 crossref_primary_10_1016_j_jhydrol_2010_06_037 crossref_primary_10_1016_j_jhydrol_2005_11_059 crossref_primary_10_1016_j_envsoft_2010_02_003 crossref_primary_10_1016_j_aquaeng_2020_102085 crossref_primary_10_1016_j_jhydrol_2017_04_045 crossref_primary_10_1016_j_jhydrol_2012_10_019 crossref_primary_10_1080_15715124_2019_1570934 crossref_primary_10_1007_s12665_015_4562_9 crossref_primary_10_1002_hyp_70011 crossref_primary_10_1016_j_fuel_2024_131321 crossref_primary_10_1016_j_jhydrol_2007_04_004 crossref_primary_10_1029_2007WR005875 crossref_primary_10_1007_s00477_016_1338_z crossref_primary_10_1080_02626667_2010_546358 crossref_primary_10_3390_w14121917 crossref_primary_10_1002_2013WR014127 crossref_primary_10_1016_j_rser_2015_01_022 crossref_primary_10_1016_j_jhydrol_2010_10_001 crossref_primary_10_1007_s00521_014_1684_z crossref_primary_10_1016_j_neucom_2008_12_032 crossref_primary_10_1029_2006WR004930 crossref_primary_10_1061__ASCE_HE_1943_5584_0000445 crossref_primary_10_3390_w8050197 crossref_primary_10_1016_j_jhydrol_2023_130421 crossref_primary_10_1080_02626667_2013_800944 crossref_primary_10_1080_0305215X_2016_1230207 crossref_primary_10_1061__ASCE_0899_1561_2008_20_9_628 crossref_primary_10_1007_s12273_021_0837_0 crossref_primary_10_1029_2008WR007030 crossref_primary_10_1016_j_jhydrol_2011_06_019 crossref_primary_10_1016_j_compag_2010_01_001 crossref_primary_10_1016_j_envsoft_2014_11_028 crossref_primary_10_1007_s11269_017_1878_0 crossref_primary_10_1088_1742_6596_52_1_012059 crossref_primary_10_1002_hyp_5517 crossref_primary_10_1016_j_jhydrol_2023_129421 crossref_primary_10_1007_s00271_019_00659_x crossref_primary_10_1016_j_agwat_2022_107529 crossref_primary_10_1002_hyp_6686 crossref_primary_10_1007_s11081_020_09538_3 crossref_primary_10_1061__ASCE_HZ_2153_5515_0000270 crossref_primary_10_1109_ACCESS_2021_3092074 crossref_primary_10_1002_eco_206 crossref_primary_10_1080_02626667_2015_1055271 crossref_primary_10_1007_s11269_009_9436_z crossref_primary_10_1007_s00704_013_1029_3 crossref_primary_10_1016_j_atmosres_2018_05_012 crossref_primary_10_1016_j_envpol_2007_02_002 crossref_primary_10_1016_j_engappai_2012_05_023 crossref_primary_10_1016_j_amc_2015_06_059 crossref_primary_10_1016_j_jher_2018_01_002 crossref_primary_10_1111_jawr_12093 crossref_primary_10_5194_hess_17_253_2013 crossref_primary_10_1016_j_jhydrol_2019_124229 crossref_primary_10_1016_j_envsoft_2014_05_010 crossref_primary_10_3390_horticulturae8111016 crossref_primary_10_1016_j_envsoft_2015_05_013 crossref_primary_10_1002_hyp_6954 crossref_primary_10_1002_rra_2819 crossref_primary_10_1029_2004WR003562 crossref_primary_10_1111_lre_12175 crossref_primary_10_1016_j_eswa_2014_02_047 crossref_primary_10_1016_j_jhydrol_2009_09_037 crossref_primary_10_1016_j_agwat_2017_10_005 crossref_primary_10_1016_j_scitotenv_2019_135934 crossref_primary_10_1016_j_jhydrol_2011_01_017 crossref_primary_10_1029_2018JD030025 crossref_primary_10_1080_09720502_2021_2016853 crossref_primary_10_1680_wama_2010_163_4_175 crossref_primary_10_1007_s41204_018_0049_8 crossref_primary_10_1016_j_jhydrol_2007_11_013 crossref_primary_10_1016_j_atmosres_2017_06_014 crossref_primary_10_1016_j_ins_2017_08_003 crossref_primary_10_1029_2005WR003971 crossref_primary_10_1061__ASCE_HE_1943_5584_0001725 crossref_primary_10_3390_jmse6040135 crossref_primary_10_1061__ASCE_1084_0699_2009_14_1_75 crossref_primary_10_1061__ASCE_HE_1943_5584_0000599 crossref_primary_10_1007_s11069_015_1625_x crossref_primary_10_31545_intagr_205684 crossref_primary_10_1007_s12517_022_09744_6 crossref_primary_10_2166_nh_2023_229 crossref_primary_10_1080_09715010_2009_10514968 crossref_primary_10_1007_s40710_017_0226_y crossref_primary_10_1007_s00477_015_1040_6 crossref_primary_10_3390_atmos9070251 crossref_primary_10_1080_15376510902918392 crossref_primary_10_3390_math10224263 crossref_primary_10_1016_j_jhydrol_2004_07_014 crossref_primary_10_1623_hysj_52_3_414 crossref_primary_10_1080_02626667_2016_1252986 crossref_primary_10_2166_wcc_2022_302 crossref_primary_10_1016_j_asoc_2006_03_002 crossref_primary_10_1016_j_atmosenv_2020_117754 crossref_primary_10_3390_w9010048 crossref_primary_10_1061__ASCE_IR_1943_4774_0000343 crossref_primary_10_1016_j_envsoft_2008_09_005 crossref_primary_10_1007_s12665_022_10353_5 crossref_primary_10_1007_s00477_022_02276_1 crossref_primary_10_1061__ASCE_HE_1943_5584_0001475 crossref_primary_10_1177_0309133312444943 crossref_primary_10_1016_j_jksus_2022_102149 crossref_primary_10_1061__ASCE_1084_0699_2004_9_6_551 crossref_primary_10_1061__ASCE_1084_0699_2004_9_6_553 crossref_primary_10_2166_wcc_2024_465 crossref_primary_10_1016_j_jhydrol_2009_03_038 crossref_primary_10_1016_j_engappai_2010_04_003 crossref_primary_10_1002_stc_2037 crossref_primary_10_1029_2008WR007194 crossref_primary_10_1007_s11269_012_0202_2 crossref_primary_10_1002_hyp_8040 crossref_primary_10_3390_w15203559 crossref_primary_10_3390_w9070525 crossref_primary_10_1007_s11269_014_0590_6 crossref_primary_10_1016_j_jhydrol_2006_02_034 crossref_primary_10_1061__ASCE_0899_1561_2005_17_6_736 crossref_primary_10_1061__ASCE_0733_9437_2004_130_4_286 crossref_primary_10_1016_j_neunet_2006_01_009 crossref_primary_10_1016_j_asoc_2015_09_049 crossref_primary_10_1016_j_envsoft_2006_06_008 crossref_primary_10_1002_hyp_6764 crossref_primary_10_1623_hysj_52_3_397 crossref_primary_10_1016_j_jhydrol_2005_05_022 crossref_primary_10_3390_su16041376 crossref_primary_10_3390_w11091848 crossref_primary_10_1080_02626667_2018_1483581 crossref_primary_10_1007_s00521_011_0553_2 crossref_primary_10_1080_02626667_2015_1085650 crossref_primary_10_1111_j_1752_1688_2004_tb01610_x crossref_primary_10_1016_j_jhydrol_2005_03_037 crossref_primary_10_1007_s11600_019_00380_5 crossref_primary_10_3390_w13182525 crossref_primary_10_1016_j_asoc_2004_12_007 crossref_primary_10_1016_j_geoderma_2018_05_035 |
| Cites_doi | 10.1061/(ASCE)1084-0699(2002)7:5(392) 10.1002/hyp.5502 10.1080/02626669509491401 10.1080/02626669809492102 10.1007/BF00872489 10.1029/92WR01259 10.1061/(ASCE)1084-0699(2000)5:2(156) 10.1029/WR008i001p00058 10.1061/(ASCE)1084-0699(2003)8:2(93) 10.1016/S0045-7825(99)00389-8 10.1080/02626660209492996 10.1016/S0022-1694(98)00273-X 10.7551/mitpress/5236.001.0001 10.1061/(ASCE)1084-0699(2000)5:2(180) 10.1080/02626669609491511 10.1016/0893-6080(92)90008-7 10.1023/A:1014415503476 10.1038/323533a0 10.1029/1998WR900086 10.1061/(ASCE)1084-0699(1999)4:3(232) 10.1016/S0305-0483(96)00052-7 10.1061/(ASCE)1084-0699(2001)6:2(176) 10.1002/hyp.5517 10.1623/hysj.48.2.163.44699 10.1002/j.1551-8833.2002.tb09507.x 10.1016/S0022-1694(96)03330-6 10.1029/1999WR900264 10.1007/BF00939380 10.1029/95WR01955 |
| ContentType | Journal Article |
| Copyright | Copyright 2004 by the American Geophysical Union. |
| Copyright_xml | – notice: Copyright 2004 by the American Geophysical Union. |
| DBID | BSCLL AAYXX CITATION 7QH 7TG 7UA C1K F1W H96 KL. L.G |
| DOI | 10.1029/2003WR002355 |
| DatabaseName | Istex CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | n/a |
| ExternalDocumentID | 10_1029_2003WR002355 WRCR9735 ark_67375_WNG_P3Z2050X_J |
| Genre | article |
| GeographicLocations | USA, Kentucky, Kentucky R USA, Kentucky |
| GeographicLocations_xml | – name: USA, Kentucky, Kentucky R – name: USA, Kentucky |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A6W AAESR AAHBH AAIHA AAIKC AAMMB AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAZKR ABCUV ABJCF ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEIGN AENEX AETEA AEUYN AEUYR AFBPY AFFHD AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AIDBO AIDQK AIDYY AIQQE AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI BSCLL CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WIN WXSBR XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A 3V. A00 AAHHS AAYOK ABTAH ACCFJ AEEZP AEQDE AFPWT AIWBW AJBDE GROUPED_ABI_INFORM_COMPLETE WYJ AAYXX CITATION 7QH 7TG 7UA C1K F1W H96 KL. L.G |
| ID | FETCH-LOGICAL-a4345-70bb66215d6852fa021e974d7b9bbebe6b0c597230c6f8feeedb9c9a869894ec3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 187 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000221088700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Tue Oct 07 09:53:02 EDT 2025 Sat Nov 29 04:00:58 EST 2025 Tue Nov 18 21:00:06 EST 2025 Wed Jan 22 16:21:03 EST 2025 Tue Nov 11 03:31:02 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4345-70bb66215d6852fa021e974d7b9bbebe6b0c597230c6f8feeedb9c9a869894ec3 |
| Notes | ark:/67375/WNG-P3Z2050X-J istex:EF256C56573F546439F35FC95053E84333CBAE8C ArticleID:2003WR002355 Tab-delimited Table 1.Tab-delimited Table 2.Tab-delimited Table 3.Tab-delimited Table 4.Tab-delimited Table 5. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 16170760 |
| PQPubID | 23462 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_16170760 crossref_citationtrail_10_1029_2003WR002355 crossref_primary_10_1029_2003WR002355 wiley_primary_10_1029_2003WR002355_WRCR9735 istex_primary_ark_67375_WNG_P3Z2050X_J |
| PublicationCentury | 2000 |
| PublicationDate | April 2004 |
| PublicationDateYYYYMMDD | 2004-04-01 |
| PublicationDate_xml | – month: 04 year: 2004 text: April 2004 |
| PublicationDecade | 2000 |
| PublicationTitle | Water resources research |
| PublicationTitleAlternate | Water Resour. Res |
| PublicationYear | 2004 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | Haan, C. T. (1972), A water yield model for small watersheds, Water Resour. Res., 8(1), 58-69. Minns, A. W., and M. J. Hall (1996), Artificial neural networks as rainfall runoff models, Hydrol. Sci. J., 41(3), 399-417. Sudheer, K. P., and A. Jain (2004), Explaining the internal behavior of artificial neural network river flow models, Hydrol. Processes, 118(4), 833-844. Zhang, B., and S. Govindaraju (2000), Prediction of watershed runoff using Bayesian concepts and modular neural networks, Water Resour. Res., 36(3), 753-762. Wilby, R. L., R. J. Abrahart, and C. W. Dawson (2003), Detection of conceptual model rainfall-runoff processes inside an artificial neural network, Hydrol. Sci. J., 48(2), 163-181. Jain, A., and S. K. V. P. Indurthy (2003), Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks, J. Hydrol. Eng., 8(2), 1-6. Deb, K., and R. B. Agarwal (1995), Simulated binary crossover for continuous search space, Complex Syst., 9, 115-148. Grayson, R. B., I. D. Moore, and T. A. McMahon (1992), Physically based hydrologic modeling: 2. Is the concept realistic? Water Resour. Res., 28(10), 2659-2666. Jain, A., K. P. Sudheer, and S. Srinivasulu (2004), Identification of physical processes inherent in artificial neural network rainfall runoff models, Hydrol. Processes, 118, 571-581. Tokar, A. S., and M. Markus (2000), Precipitation runoff modeling using artificial neural network and conceptual models, J. Hydrol. Eng., 5(2), 156-161. Deb, K. (2000), An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Eng., 186, 311-338. Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986a), Learning representations by back-propagating errors, Nature, 323, 533-536. Raman, H., and N. Sunil Kumar (1995), Multivariate modeling of water resources time series using artificial neural networks, Hydrol. Sci. J., 40(2), 145-163. Sajikumar, N., and B. S. Thandaveswara (1999), A non-linear rainfall-runoff model using an artificial neural network, J. Hydrol., 216, 32-55. Dawson, D. W., and R. Wilby (1998), An artificial neural network approach to rainfall-runoff modeling, Hydrol. Sci. J., 43(1), 47-65. Campolo, M., P. Andreussi, and A. Soldati (1999), River Flood forecasting with neural network model, Water Resour. Res., 35(4), 1191-1197. Duan, Q. Y., V. K. Gupta, and S. Sorooshian (1993), Shuffled complex evolution approach for effective and efficient global optimization, J. Optim. Theory Appl., 76(3), 501-521. Jain, A., and L. E. Ormsbee (2002), Evaluation of short-term water demand forecast modeling techniques: Conventional methods versus AI, J. Am. Water Works Assoc., 94(7), 64-72. Jain, A., A. K. Varshney, and U. C. Joshi (2001), Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks, Water Resour. Manage., 15(5), 299-321. Deb, K., and A. Kumar (1995), Real-coded genetic algorithms with simulated binary crossover: Studies on multimodal and multi-objective problems, Complex Syst., 9(6), 431-454. Curry, B., and P. Morgan (1997), Neural network: A need for caution, Omega Int. J. Manage. Sci., 25(1), 123-133. Hsu, K.-L., H. V. Gupta, and S. Sorooshian (1995), Artificial Neural network modeling of the rainfall-runoff process, Water Resour. Res., 31(10), 2517-2530. Tokar, A. S., and A. Johnson (1999), Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng., 4(3), 232-239. Shamseldin, A. Y. (1997), Application of a neural network technique to rainfall-runoff modeling, J. Hydrol., 199, 272-294. Ooyen, A. V., and B. Nichhuis (1992), Improving convergence of back propagation problem, Neural Networks, 5, 465-471. Thirumaliah, K., and M. C. Deo (2000), Hydrological forecasting using neural networks, J. Hydrol. Eng., 5(2), 180-189. Lorrai, M., and G. M. Sechi (1995), Neural nets for modeling rainfall-runoff transformations, Water Resour. Manage., 9, 299-313. Birikundavyi, S., R. Labib, H. T. Trung, and J. Rousselle (2002), Performance of neural networks in daily streamflow forecasting, J. Hydrol. Eng., 7(5), 392-398. Kumar, A., and K. Minocha (2001), Discussion on rainfall runoff modeling using artificial neural networks, J. Hydrol. Eng., 6(2), 176-177. Rajurkar, M. P., U. C. Kothyari, and U. C. Chaube (2002), Artificial neural networks for daily rainfall-runoff modeling, Hydrol. Sci. J., 47(6), 865-876. 1995; 31 1995; 9 1972; 8 2000; 5 2002; 94 1997; 25 2002; 7 1997; 199 1996 1999; 4 1998; 43 2002; 47 1995; 40 1986; 323 2001 1990 2000; 36 2000 2001; 6 1993; 76 2003; 8 1999; 35 1992; 28 1986 1996; 41 2003; 48 2000; 186 2001; 15 1999; 216 2004; 118 1989 1988 1992; 5 e_1_2_6_32_1 e_1_2_6_31_1 e_1_2_6_30_1 Rumelhart D. E. (e_1_2_6_29_1) 1986 Deb K. (e_1_2_6_9_1) 1995; 9 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_8_1 Deb K. (e_1_2_6_10_1) 1995; 9 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – reference: Hsu, K.-L., H. V. Gupta, and S. Sorooshian (1995), Artificial Neural network modeling of the rainfall-runoff process, Water Resour. Res., 31(10), 2517-2530. – reference: Tokar, A. S., and M. Markus (2000), Precipitation runoff modeling using artificial neural network and conceptual models, J. Hydrol. Eng., 5(2), 156-161. – reference: Sudheer, K. P., and A. Jain (2004), Explaining the internal behavior of artificial neural network river flow models, Hydrol. Processes, 118(4), 833-844. – reference: Jain, A., and L. E. Ormsbee (2002), Evaluation of short-term water demand forecast modeling techniques: Conventional methods versus AI, J. Am. Water Works Assoc., 94(7), 64-72. – reference: Minns, A. W., and M. J. Hall (1996), Artificial neural networks as rainfall runoff models, Hydrol. Sci. J., 41(3), 399-417. – reference: Kumar, A., and K. Minocha (2001), Discussion on rainfall runoff modeling using artificial neural networks, J. Hydrol. Eng., 6(2), 176-177. – reference: Tokar, A. S., and A. Johnson (1999), Rainfall-runoff modeling using artificial neural networks, J. Hydrol. Eng., 4(3), 232-239. – reference: Birikundavyi, S., R. Labib, H. T. Trung, and J. Rousselle (2002), Performance of neural networks in daily streamflow forecasting, J. Hydrol. Eng., 7(5), 392-398. – reference: Haan, C. T. (1972), A water yield model for small watersheds, Water Resour. Res., 8(1), 58-69. – reference: Deb, K. (2000), An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Eng., 186, 311-338. – reference: Jain, A., A. K. Varshney, and U. C. Joshi (2001), Short-term water demand forecast modeling at IIT Kanpur using artificial neural networks, Water Resour. Manage., 15(5), 299-321. – reference: Dawson, D. W., and R. Wilby (1998), An artificial neural network approach to rainfall-runoff modeling, Hydrol. Sci. J., 43(1), 47-65. – reference: Sajikumar, N., and B. S. Thandaveswara (1999), A non-linear rainfall-runoff model using an artificial neural network, J. Hydrol., 216, 32-55. – reference: Lorrai, M., and G. M. Sechi (1995), Neural nets for modeling rainfall-runoff transformations, Water Resour. Manage., 9, 299-313. – reference: Thirumaliah, K., and M. C. Deo (2000), Hydrological forecasting using neural networks, J. Hydrol. Eng., 5(2), 180-189. – reference: Rajurkar, M. P., U. C. Kothyari, and U. C. Chaube (2002), Artificial neural networks for daily rainfall-runoff modeling, Hydrol. Sci. J., 47(6), 865-876. – reference: Ooyen, A. V., and B. Nichhuis (1992), Improving convergence of back propagation problem, Neural Networks, 5, 465-471. – reference: Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986a), Learning representations by back-propagating errors, Nature, 323, 533-536. – reference: Curry, B., and P. Morgan (1997), Neural network: A need for caution, Omega Int. J. Manage. Sci., 25(1), 123-133. – reference: Wilby, R. L., R. J. Abrahart, and C. W. Dawson (2003), Detection of conceptual model rainfall-runoff processes inside an artificial neural network, Hydrol. Sci. J., 48(2), 163-181. – reference: Duan, Q. Y., V. K. Gupta, and S. Sorooshian (1993), Shuffled complex evolution approach for effective and efficient global optimization, J. Optim. Theory Appl., 76(3), 501-521. – reference: Deb, K., and R. B. Agarwal (1995), Simulated binary crossover for continuous search space, Complex Syst., 9, 115-148. – reference: Shamseldin, A. Y. (1997), Application of a neural network technique to rainfall-runoff modeling, J. Hydrol., 199, 272-294. – reference: Campolo, M., P. Andreussi, and A. Soldati (1999), River Flood forecasting with neural network model, Water Resour. Res., 35(4), 1191-1197. – reference: Raman, H., and N. Sunil Kumar (1995), Multivariate modeling of water resources time series using artificial neural networks, Hydrol. Sci. J., 40(2), 145-163. – reference: Grayson, R. B., I. D. Moore, and T. A. McMahon (1992), Physically based hydrologic modeling: 2. Is the concept realistic? Water Resour. Res., 28(10), 2659-2666. – reference: Zhang, B., and S. Govindaraju (2000), Prediction of watershed runoff using Bayesian concepts and modular neural networks, Water Resour. Res., 36(3), 753-762. – reference: Deb, K., and A. Kumar (1995), Real-coded genetic algorithms with simulated binary crossover: Studies on multimodal and multi-objective problems, Complex Syst., 9(6), 431-454. – reference: Jain, A., K. P. Sudheer, and S. Srinivasulu (2004), Identification of physical processes inherent in artificial neural network rainfall runoff models, Hydrol. Processes, 118, 571-581. – reference: Jain, A., and S. K. V. P. Indurthy (2003), Comparative analysis of event based rainfall-runoff modeling techniques-deterministic, statistical, and artificial neural networks, J. Hydrol. Eng., 8(2), 1-6. – volume: 323 start-page: 533 year: 1986 end-page: 536 article-title: Learning representations by back‐propagating errors publication-title: Nature – volume: 36 start-page: 753 issue: 3 year: 2000 end-page: 762 article-title: Prediction of watershed runoff using Bayesian concepts and modular neural networks publication-title: Water Resour. Res. – volume: 76 start-page: 501 issue: 3 year: 1993 end-page: 521 article-title: Shuffled complex evolution approach for effective and efficient global optimization publication-title: J. Optim. Theory Appl. – volume: 94 start-page: 64 issue: 7 year: 2002 end-page: 72 article-title: Evaluation of short‐term water demand forecast modeling techniques: Conventional methods versus AI publication-title: J. Am. Water Works Assoc. – volume: 40 start-page: 145 issue: 2 year: 1995 end-page: 163 article-title: Multivariate modeling of water resources time series using artificial neural networks publication-title: Hydrol. Sci. J. – volume: 8 start-page: 58 issue: 1 year: 1972 end-page: 69 article-title: A water yield model for small watersheds publication-title: Water Resour. Res. – volume: 5 start-page: 180 issue: 2 year: 2000 end-page: 189 article-title: Hydrological forecasting using neural networks publication-title: J. Hydrol. Eng. – volume: 4 start-page: 232 issue: 3 year: 1999 end-page: 239 article-title: Rainfall‐runoff modeling using artificial neural networks publication-title: J. Hydrol. Eng. – volume: 9 start-page: 115 year: 1995 end-page: 148 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst. – volume: 5 start-page: 465 year: 1992 end-page: 471 article-title: Improving convergence of back propagation problem publication-title: Neural Networks – year: 2001 – year: 1989 – volume: 8 start-page: 1 issue: 2 year: 2003 end-page: 6 article-title: Comparative analysis of event based rainfall‐runoff modeling techniques‐deterministic, statistical, and artificial neural networks publication-title: J. Hydrol. Eng. – year: 2000 – year: 1996 – volume: 118 start-page: 833 issue: 4 year: 2004 end-page: 844 article-title: Explaining the internal behavior of artificial neural network river flow models publication-title: Hydrol. Processes – year: 1990 – volume: 35 start-page: 1191 issue: 4 year: 1999 end-page: 1197 article-title: River Flood forecasting with neural network model publication-title: Water Resour. Res. – volume: 43 start-page: 47 issue: 1 year: 1998 end-page: 65 article-title: An artificial neural network approach to rainfall‐runoff modeling publication-title: Hydrol. Sci. J. – volume: 41 start-page: 399 issue: 3 year: 1996 end-page: 417 article-title: Artificial neural networks as rainfall runoff models publication-title: Hydrol. Sci. J. – volume: 15 start-page: 299 issue: 5 year: 2001 end-page: 321 article-title: Short‐term water demand forecast modeling at IIT Kanpur using artificial neural networks publication-title: Water Resour. Manage. – volume: 6 start-page: 176 issue: 2 year: 2001 end-page: 177 article-title: Discussion on rainfall runoff modeling using artificial neural networks publication-title: J. Hydrol. Eng. – year: 1986 – volume: 25 start-page: 123 issue: 1 year: 1997 end-page: 133 article-title: Neural network: A need for caution publication-title: Omega Int. J. Manage. Sci. – volume: 31 start-page: 2517 issue: 10 year: 1995 end-page: 2530 article-title: Artificial Neural network modeling of the rainfall‐runoff process publication-title: Water Resour. Res. – volume: 28 start-page: 2659 issue: 10 year: 1992 end-page: 2666 article-title: Physically based hydrologic modeling: 2. Is the concept realistic? publication-title: Water Resour. Res. – volume: 216 start-page: 32 year: 1999 end-page: 55 article-title: A non‐linear rainfall‐runoff model using an artificial neural network publication-title: J. Hydrol. – year: 1988 – volume: 5 start-page: 156 issue: 2 year: 2000 end-page: 161 article-title: Precipitation runoff modeling using artificial neural network and conceptual models publication-title: J. Hydrol. Eng. – volume: 186 start-page: 311 year: 2000 end-page: 338 article-title: An efficient constraint handling method for genetic algorithms publication-title: Comput. Methods Appl. Mech. Eng. – volume: 199 start-page: 272 year: 1997 end-page: 294 article-title: Application of a neural network technique to rainfall‐runoff modeling publication-title: J. Hydrol. – volume: 47 start-page: 865 issue: 6 year: 2002 end-page: 876 article-title: Artificial neural networks for daily rainfall‐runoff modeling publication-title: Hydrol. Sci. J. – volume: 7 start-page: 392 issue: 5 year: 2002 end-page: 398 article-title: Performance of neural networks in daily streamflow forecasting publication-title: J. Hydrol. Eng. – volume: 48 start-page: 163 issue: 2 year: 2003 end-page: 181 article-title: Detection of conceptual model rainfall‐runoff processes inside an artificial neural network publication-title: Hydrol. Sci. J. – volume: 9 start-page: 431 issue: 6 year: 1995 end-page: 454 article-title: Real‐coded genetic algorithms with simulated binary crossover: Studies on multimodal and multi‐objective problems publication-title: Complex Syst. – volume: 118 start-page: 571 year: 2004 end-page: 581 article-title: Identification of physical processes inherent in artificial neural network rainfall runoff models publication-title: Hydrol. Processes – volume: 9 start-page: 299 year: 1995 end-page: 313 article-title: Neural nets for modeling rainfall‐runoff transformations publication-title: Water Resour. Manage. – ident: e_1_2_6_2_1 doi: 10.1061/(ASCE)1084-0699(2002)7:5(392) – volume: 9 start-page: 431 issue: 6 year: 1995 ident: e_1_2_6_10_1 article-title: Real‐coded genetic algorithms with simulated binary crossover: Studies on multimodal and multi‐objective problems publication-title: Complex Syst. – ident: e_1_2_6_20_1 doi: 10.1002/hyp.5502 – ident: e_1_2_6_23_1 – ident: e_1_2_6_27_1 doi: 10.1080/02626669509491401 – ident: e_1_2_6_6_1 doi: 10.1080/02626669809492102 – ident: e_1_2_6_22_1 doi: 10.1007/BF00872489 – ident: e_1_2_6_13_1 doi: 10.1029/92WR01259 – ident: e_1_2_6_35_1 doi: 10.1061/(ASCE)1084-0699(2000)5:2(156) – ident: e_1_2_6_14_1 doi: 10.1029/WR008i001p00058 – ident: e_1_2_6_17_1 doi: 10.1061/(ASCE)1084-0699(2003)8:2(93) – ident: e_1_2_6_37_1 – ident: e_1_2_6_7_1 doi: 10.1016/S0045-7825(99)00389-8 – ident: e_1_2_6_26_1 doi: 10.1080/02626660209492996 – volume: 9 start-page: 115 year: 1995 ident: e_1_2_6_9_1 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst. – ident: e_1_2_6_30_1 doi: 10.1016/S0022-1694(98)00273-X – volume-title: Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, Foundations year: 1986 ident: e_1_2_6_29_1 doi: 10.7551/mitpress/5236.001.0001 – ident: e_1_2_6_36_1 – ident: e_1_2_6_4_1 – ident: e_1_2_6_33_1 doi: 10.1061/(ASCE)1084-0699(2000)5:2(180) – ident: e_1_2_6_24_1 doi: 10.1080/02626669609491511 – ident: e_1_2_6_25_1 doi: 10.1016/0893-6080(92)90008-7 – ident: e_1_2_6_19_1 doi: 10.1023/A:1014415503476 – ident: e_1_2_6_28_1 doi: 10.1038/323533a0 – ident: e_1_2_6_3_1 doi: 10.1029/1998WR900086 – ident: e_1_2_6_34_1 doi: 10.1061/(ASCE)1084-0699(1999)4:3(232) – ident: e_1_2_6_5_1 doi: 10.1016/S0305-0483(96)00052-7 – ident: e_1_2_6_21_1 doi: 10.1061/(ASCE)1084-0699(2001)6:2(176) – ident: e_1_2_6_32_1 doi: 10.1002/hyp.5517 – ident: e_1_2_6_38_1 doi: 10.1623/hysj.48.2.163.44699 – ident: e_1_2_6_18_1 doi: 10.1002/j.1551-8833.2002.tb09507.x – ident: e_1_2_6_16_1 – ident: e_1_2_6_8_1 – ident: e_1_2_6_31_1 doi: 10.1016/S0022-1694(96)03330-6 – ident: e_1_2_6_39_1 doi: 10.1029/1999WR900264 – ident: e_1_2_6_11_1 doi: 10.1007/BF00939380 – ident: e_1_2_6_12_1 – ident: e_1_2_6_15_1 doi: 10.1029/95WR01955 |
| SSID | ssj0014567 |
| Score | 2.2281322 |
| Snippet | Many researchers have reported about the problems in modeling low‐magnitude flows while developing artificial neural network (ANN) rainfall‐runoff models... Many researchers have reported about the problems in modeling low-magnitude flows while developing artificial neural network (ANN) rainfall-runoff models... |
| SourceID | proquest crossref wiley istex |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | artificial neural networks conceptual rainfall-runoff models deterministic techniques genetic algorithms optimization rainfall-runoff modeling |
| Title | Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques |
| URI | https://api.istex.fr/ark:/67375/WNG-P3Z2050X-J/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2003WR002355 https://www.proquest.com/docview/16170760 |
| Volume | 40 |
| WOSCitedRecordID | wos000221088700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-7973 dateEnd: 20231213 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELZQiwSXAgXUbUvxoe2FRmQTOz9HVFgKqlbVqtWuuFi2Y29XXRKU7CK49RF4EJ6KJ2HG-en20EqIUxLJTqJ4Jv7s-eYbQvaV1orLfuSFJmIeU6HvwRLMeozbKMkCmQTWjfRpPBwmk0l61my4YS5MrQ_RbbihZ7j_NTq4VFUjNoAamciqGo-cXgvmmPeZ88vxp2EXRABsELcBZgQ6De8dur9d7XxrRlrHj_vjFtxcBa1u1hk8-d_3fUo2GrxJ39UG8ow8MPkmedSmI1dw3pRBv_z5nPxeoRDRwtKa7AH_QyrzDK9mLn2SYlkJK-fzP9e_ymVeWEtdQZ2KIot-SlsJChhyvEvWMG6cJPQRBZSKHTGXPqNgvphFSeV8WpSzxeXXyj0K7bmWtqAouOkOjq5OO83Z6gW5GHw4Pz7xmnIOnmQh417sKxVFADGyKOGBlYAuDKxmslilSoEtRcrXHIug-TqyiTUwe6tUpzLBGpfM6PAlWcuL3GwRagCkwDoy0ExJFvRtynyWZbFJFVe6z1WPvGmHVOhG6xxLbsyFi7kHqVgdjR456Fp_qzU-7mh36KyjayTLK-TFxVyMhx_FWfgl8Lk_EZ975HVrPgK8FUMwMjfFshK4msRYKLygs5V7nyfGo-NRGod8-59a75DHN_SiXbK2KJfmFXmovy9mVblH1t-PBhene85V_gIQ6xc5 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LbtQwFL2CGaSyKW8x5VEvgA1EzSR2HktUGAoMo2rUakZsLNux2xHTpEpmEOz6Cf0Qvoovwdd5MF2AhFglkewkiq_tc3PPPRfgmVRKMjGMvFBH1KMy9D3rghmPMhMlWSCSwLiRHseTSTKfp4dNnVPMhan1Ibofbjgz3HqNExx_SDdqAyiSibSq2dQJtrDr0KfWklgP-m-mo-NxF0iw-CBug8wIdhruu73D3mb_K7tSHz_wtyuQcxO4up1ndOu_3_k2bDegk7yureQOXNP5Xdhqc5Ire97UQj_9fg9-bPCISGFIzfiwiyIReYZXC5dDSbC2hBHL5c-Ly3KdF8YQV1WnIkilPyGtDoUdd7xL1tBunC70K2KhKnbEhPqMWBvGVEoilidFuVidnlXuUWjUtb4FQdVNd3CcddIJz1b34Xj09mj_wGtqOniChpR5sS9lFFmckUUJC4ywEENblyaLZSqlNahI-ophJTRfRSYx2m7hMlWpSLDQJdUqfAC9vMj1QyDaIhXrTAaKSkGDoUmpT7Ms1qlkUg2ZHMDLdky5agTPse7GkrvAe5DyzdEYwPOu9Xkt9PGHdi-ceXSNRPkFyXEx47PJO34Yfg585s_5hwHstvbD7ZTFOIzIdbGuOLqUGBC1L-iM5a_P47Pp_jSNQ7bzT613Yevg6NOYj99PPj6Cm7_5Ro-htyrX-gncUF9Xi6p82syYXxQFGuU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLVgioANb0R5jRfABiLSxHaSJZqhvKqqqhi1YmP5OVNRklHSItjxCXwIX8WX4Os4obMACbFKItmJFd8bH-eeey5Cj6RSkooRi1LDSERkGkduC2YjQi3LdSLyxPqZnmTTab5cFrNQ5xRyYVp9iP6HG3iG_16Dg5tTbYPaAIhkAq1qMfeCLfQ8GhBaMOeZg8P5-GjSBxIcPsi6IDOAncB9d3d4vtv_zKo0gBf85Qzk3AWufuUZX_3vMV9DVwLoxC9aK7mOzpnyBrrU5SQ37jzUQj_5ehP92OER4crilvHhPopYlBquVj6HEkNtCSvW65_fvtfbsrIW-6o6DQYq_THudCjcvMNddKDdeF3oZ9hBVegICfUaOxuGVEos1sdVvdqcfGr8o8CoW30LDKqb_uA567gXnm1uoaPxy_cHr6NQ0yESJCU0ymIpGXM4Q7OcJlY4iGHclkZnspDSGRSTsaJQCS1WzObWuCVcFqoQORS6JEalt9FeWZXmDsLGIRW3mUwUkYIkI1uQmGidmUJSqUZUDtHTbk65CoLnUHdjzX3gPSn47mwM0eO-9Wkr9PGHdk-8efSNRP0RyHEZ5YvpKz5LPyQxjZf87RDtd_bDnctCHEaUpto2HLaUEBB1A_TG8tfn8cX8YF5kKb37T6330cXZ4ZhP3kzf3UOXf9ON7qO9Tb01D9AF9XmzauqHwWF-AXiGGmA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+effective+and+efficient+rainfall-runoff+models+using+integration+of+deterministic%2C+real-coded+genetic+algorithms+and+artificial+neural+network+techniques&rft.jtitle=Water+resources+research&rft.au=Jain%2C+Ashu&rft.au=Srinivasulu%2C+Sanaga&rft.date=2004-04-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=40&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2003WR002355&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_P3Z2050X_J |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |