Slab‐Plume Interactions Beneath Australia and New Zealand: New Insight From Whole‐Mantle Tomography

Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Although Australia is known as a stable landmass wit...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Geochemistry, geophysics, geosystems : G3 Ročník 25; číslo 11
Hlavní autori: Toyokuni, Genti, Zhao, Dapeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.11.2024
Wiley
Predmet:
ISSN:1525-2027, 1525-2027
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be caused by hot mantle plumes. To better understand the seismic and volcanic activities in the region, it is necessary to study the detailed 3‐D structure of the crust and mantle. Here we apply a well‐established global tomography method to reveal the 3‐D P‐wave velocity (VP ${V}_{P}$) structure of the whole mantle beneath this region. We used ∼7 million P, pP, PP, PcP, and Pdiff wave arrival times of 23,666 earthquakes recorded at 14,181 seismograph stations worldwide. The resulting VP ${V}_{P}$ tomography clearly shows high‐VP ${V}_{P}$ subducted slabs, and low‐VP ${V}_{P}$ anomalies above and below the slabs, which may reflect corner flow in the mantle wedge and subslab hot mantle upwelling (SHMU), respectively. A slab window is revealed beneath the North Island of New Zealand. Given the development of SHMU beneath this region, the catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and SHMU through the slab window. Beneath the intraplate volcanoes along the eastern coast of Australia and the Tasman Sea, a thin low‐VP ${V}_{P}$ zone exists and extends down to the core‐mantle boundary, suggesting that the intraplate volcanoes might be, at least partially, fed by a plume rising from the lower mantle. Plain Language Summary Australia, New Zealand, and their surrounding regions consist of the Australian Plate, the Pacific Plate, and many microplates located along their boundaries. Complex interactions among these plates result in significant seismic and volcanic activities. Especially, the Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Furthermore, although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be associated with hot mantle plumes. To better understand the seismic and volcanic activities in the region, we investigated the 3‐D P‐wave velocity structure of the entire mantle beneath this region. The resulting tomography clearly shows subducted slabs, corner flow in the mantle wedge, and hot mantle upwelling below the slabs. An interesting feature is a possible slab window revealed beneath the Taupo volcano. The catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and the subslab hot mantle upwelling through the slab window. Our tomography also suggests that the intraplate volcanoes along the eastern coast of Australia are, at least partially, fed by a plume rising from the lower mantle. Key Points Fine whole‐mantle tomography is determined beneath Australia and New Zealand Super‐eruptions of the Taupo volcano on the North Island of New Zealand might be related to a slab window Intraplate volcanoes in eastern Australia and the Tasman Sea are fed by a hot plume rising from the lower mantle
AbstractList Abstract Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be caused by hot mantle plumes. To better understand the seismic and volcanic activities in the region, it is necessary to study the detailed 3‐D structure of the crust and mantle. Here we apply a well‐established global tomography method to reveal the 3‐D P‐wave velocity (VP) structure of the whole mantle beneath this region. We used ∼7 million P, pP, PP, PcP, and Pdiff wave arrival times of 23,666 earthquakes recorded at 14,181 seismograph stations worldwide. The resulting VP tomography clearly shows high‐VP subducted slabs, and low‐VP anomalies above and below the slabs, which may reflect corner flow in the mantle wedge and subslab hot mantle upwelling (SHMU), respectively. A slab window is revealed beneath the North Island of New Zealand. Given the development of SHMU beneath this region, the catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and SHMU through the slab window. Beneath the intraplate volcanoes along the eastern coast of Australia and the Tasman Sea, a thin low‐VP zone exists and extends down to the core‐mantle boundary, suggesting that the intraplate volcanoes might be, at least partially, fed by a plume rising from the lower mantle.
Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be caused by hot mantle plumes. To better understand the seismic and volcanic activities in the region, it is necessary to study the detailed 3‐D structure of the crust and mantle. Here we apply a well‐established global tomography method to reveal the 3‐D P‐wave velocity (VP ${V}_{P}$) structure of the whole mantle beneath this region. We used ∼7 million P, pP, PP, PcP, and Pdiff wave arrival times of 23,666 earthquakes recorded at 14,181 seismograph stations worldwide. The resulting VP ${V}_{P}$ tomography clearly shows high‐VP ${V}_{P}$ subducted slabs, and low‐VP ${V}_{P}$ anomalies above and below the slabs, which may reflect corner flow in the mantle wedge and subslab hot mantle upwelling (SHMU), respectively. A slab window is revealed beneath the North Island of New Zealand. Given the development of SHMU beneath this region, the catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and SHMU through the slab window. Beneath the intraplate volcanoes along the eastern coast of Australia and the Tasman Sea, a thin low‐VP ${V}_{P}$ zone exists and extends down to the core‐mantle boundary, suggesting that the intraplate volcanoes might be, at least partially, fed by a plume rising from the lower mantle. Plain Language Summary Australia, New Zealand, and their surrounding regions consist of the Australian Plate, the Pacific Plate, and many microplates located along their boundaries. Complex interactions among these plates result in significant seismic and volcanic activities. Especially, the Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Furthermore, although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be associated with hot mantle plumes. To better understand the seismic and volcanic activities in the region, we investigated the 3‐D P‐wave velocity structure of the entire mantle beneath this region. The resulting tomography clearly shows subducted slabs, corner flow in the mantle wedge, and hot mantle upwelling below the slabs. An interesting feature is a possible slab window revealed beneath the Taupo volcano. The catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and the subslab hot mantle upwelling through the slab window. Our tomography also suggests that the intraplate volcanoes along the eastern coast of Australia are, at least partially, fed by a plume rising from the lower mantle. Key Points Fine whole‐mantle tomography is determined beneath Australia and New Zealand Super‐eruptions of the Taupo volcano on the North Island of New Zealand might be related to a slab window Intraplate volcanoes in eastern Australia and the Tasman Sea are fed by a hot plume rising from the lower mantle
Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be caused by hot mantle plumes. To better understand the seismic and volcanic activities in the region, it is necessary to study the detailed 3‐D structure of the crust and mantle. Here we apply a well‐established global tomography method to reveal the 3‐D P‐wave velocity (VP ${V}_{P}$) structure of the whole mantle beneath this region. We used ∼7 million P, pP, PP, PcP, and Pdiff wave arrival times of 23,666 earthquakes recorded at 14,181 seismograph stations worldwide. The resulting VP ${V}_{P}$ tomography clearly shows high‐VP ${V}_{P}$ subducted slabs, and low‐VP ${V}_{P}$ anomalies above and below the slabs, which may reflect corner flow in the mantle wedge and subslab hot mantle upwelling (SHMU), respectively. A slab window is revealed beneath the North Island of New Zealand. Given the development of SHMU beneath this region, the catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and SHMU through the slab window. Beneath the intraplate volcanoes along the eastern coast of Australia and the Tasman Sea, a thin low‐VP ${V}_{P}$ zone exists and extends down to the core‐mantle boundary, suggesting that the intraplate volcanoes might be, at least partially, fed by a plume rising from the lower mantle.
Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be caused by hot mantle plumes. To better understand the seismic and volcanic activities in the region, it is necessary to study the detailed 3‐D structure of the crust and mantle. Here we apply a well‐established global tomography method to reveal the 3‐D P ‐wave velocity () structure of the whole mantle beneath this region. We used ∼7 million P , pP , PP , PcP , and Pdiff wave arrival times of 23,666 earthquakes recorded at 14,181 seismograph stations worldwide. The resulting tomography clearly shows high‐ subducted slabs, and low‐ anomalies above and below the slabs, which may reflect corner flow in the mantle wedge and subslab hot mantle upwelling (SHMU), respectively. A slab window is revealed beneath the North Island of New Zealand. Given the development of SHMU beneath this region, the catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and SHMU through the slab window. Beneath the intraplate volcanoes along the eastern coast of Australia and the Tasman Sea, a thin low‐ zone exists and extends down to the core‐mantle boundary, suggesting that the intraplate volcanoes might be, at least partially, fed by a plume rising from the lower mantle. Australia, New Zealand, and their surrounding regions consist of the Australian Plate, the Pacific Plate, and many microplates located along their boundaries. Complex interactions among these plates result in significant seismic and volcanic activities. Especially, the Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Furthermore, although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be associated with hot mantle plumes. To better understand the seismic and volcanic activities in the region, we investigated the 3‐D P ‐wave velocity structure of the entire mantle beneath this region. The resulting tomography clearly shows subducted slabs, corner flow in the mantle wedge, and hot mantle upwelling below the slabs. An interesting feature is a possible slab window revealed beneath the Taupo volcano. The catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and the subslab hot mantle upwelling through the slab window. Our tomography also suggests that the intraplate volcanoes along the eastern coast of Australia are, at least partially, fed by a plume rising from the lower mantle. Fine whole‐mantle tomography is determined beneath Australia and New Zealand Super‐eruptions of the Taupo volcano on the North Island of New Zealand might be related to a slab window Intraplate volcanoes in eastern Australia and the Tasman Sea are fed by a hot plume rising from the lower mantle
Author Toyokuni, Genti
Zhao, Dapeng
Author_xml – sequence: 1
  givenname: Genti
  orcidid: 0000-0003-3786-207X
  surname: Toyokuni
  fullname: Toyokuni, Genti
  email: toyokuni@tohoku.ac.jp
  organization: Tohoku University
– sequence: 2
  givenname: Dapeng
  orcidid: 0000-0002-4407-594X
  surname: Zhao
  fullname: Zhao, Dapeng
  email: zhao@tohoku.ac.jp
  organization: Tohoku University
BookMark eNp9UctqFEEULSSCSXTnBxS4dWI9u7rdxSFpB-IDjAhuitvdt2dqqKkaq2oIs_MT_Ea_xJ6MQhB0dR-ce-7hnDNyEmJAQp5zdsGZaF4JJlQ7Z5wb2Twip1wLPZt25uRB_4Sc5bxmjCut61Oy_OSh-_n9x0e_2yBdhIIJ-uJiyPQNBoSyope7XBJ4BxTCQN_jHf2K4Kf-9f2wCNktV4Vep7ihX1bR40T3DkLxSG_jJi4TbFf7p-TxCD7js9_1nHy-vrqdv53dfGgX88ubGSip1AzGQUuOCFgpHCoEgdCgZqMAbcZx6DnUqLGf9HPJoDdcM9N3bBhHUyvD5TlZHHmHCGu7TW4DaW8jOHu_iGlpIRXXe7SGsY6hFmB0pTqoG1QNq3sYKuh43XQT14sj1zbFbzvMxa7jLoVJvpVcSslrVh0-iiOqTzHnhKPtXYGDhZNrzlvO7CEc-zCc6ejlX0d_pP4DLo_wO-dx_1-sbdv2SkgtlPwFEmeh4w
CitedBy_id crossref_primary_10_1016_j_pepi_2025_107425
crossref_primary_10_1029_2024JB029593
crossref_primary_10_1016_j_tecto_2024_230579
Cites_doi 10.1002/2013JB010466
10.1029/2018GC007584
10.1038/srep44487
10.1016/S0012‐821X(02)00705‐7
10.1029/90RG02372
10.1111/j.1365‐246X.2005.02716.x
10.1029/2022JB024298
10.22459/SN.08.2012.02
10.1126/sciadv.abd0953
10.1029/97RG02282
10.1002/2017JB014904
10.1093/gji/ggaa605
10.1016/S0377‐0273(01)00239‐6
10.1016/j.epsl.2009.12.003
10.1111/j.1365‐246X.2009.04368.x
10.1016/j.pepi.2003.07.032
10.1002/2013GL057401
10.1016/j.lithos.2021.106564
10.1029/2023JB026688
10.1029/2017TC004901
10.1016/S0024‐4937(99)00041‐9
10.18814/epiiugs/2012/v35i1/003
10.1111/j.1365‐246X.2010.04621.x
10.1029/2019EA000897
10.1016/j.tecto.2011.11.016
10.1016/j.jvolgeores.2009.11.017
10.1007/978-4-431-55360-1
10.1029/2018TC005462
10.1111/j.1400‐0952.2004.01075.x
10.1016/0040‐1951(74)90110‐3
10.1029/2002JB002254
10.1029/2022JB025976
10.1093/gji/ggv481
10.1360/04wd0125
10.1029/2007GC001806
10.1785/0220160186
10.1111/j.1365‐246X.2009.04491.x
10.1111/j.1365‐246X.2006.03040.x
10.1080/00288306.2020.1792515
10.1016/j.tecto.2017.03.006
10.1080/00288306.2000.9514913
10.17611/dp/emc.2020.gladm2500.1
10.1126/science.1092485
10.1038/s41561‐018‐0102‐z
10.1016/j.epsl.2005.01.009
10.1093/gji/ggy109
10.1002/2015JB012726
10.1029/2010JB007631
10.1130/0016‐7606(1971)82[2577:TGTAOT]2.0.CO;2
10.1016/S0377‐0273(02)00470‐5
10.1093/gji/ggaa253
10.1002/2013EO450001
10.1029/2018TC005116
10.1029/2001GC000252
10.1029/2022JB024782
10.1093/gji/ggz394
10.1029/2011JB008403
10.1029/2019JB017448
10.1029/2020JB019839
10.1029/2008JB005947
10.1016/j.precamres.2007.05.008
10.18814/epiiugs/2012/v35i1/004
10.5281/zenodo.13827388
10.1029/2018GC007431
10.1016/j.epsl.2012.11.010
10.1111/j.1365‐246X.1991.tb06724.x
10.1016/j.tecto.2008.11.013
10.1016/j.epsl.2008.11.004
10.1029/JB089iB12p09937
10.1029/2006GC001248
10.31905/PY08W6S3
10.31905/D808B830
10.1002/2015JB012026
10.1145/355984.355989
10.1186/s40645‐023‐00595‐7
10.1016/j.epsl.2019.05.044
10.1111/j.1365‐246X.2006.02897.x
10.1130/GES01513.1
10.1016/j.pepi.2014.07.008
10.1016/0040‐1951(85)90016‐2
10.1029/2007TC002116
10.1130/G24630A.1
10.1093/gji/ggad062
10.1785/gssrl.81.6.992
10.1029/2001JB000182
10.1029/2021GL097550
10.1029/2012JB009525
10.1016/0012‐821X(82)90190‐X
10.1046/j.1365‐246X.2002.01598.x
10.1016/j.jog.2013.10.006
10.1016/0012‐821X(88)90173‐2
ContentType Journal Article
Copyright 2024 The Author(s). Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOA
DOI 10.1029/2024GC011739
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1525-2027
EndPage n/a
ExternalDocumentID oai_doaj_org_article_700b0e52a7564ba89e4908cad6ab189b
10_1029_2024GC011739
GGGE23524
Genre researchArticle
GeographicLocations New Zealand
Australia
North Island
GeographicLocations_xml – name: North Island
– name: Australia
– name: New Zealand
GrantInformation_xml – fundername: Japan Society for the Promotion of Science London
  funderid: 22K03749; 19H01996; 23K22582
GroupedDBID 05W
0R~
1OC
24P
31~
50Y
5GY
8-1
88I
8CJ
8FE
8FH
8G5
8R4
8R5
AAESR
AAFWJ
AAMMB
AANHP
AAYCA
AAZKR
ABCUV
ABUWG
ACAHQ
ACBWZ
ACCMX
ACGFS
ACGOD
ACPOU
ACRPL
ACXQS
ACYXJ
ADBBV
ADEOM
ADIYS
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFPKN
AGQPQ
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D1J
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MSFUL
MSSTM
MXFUL
MXSTM
MY~
M~E
O9-
OK1
P-X
P2W
PCBAR
PHGZM
PHGZT
PQQKQ
PROAC
Q2X
R.K
ROL
SUPJJ
UB1
WBKPD
ZZTAW
~02
~OA
AAYXX
AFFHD
CITATION
WIN
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-a4344-afd531eeae64ed6ea2ea9e50f2a57ffdc1a8e5ec001130ac71507cb0dff784713
IEDL.DBID 24P
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001369871800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1525-2027
IngestDate Fri Oct 03 12:49:49 EDT 2025
Fri Jul 25 23:18:25 EDT 2025
Tue Nov 18 22:37:23 EST 2025
Sat Nov 29 05:13:12 EST 2025
Sun Jul 06 04:45:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4344-afd531eeae64ed6ea2ea9e50f2a57ffdc1a8e5ec001130ac71507cb0dff784713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3786-207X
0000-0002-4407-594X
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GC011739
PQID 3133318061
PQPubID 54722
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_700b0e52a7564ba89e4908cad6ab189b
proquest_journals_3133318061
crossref_citationtrail_10_1029_2024GC011739
crossref_primary_10_1029_2024GC011739
wiley_primary_10_1029_2024GC011739_GGGE23524
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geochemistry, geophysics, geosystems : G3
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2012; 572–573
1982; 58
2017; 7
1971; 82
2020; 64
2017; 88
2000; 43
2018; 123
1999; 48
2008; 36
2008; 9
2019; 520
2019; 124
2009; 278
2013; 361
2010; 181
2010; 182
2024
2020; 125
2009; 114
2020; 7
2020; 6
2010; 115
2013; 94
2008; 27
2013; 118
2018; 213
2020b
2002; 107
2003; 4
2020a
1988; 89
2006; 165
2002; 149
1982; 8
2010; 190
1991; 105
2003; 122
2022; 127
2006; 166
2018; 37
2023; 10
2004; 303
2004; 146
2012
2005; 231
2022; 408–409
2018; 746
2020; 220
2004; 49
2021; 225
2013; 40
1984; 89
2015; 120
2023; 128
2006; 7
2019; 38
2007
2016; 121
2009; 179
2016; 204
2010; 481
2020; 223
2010; 81
2004; 109
2012; 35
2008; 166
2022; 49
2014; 235
2003; 372
2018; 19
1991; 29
2001; 112
1974; 23
2004; 51
2005; 163
2023; 234
2002; 201
1985; 114
2016
2015
2014; 73
2018; 11
2010; 290
2012; 117
1998; 36
2018; 14
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_77_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_90_1
e_1_2_9_92_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
Debayle E. (e_1_2_9_12_1) 2003
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_78_1
e_1_2_9_95_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_88_1
Amaru M. L. (e_1_2_9_2_1) 2007
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
Hosseini K. (e_1_2_9_28_1) 2016
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 234
  start-page: 153
  issue: 1
  year: 2023
  end-page: 189
  article-title: Structure and evolution of the Australian plate and underlying upper mantle from waveform tomography with massive data sets
  publication-title: Geophysical Journal International
– volume: 181
  start-page: 1
  issue: 1
  year: 2010
  end-page: 80
  article-title: Geologically current plate motions
  publication-title: Geophysical Journal International
– volume: 73
  start-page: 1
  year: 2014
  end-page: 13
  article-title: Geological, tomographic, kinematic and geodynamic constraints on the dynamics of sinking slabs
  publication-title: Journal of Geodynamics
– volume: 146
  start-page: 3
  issue: 1–2
  year: 2004
  end-page: 34
  article-title: Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 481
  start-page: 116
  issue: 1–4
  year: 2010
  end-page: 125
  article-title: Ambient seismic noise tomography of Australian continent
  publication-title: Tectonophysics
– volume: 572–573
  start-page: 111
  year: 2012
  end-page: 122
  article-title: Seismic structure of the southeast Australian lithosphere from surface and body wave tomography
  publication-title: Tectonophysics
– volume: 163
  start-page: 1180
  issue: 3
  year: 2005
  end-page: 1194
  article-title: Seismic tomography of the Tongariro Volcanic Centre, New Zealand
  publication-title: Geophysical Journal International
– volume: 37
  start-page: 2647
  issue: 8
  year: 2018
  end-page: 2674
  article-title: Southwest Pacific absolute plate kinematic reconstruction reveals major Cenozoic Tonga‐Kermadec slab dragging
  publication-title: Tectonics
– volume: 7
  issue: 11
  year: 2006
  article-title: A catalogue of deep mantle plumes: New results from finite‐frequency tomography
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 290
  start-page: 270
  issue: 3–4
  year: 2010
  end-page: 280
  article-title: Full waveform tomography for radially anisotropic structure: New insights into present and past states of the Australasian upper mantle
  publication-title: Earth and Planetary Science Letters
– year: 2024
– volume: 213
  start-page: 2071
  issue: 3
  year: 2018
  end-page: 2084
  article-title: ‐wave velocity structure of the uppermost mantle beneath the Australian continent
  publication-title: Geophysical Journal International
– volume: 746
  start-page: 312
  year: 2018
  end-page: 324
  article-title: The role of deep subduction in supercontinent breakup
  publication-title: Tectonophysics
– volume: 115
  issue: B12
  year: 2010
  article-title: GyPSuM: A joint tomographic model of mantle density and seismic wave speeds
  publication-title: Journal of Geophysical Research
– volume: 27
  issue: 4
  year: 2008
  article-title: Steps in lithospheric thickness within eastern Australia, evidence from surface wave tomography
  publication-title: Tectonics
– volume: 166
  start-page: 54
  issue: 1–4
  year: 2008
  end-page: 80
  article-title: A review of Australia’s Proterozoic mineral systems and genetic models
  publication-title: Precambrian Research
– start-page: 1
  year: 2015
  end-page: 304
– volume: 38
  start-page: 516
  issue: 2
  year: 2019
  end-page: 551
  article-title: Reconnaissance basement geology and tectonics of South Zealandia
  publication-title: Tectonics
– volume: 36
  start-page: 435
  issue: 6
  year: 2008
  end-page: 438
  article-title: Samoa reinstated as a primary hotspot trail
  publication-title: Geology
– volume: 23
  start-page: 49
  issue: 1–2
  year: 1974
  end-page: 65
  article-title: Cainozoic igneous activity in eastern Australia
  publication-title: Tectonophysics
– volume: 120
  start-page: 7789
  issue: 11
  year: 2015
  end-page: 7813
  article-title: Hydration of marginal basins and compositional variations within the continental lithospheric mantle inferred from a new global model of shear and compressional velocity
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 11
  year: 2018
  article-title: Subduction‐driven Earth machine
  publication-title: Nature Geoscience
– volume: 107
  issue: B10
  year: 2002
  article-title: Three‐dimensional lithospheric structure below the New Zealand Southern Alps
  publication-title: Journal of Geophysical Research
– volume: 361
  start-page: 460
  year: 2013
  end-page: 468
  article-title: The central role of the Hikurangi Plateau in the Cenozoic tectonics of New Zealand and the southwest Pacific
  publication-title: Earth and Planetary Science Letters
– volume: 182
  start-page: 73
  issue: 1
  year: 2010
  end-page: 96
  article-title: 3‐D imaging of Marlborough, New Zealand, subducted plate and strike‐slip fault systems
  publication-title: Geophysical Journal International
– volume: 94
  start-page: 409
  issue: 45
  year: 2013
  end-page: 410
  article-title: Generic Mapping Tools: Improved version released
  publication-title: Eos, Transactions, American Geophysical Union
– volume: 9
  issue: 5
  year: 2008
  article-title: A new global model for wave speed variations in Earth’s mantle
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 19
  start-page: 2243
  issue: 7
  year: 2018
  end-page: 2261
  article-title: GPlates: Building a virtual Earth through deep time
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 58
  start-page: 151
  issue: 2
  year: 1982
  end-page: 160
  article-title: A revised identification of the oldest sea‐floor spreading anomalies between Australia and Antarctica
  publication-title: Earth and Planetary Science Letters
– volume: 49
  start-page: 1401
  year: 2004
  end-page: 1408
  article-title: Origin of the Changbai intraplate volcanism in northeast China: Evidence from seismic tomography
  publication-title: Chinese Science Bulletin
– volume: 4
  issue: 3
  year: 2003
  article-title: An updated digital model of plate boundaries
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 303
  start-page: 338
  issue: 5656
  year: 2004
  end-page: 343
  article-title: Finite‐frequency tomography reveals a variety of plumes in the mantle
  publication-title: Science
– volume: 235
  start-page: 33
  year: 2014
  end-page: 48
  article-title: Radially anisotropic 3‐D shear wave structure of the Australian lithosphere and asthenosphere from multi‐mode surface waves
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 109
  issue: B2
  year: 2004
  article-title: Multimode surface wave tomography for the Australian region using a three‐stage approach incorporating finite frequency effects
  publication-title: Journal of Geophysical Research
– volume: 124
  start-page: 11549
  issue: 11
  year: 2019
  end-page: 11567
  article-title: TX2019slab: A new and tomography model incorporating subducting slabs
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 51
  start-page: 563
  issue: 4
  year: 2004
  end-page: 569
  article-title: Contrasts in mantle structure beneath Australia: Relation to Tasman Lines?
  publication-title: Australian Journal of Earth Sciences
– volume: 8
  start-page: 43
  issue: 1
  year: 1982
  end-page: 71
  article-title: LSQR: An algorithm for sparse linear equations and sparse least squares
  publication-title: ACM Transactions on Mathematical Software
– volume: 38
  start-page: 1884
  issue: 6
  year: 2019
  end-page: 1907
  article-title: A global plate model including lithospheric deformation along major rifts and orogens since the Triassic
  publication-title: Tectonics
– volume: 408–409
  year: 2022
  article-title: Slab tear as a cause of coeval arc‐intraplate volcanism in the Alexandra Volcanic Group, New Zealand
  publication-title: Lithos
– volume: 128
  issue: 7
  year: 2023
  article-title: A new shear‐velocity model of continental Australia based on multi‐scale surface‐wave tomography
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 190
  start-page: 58
  issue: 1–2
  year: 2010
  end-page: 74
  article-title: Crust–mantle structure of the central North Island, New Zealand, based on seismological observations
  publication-title: Journal of Volcanology and Geothermal Research
– volume: 82
  start-page: 2577
  issue: 9
  year: 1971
  end-page: 2584
  article-title: Tasmantid Guyots, the age of the Tasman Basin, and motion between the Australia Plate and the mantle
  publication-title: Geological Society of America Bulletin
– volume: 220
  start-page: 96
  issue: 1
  year: 2020
  end-page: 141
  article-title: Global mantle structure from multifrequency tomography using and ‐diffracted waves
  publication-title: Geophysical Journal International
– volume: 35
  start-page: 23
  issue: 1
  year: 2012
  end-page: 43
  article-title: Australia through time: A summary of its tectonic and metallogenic evolution
  publication-title: Episodes
– volume: 89
  start-page: 207
  issue: 2
  year: 1988
  end-page: 220
  article-title: Age progressive volcanism in the Tasmantid Seamounts
  publication-title: Earth and Planetary Science Letters
– volume: 127
  issue: 11
  year: 2022
  article-title: Whole‐mantle tomography of Southeast Asia: New insight into plumes and slabs
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 40
  start-page: 5652
  issue: 21
  year: 2013
  end-page: 5657
  article-title: Finite frequency whole mantle wave tomography: Improvement of subducted slab images
  publication-title: Geophysical Research Letters
– volume: 81
  start-page: 992
  issue: 6
  year: 2010
  end-page: 1000
  article-title: Establishing a versatile 3‐D seismic velocity model for New Zealand
  publication-title: Seismological Research Letters
– volume: 223
  start-page: 1
  issue: 1
  year: 2020
  end-page: 21
  article-title: Global adjoint tomography—Model GLAD‐M25
  publication-title: Geophysical Journal International
– volume: 123
  start-page: 1405
  issue: 2
  year: 2018
  end-page: 1418
  article-title: Insights into layering in the Cratonic lithosphere beneath western Australia
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 14
  start-page: 572
  issue: 2
  year: 2018
  end-page: 603
  article-title: Anticipating future Volcanic Explosivity Index (VEI) 7 eruptions and their chilling impacts
  publication-title: Geosphere
– volume: 225
  start-page: 572
  issue: 1
  year: 2021
  end-page: 588
  article-title: Deep mantle structure and origin of Cenozoic intraplate volcanoes in Indochina, Hainan and South China Sea
  publication-title: Geophysical Journal International
– volume: 118
  start-page: 5920
  issue: 11
  year: 2013
  end-page: 5938
  article-title: Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 7
  year: 2017
  article-title: Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9)
  publication-title: Scientific Reports
– volume: 89
  start-page: 9937
  issue: B12
  year: 1984
  end-page: 9948
  article-title: Evidence for a hot spot origin of the Caroline Islands
  publication-title: Journal of Geophysical Research
– year: 2007
– volume: 204
  start-page: 1024
  issue: 2
  year: 2016
  end-page: 1039
  article-title: SP12RTS: A degree‐12 model of shear‐ and compressional‐wave velocity for Earth’s mantle
  publication-title: Geophysical Journal International
– volume: 179
  start-page: 1703
  issue: 3
  year: 2009
  end-page: 1725
  article-title: Full seismic waveform tomography for upper‐mantle structure in the Australasian region using adjoint methods
  publication-title: Geophysical Journal International
– start-page: 47
  year: 2012
  end-page: 119
– volume: 114
  issue: B6
  year: 2009
  article-title: Three‐dimensional distribution of seismic anisotropy in the Hikurangi subduction zone beneath the central North Island, New Zealand
  publication-title: Journal of Geophysical Research
– volume: 121
  start-page: 3686
  issue: 5
  year: 2016
  end-page: 3702
  article-title: Lithospheric shear velocity structure of South Island, New Zealand, from amphibious Rayleigh wave tomography
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 88
  start-page: 319
  issue: 2A
  year: 2017
  end-page: 325
  article-title: Model update May 2016: Upper‐mantle heterogeneity beneath North America from travel‐time tomography with global and USArray data
  publication-title: Seismological Research Letters
– volume: 64
  start-page: 320
  issue: 2–3
  year: 2020
  end-page: 346
  article-title: Taupō: An overview of New Zealand’s youngest supervolcano
  publication-title: New Zealand Journal of Geology and Geophysics
– volume: 201
  start-page: 321
  issue: 2
  year: 2002
  end-page: 336
  article-title: Subducted slabs beneath the eastern Indonesia–Tonga region: Insights from tomography
  publication-title: Earth and Planetary Science Letters
– volume: 117
  issue: B10
  year: 2012
  article-title: LLNL‐G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction
  publication-title: Journal of Geophysical Research
– year: 2020a
– year: 2016
– volume: 19
  start-page: 1464
  issue: 5
  year: 2018
  end-page: 1483
  article-title: SubMachine: Web‐based tools for exploring seismic tomography and other models of Earth’s deep interior
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 278
  start-page: 143
  issue: 3–4
  year: 2009
  end-page: 151
  article-title: Plate reconstructions and tomography reveal a fossil lower mantle slab below the Tasman Sea
  publication-title: Earth and Planetary Science Letters
– volume: 125
  issue: 12
  year: 2020
  article-title: wave tomography beneath Greenland and surrounding regions: 2. Lower mantle
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 112
  start-page: 133
  issue: 1–4
  year: 2001
  end-page: 174
  article-title: The 26.5 ka Oruanui eruption, New Zealand: An introduction and overview
  publication-title: Journal of Volcanology and Geothermal Research
– volume: 128
  issue: 6
  year: 2023
  article-title: A slab window beneath North Sumatra revealed by P‐wave mantle tomography
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 48
  start-page: 17
  issue: 1–4
  year: 1999
  end-page: 43
  article-title: The deep structure of the Australian continent from surface wave tomography
  publication-title: Lithos
– volume: 6
  issue: 51
  year: 2020
  article-title: Intraplate volcanism triggered by bursts in slab flux
  publication-title: Science Advances
– volume: 520
  start-page: 212
  year: 2019
  end-page: 219
  article-title: Incipient subduction at the contact with stretched continental crust: The Puysegur Trench
  publication-title: Earth and Planetary Science Letters
– volume: 231
  start-page: 163
  issue: 3–4
  year: 2005
  end-page: 176
  article-title: Contrasts in lithospheric structure within the Australian craton—Insights from surface wave tomography
  publication-title: Earth and Planetary Science Letters
– volume: 166
  start-page: 957
  issue: 2
  year: 2006
  end-page: 969
  article-title: Three‐dimensional tomographic imaging of the Taranaki volcanoes, New Zealand
  publication-title: Geophysical Journal International
– volume: 36
  start-page: 27
  issue: 1
  year: 1998
  end-page: 78
  article-title: The dynamics of Cenozoic and Mesozoic plate motions
  publication-title: Reviews of Geophysics
– volume: 372
  start-page: 25
  year: 2003
  end-page: 40
– volume: 35
  start-page: 9
  issue: 1
  year: 2012
  end-page: 22
  article-title: Lithospheric framework of Australia
  publication-title: Episodes
– volume: 114
  start-page: 255
  issue: 1–4
  year: 1985
  end-page: 279
  article-title: Breakup between Australia and Antarctica: A brief review in the light of new data
  publication-title: Tectonophysics
– volume: 149
  start-page: 249
  issue: 2
  year: 2002
  end-page: 266
  article-title: Regional teleseismic tomography of the western Lachlan Orogen and the Newer Volcanic Province, southeast Australia
  publication-title: Geophysical Journal International
– volume: 10
  year: 2023
  article-title: Ancient slabs beneath Arctic and surroundings: Izanagi, Farallon, and in‐betweens
  publication-title: Progress in Earth and Planetary Science
– volume: 105
  start-page: 429
  issue: 2
  year: 1991
  end-page: 465
  article-title: Traveltimes for global earthquake location and phase identification
  publication-title: Geophysical Journal International
– volume: 43
  start-page: 611
  issue: 4
  year: 2000
  end-page: 638
  article-title: Tectonic reconstructions of New Zealand: 40 Ma to the present
  publication-title: New Zealand Journal of Geology and Geophysics
– volume: 122
  start-page: 69
  issue: 1–2
  year: 2003
  end-page: 88
  article-title: Seismic velocity structure of the central Taupo Volcanic Zone, New Zealand, from local earthquake tomography
  publication-title: Journal of Volcanology and Geothermal Research
– volume: 117
  issue: B1
  year: 2012
  article-title: Crustal structure of Australia from ambient seismic noise tomography
  publication-title: Journal of Geophysical Research
– volume: 49
  issue: 5
  year: 2022
  article-title: Anisotropic tomography and dynamics of the big mantle wedge
  publication-title: Geophysical Research Letters
– volume: 127
  issue: 12
  year: 2022
  article-title: Mantle tomography of central‐eastern USA: Influence of inversion volume size
  publication-title: Journal of Geophysical Research: Solid Earth
– year: 2020b
– volume: 165
  start-page: 565
  issue: 2
  year: 2006
  end-page: 583
  article-title: Imaging subduction from the trench to 300 km depth beneath the central North Island, New Zealand, with and
  publication-title: Geophysical Journal International
– volume: 29
  start-page: 31
  issue: 1
  year: 1991
  end-page: 50
  article-title: Hotspots, mantle plumes, flood basalts, and true polar wander
  publication-title: Reviews of Geophysics
– volume: 7
  issue: 1
  year: 2020
  article-title: ISC‐EHB 1964–2016, an improved data set for studies of Earth structure and global seismicity
  publication-title: Earth and Space Science
– ident: e_1_2_9_24_1
  doi: 10.1002/2013JB010466
– ident: e_1_2_9_56_1
  doi: 10.1029/2018GC007584
– ident: e_1_2_9_93_1
  doi: 10.1038/srep44487
– ident: e_1_2_9_27_1
  doi: 10.1016/S0012‐821X(02)00705‐7
– ident: e_1_2_9_15_1
  doi: 10.1029/90RG02372
– ident: e_1_2_9_66_1
  doi: 10.1111/j.1365‐246X.2005.02716.x
– ident: e_1_2_9_81_1
  doi: 10.1029/2022JB024298
– ident: e_1_2_9_6_1
  doi: 10.22459/SN.08.2012.02
– ident: e_1_2_9_51_1
  doi: 10.1126/sciadv.abd0953
– volume-title: Global travel time tomography with 3‐D reference models. Ph. D. Thesis
  year: 2007
  ident: e_1_2_9_2_1
– ident: e_1_2_9_48_1
  doi: 10.1029/97RG02282
– ident: e_1_2_9_76_1
  doi: 10.1002/2017JB014904
– ident: e_1_2_9_95_1
  doi: 10.1093/gji/ggaa605
– ident: e_1_2_9_88_1
  doi: 10.1016/S0377‐0273(01)00239‐6
– ident: e_1_2_9_21_1
  doi: 10.1016/j.epsl.2009.12.003
– ident: e_1_2_9_20_1
  doi: 10.1111/j.1365‐246X.2009.04368.x
– ident: e_1_2_9_91_1
  doi: 10.1016/j.pepi.2003.07.032
– ident: e_1_2_9_60_1
  doi: 10.1002/2013GL057401
– ident: e_1_2_9_53_1
  doi: 10.1016/j.lithos.2021.106564
– ident: e_1_2_9_50_1
  doi: 10.1029/2023JB026688
– ident: e_1_2_9_83_1
  doi: 10.1029/2017TC004901
– volume-title: Global multiple‐frequency seismic tomography using teleseismic and core‐diffracted body waves. Ph. D. Thesis
  year: 2016
  ident: e_1_2_9_28_1
– ident: e_1_2_9_74_1
  doi: 10.1016/S0024‐4937(99)00041‐9
– ident: e_1_2_9_36_1
  doi: 10.18814/epiiugs/2012/v35i1/003
– ident: e_1_2_9_16_1
  doi: 10.1111/j.1365‐246X.2010.04621.x
– ident: e_1_2_9_19_1
  doi: 10.1029/2019EA000897
– ident: e_1_2_9_63_1
  doi: 10.1016/j.tecto.2011.11.016
– ident: e_1_2_9_75_1
  doi: 10.1016/j.jvolgeores.2009.11.017
– ident: e_1_2_9_92_1
  doi: 10.1007/978-4-431-55360-1
– ident: e_1_2_9_57_1
  doi: 10.1029/2018TC005462
– ident: e_1_2_9_38_1
  doi: 10.1111/j.1400‐0952.2004.01075.x
– ident: e_1_2_9_86_1
  doi: 10.1016/0040‐1951(74)90110‐3
– ident: e_1_2_9_90_1
  doi: 10.1029/2002JB002254
– ident: e_1_2_9_31_1
  doi: 10.1029/2022JB025976
– ident: e_1_2_9_40_1
  doi: 10.1093/gji/ggv481
– ident: e_1_2_9_94_1
  doi: 10.1360/04wd0125
– ident: e_1_2_9_45_1
  doi: 10.1029/2007GC001806
– ident: e_1_2_9_7_1
  doi: 10.1785/0220160186
– ident: e_1_2_9_14_1
  doi: 10.1111/j.1365‐246X.2009.04491.x
– ident: e_1_2_9_71_1
  doi: 10.1111/j.1365‐246X.2006.03040.x
– ident: e_1_2_9_4_1
  doi: 10.1080/00288306.2020.1792515
– ident: e_1_2_9_11_1
  doi: 10.1016/j.tecto.2017.03.006
– ident: e_1_2_9_39_1
  doi: 10.1080/00288306.2000.9514913
– ident: e_1_2_9_44_1
  doi: 10.17611/dp/emc.2020.gladm2500.1
– ident: e_1_2_9_55_1
  doi: 10.1126/science.1092485
– ident: e_1_2_9_10_1
  doi: 10.1038/s41561‐018‐0102‐z
– ident: e_1_2_9_23_1
  doi: 10.1016/j.epsl.2005.01.009
– ident: e_1_2_9_85_1
  doi: 10.1093/gji/ggy109
– ident: e_1_2_9_3_1
  doi: 10.1002/2015JB012726
– ident: e_1_2_9_72_1
  doi: 10.1029/2010JB007631
– ident: e_1_2_9_84_1
  doi: 10.1130/0016‐7606(1971)82[2577:TGTAOT]2.0.CO;2
– ident: e_1_2_9_70_1
  doi: 10.1016/S0377‐0273(02)00470‐5
– ident: e_1_2_9_43_1
  doi: 10.1093/gji/ggaa253
– ident: e_1_2_9_87_1
  doi: 10.1002/2013EO450001
– ident: e_1_2_9_82_1
  doi: 10.1029/2018TC005116
– ident: e_1_2_9_5_1
  doi: 10.1029/2001GC000252
– ident: e_1_2_9_46_1
  doi: 10.1029/2022JB024782
– start-page: 25
  volume-title: Geological Society of Australia Special Publication
  year: 2003
  ident: e_1_2_9_12_1
– ident: e_1_2_9_30_1
  doi: 10.1093/gji/ggz394
– ident: e_1_2_9_68_1
  doi: 10.1029/2011JB008403
– ident: e_1_2_9_49_1
  doi: 10.1029/2019JB017448
– ident: e_1_2_9_78_1
  doi: 10.1029/2020JB019839
– ident: e_1_2_9_17_1
  doi: 10.1029/2008JB005947
– ident: e_1_2_9_62_1
  doi: 10.1016/j.precamres.2007.05.008
– ident: e_1_2_9_32_1
  doi: 10.18814/epiiugs/2012/v35i1/004
– ident: e_1_2_9_80_1
  doi: 10.5281/zenodo.13827388
– ident: e_1_2_9_29_1
  doi: 10.1029/2018GC007431
– ident: e_1_2_9_64_1
  doi: 10.1016/j.epsl.2012.11.010
– ident: e_1_2_9_37_1
  doi: 10.1111/j.1365‐246X.1991.tb06724.x
– ident: e_1_2_9_67_1
  doi: 10.1016/j.tecto.2008.11.013
– ident: e_1_2_9_69_1
  doi: 10.1016/j.epsl.2008.11.004
– ident: e_1_2_9_35_1
  doi: 10.1029/JB089iB12p09937
– ident: e_1_2_9_54_1
  doi: 10.1029/2006GC001248
– ident: e_1_2_9_33_1
  doi: 10.31905/PY08W6S3
– ident: e_1_2_9_34_1
  doi: 10.31905/D808B830
– ident: e_1_2_9_77_1
  doi: 10.1002/2015JB012026
– ident: e_1_2_9_61_1
  doi: 10.1145/355984.355989
– ident: e_1_2_9_79_1
  doi: 10.1186/s40645‐023‐00595‐7
– ident: e_1_2_9_26_1
  doi: 10.1016/j.epsl.2019.05.044
– ident: e_1_2_9_65_1
  doi: 10.1111/j.1365‐246X.2006.02897.x
– ident: e_1_2_9_59_1
  doi: 10.1130/GES01513.1
– ident: e_1_2_9_89_1
  doi: 10.1016/j.pepi.2014.07.008
– ident: e_1_2_9_58_1
  doi: 10.1016/0040‐1951(85)90016‐2
– ident: e_1_2_9_22_1
  doi: 10.1029/2007TC002116
– ident: e_1_2_9_42_1
  doi: 10.1130/G24630A.1
– ident: e_1_2_9_13_1
  doi: 10.1093/gji/ggad062
– ident: e_1_2_9_18_1
  doi: 10.1785/gssrl.81.6.992
– ident: e_1_2_9_41_1
  doi: 10.1029/2001JB000182
– ident: e_1_2_9_47_1
  doi: 10.1029/2021GL097550
– ident: e_1_2_9_73_1
  doi: 10.1029/2012JB009525
– ident: e_1_2_9_9_1
  doi: 10.1016/0012‐821X(82)90190‐X
– ident: e_1_2_9_25_1
  doi: 10.1046/j.1365‐246X.2002.01598.x
– ident: e_1_2_9_8_1
  doi: 10.1016/j.jog.2013.10.006
– ident: e_1_2_9_52_1
  doi: 10.1016/0012‐821X(88)90173‐2
SSID ssj0014558
Score 2.4601088
Snippet Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo...
Abstract Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Earthquakes
Island arcs
Lava
Lower mantle
Magma
Mantle plumes
Ocean circulation
Plates
Plumes
Seismic activity
seismic tomography
Seismic velocities
Seismographs
Slabs
subduction zone
subslab hot mantle upwelling (SHMU)
supereruptions
Tomography
Upwelling
Volcanic activity
Volcanic eruptions
Volcanoes
Wave velocity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCl7EJ64vctCTFtM2bRJv7uJWQUXweStJOhFBu7Krgjd_gr_RX2KSZpf1oF48tiQhzExmvsnjG4S2lOLC6JxH3IL7iApqIkE4RADKqCRROvVE2tcn7OyM396K87FSX-5OWEMP3AhujxGiCGSJZFlOleQC3FGVllUuVcyFct6XMDFMpsL5Ac0yHq65k0S4DJ8WHUd_5oqCjwUgz9P_DVyOQ1QfY7pzaDaAQ3zQTGoeTUC9gKYLX3z3bRHdXViVfb5_nDuHgv1eXvMsYYDb1mVZLIdHWxdY1hW2HgyHy4v7_uO4HrhkHHf7vUd840rj2uFOrXAfAF_2HgN99RK66h5edo6iUCghkjSlNJKmsksJQEJOocpBJiAFZMQkMmPGVDqWHDLQDv-lRGrmUKBWpDKGueiULqPJulfDCsK2byy4UbHRsQ1VnGuWyxRYaoECY9q00M5QeqUOLOKumMVD6U-zE1GOy7qFtketnxr2jB_atZ0iRm0c57X_YS2hDJZQ_mUJLbQ-VGMZFuKgTG0Obt2WRS0ttOtV--tEyqIoDhMLSunqf0xpDc240Zu3i-to8rn_AhtoSr8-3w_6m95kvwDA9O7r
  priority: 102
  providerName: Directory of Open Access Journals
Title Slab‐Plume Interactions Beneath Australia and New Zealand: New Insight From Whole‐Mantle Tomography
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GC011739
https://www.proquest.com/docview/3133318061
https://doaj.org/article/700b0e52a7564ba89e4908cad6ab189b
Volume 25
WOSCitedRecordID wos001369871800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: DOA
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: PCBAR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: M2O
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 20241211
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: M2P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: DRFUL
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1525-2027
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014558
  issn: 1525-2027
  databaseCode: 24P
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagBYkL_4iFsvIBThCRxE5sc2PLbkBql6i00FtkO-MKqc2iTUHixiPwjDwJY8eNtgeQEJdITuzIsmfG34ztbwh5aoxUzpYykQjuE664S1QqIQEwzuS5sSwQaX_cE8ulPD5WdQy4-bswAz_EGHDzmhHstVdwbfpINuA5MtFr59WupzRj6irZzjImvFTnvB53EXgR8nP6FD-Jd_LjwXds_3Kz9aUlKTD3X4Kbm6A1rDqLW__b39vkZsSb9PUgIHfIFejukutVyOf7_R45-YBS8OvHz9rbKBrCg8NNh57O0AoiPKRjNITqrqVoFGk8D_kqFN51vffv6WK9OqOffLZd_N0-ztcp0MPVWWTEvk-OFvPD3bdJzL2QaM44T7RrUTsBNJQc2hJ0DlpBkbpcF8K51mZaQgHWQ0qWais8sLQmbZ0TfsFjD8hWt-rgIaHYNlPSmczZDFc_Ka0oNQPBEHsIYd2EPL8Y_sZGYnKfH-O0CRvkuWo2h25Cno21vwyEHH-oN_MzOdbxNNrhxWp90kStbESamhSKXIui5EZLBX4f1Oq21CaTykzIzoUcNFG3-4ahW4-WEIHQhLwIM_7XjjRVVc1zxLn80b9Vf0xu-A_DxccdsnW-_gpPyDX77fxzv54GSZ-S7dl8WR9MQygBS28OFkd7WNrP34dn_RuTlgJ6
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFgQX3oiFAj7ACSLycGKbGy3dtGK7qmALvUW2M66Q2izaLUjc-An8Rn4JHseNtgeQEMdEY8uy5_GNH98APDNGKmcrmUgP7hOuuEtUKjFBNM7kubFFINL-OBWzmTw6Ugexzim9hen5IYYNN7KM4K_JwGlDOrINEEmmT9t5vU2cZoW6DBvca1I5go237yeH0-EggZehRCdV-Ukoz493330Pr9bbX4hKgbz_AuJcx60h8Exu_veQb8GNiDnZm15JbsMl7O7A1TrU9P1-F44_eE349ePnAfkpFrYI-9cOK7blPaGHiGzYEWG6a5l3jCzeiXwdPva6FeX4bLJcnLJPVHHXd7fv1-wE2XxxGlmx78HhZGe-vZvE-guJ5gXniXatt1BEjRXHtkKdo1ZYpi7XpXCutZmWWKIlWFmk2goCl9akrXOCgl5xH0bdosMHwHzbTElnMmczHwGltKLSBYrC4w8hrBvDi_P5b2wkJ6caGSdNOCTPVbM-dWN4Pkh_6Uk5_iC3RUs5yBCVdvixWB430TIbkaYmxTLXoqy40VIhnYVa3VbaZFKZMWyeK0IT7XvVFD61997Qg6ExvAxL_teBNHVd7-Qe6_KH_yb-FK7tzvenzXRv9u4RXCeh_iHkJozOll_xMVyx384-r5ZPouL_BmFKAek
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeYgLb8RCAR_gBBF5OLHNjZZuqCirlSjQm2U74wqpzVa7BYkbP4HfyC_B47jR9gAS4phobFn2PL7x4xuAp9ZK5V0jMxnAfcYV95nKJWaI1tuytK6KRNqf9sRsJg8O1DzVOaW3MAM_xLjhRpYR_TUZOJ50PrENEElmSNt5u02cZpW6CJd4HdwsUTvz-XiMwOtYoJNq_GSU5aeb76H9y_XW52JSpO4_hzfXUWsMO9Mb_z3gm3A9IU72elCRW3AB-9twpY0Vfb_fgcMPQQ9-_fg5Jy_F4gbh8NZhxbaCHwwAkY37Icz0HQtukaUbka_ix26_ogyfTZeLY_aZ6u2G7t6HFTtCtr84TpzYd-HjdGd_-22Wqi9khlecZ8Z3wT4RDTYcuwZNiUZhnfvS1ML7zhVGYo2OQGWVGycIWjqbd94LCnnVPdjoFz3eBxbaFkp6W3hXhPgnpRONqVBUAX0I4fwEnp_Nv3aJmpwqZBzpeEReKr0-dRN4NkqfDJQcf5DboqUcZYhIO_5YLA91skst8tzmWJdG1A23Riqkk1BnusbYQio7gc0zRdDJule6Col98IUBCk3gRVzyvw5Et227Uwakyx_8m_gTuDp_M9V7u7N3D-EayQyvIDdh43T5FR_BZfft9Mtq-Thq_W9KOf_D
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slab%E2%80%90Plume+Interactions+Beneath+Australia+and+New+Zealand%3A+New+Insight+From+Whole%E2%80%90Mantle+Tomography&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Toyokuni%2C+Genti&rft.au=Zhao%2C+Dapeng&rft.date=2024-11-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=25&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GC011739&rft.externalDBID=10.1029%252F2024GC011739&rft.externalDocID=GGGE23524
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon