Slab‐Plume Interactions Beneath Australia and New Zealand: New Insight From Whole‐Mantle Tomography
Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Although Australia is known as a stable landmass wit...
Uložené v:
| Vydané v: | Geochemistry, geophysics, geosystems : G3 Ročník 25; číslo 11 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington
John Wiley & Sons, Inc
01.11.2024
Wiley |
| Predmet: | |
| ISSN: | 1525-2027, 1525-2027 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be caused by hot mantle plumes. To better understand the seismic and volcanic activities in the region, it is necessary to study the detailed 3‐D structure of the crust and mantle. Here we apply a well‐established global tomography method to reveal the 3‐D P‐wave velocity (VP ${V}_{P}$) structure of the whole mantle beneath this region. We used ∼7 million P, pP, PP, PcP, and Pdiff wave arrival times of 23,666 earthquakes recorded at 14,181 seismograph stations worldwide. The resulting VP ${V}_{P}$ tomography clearly shows high‐VP ${V}_{P}$ subducted slabs, and low‐VP ${V}_{P}$ anomalies above and below the slabs, which may reflect corner flow in the mantle wedge and subslab hot mantle upwelling (SHMU), respectively. A slab window is revealed beneath the North Island of New Zealand. Given the development of SHMU beneath this region, the catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and SHMU through the slab window. Beneath the intraplate volcanoes along the eastern coast of Australia and the Tasman Sea, a thin low‐VP ${V}_{P}$ zone exists and extends down to the core‐mantle boundary, suggesting that the intraplate volcanoes might be, at least partially, fed by a plume rising from the lower mantle.
Plain Language Summary
Australia, New Zealand, and their surrounding regions consist of the Australian Plate, the Pacific Plate, and many microplates located along their boundaries. Complex interactions among these plates result in significant seismic and volcanic activities. Especially, the Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Furthermore, although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be associated with hot mantle plumes. To better understand the seismic and volcanic activities in the region, we investigated the 3‐D P‐wave velocity structure of the entire mantle beneath this region. The resulting tomography clearly shows subducted slabs, corner flow in the mantle wedge, and hot mantle upwelling below the slabs. An interesting feature is a possible slab window revealed beneath the Taupo volcano. The catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and the subslab hot mantle upwelling through the slab window. Our tomography also suggests that the intraplate volcanoes along the eastern coast of Australia are, at least partially, fed by a plume rising from the lower mantle.
Key Points
Fine whole‐mantle tomography is determined beneath Australia and New Zealand
Super‐eruptions of the Taupo volcano on the North Island of New Zealand might be related to a slab window
Intraplate volcanoes in eastern Australia and the Tasman Sea are fed by a hot plume rising from the lower mantle |
|---|---|
| AbstractList | Abstract Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be caused by hot mantle plumes. To better understand the seismic and volcanic activities in the region, it is necessary to study the detailed 3‐D structure of the crust and mantle. Here we apply a well‐established global tomography method to reveal the 3‐D P‐wave velocity (VP) structure of the whole mantle beneath this region. We used ∼7 million P, pP, PP, PcP, and Pdiff wave arrival times of 23,666 earthquakes recorded at 14,181 seismograph stations worldwide. The resulting VP tomography clearly shows high‐VP subducted slabs, and low‐VP anomalies above and below the slabs, which may reflect corner flow in the mantle wedge and subslab hot mantle upwelling (SHMU), respectively. A slab window is revealed beneath the North Island of New Zealand. Given the development of SHMU beneath this region, the catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and SHMU through the slab window. Beneath the intraplate volcanoes along the eastern coast of Australia and the Tasman Sea, a thin low‐VP zone exists and extends down to the core‐mantle boundary, suggesting that the intraplate volcanoes might be, at least partially, fed by a plume rising from the lower mantle. Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be caused by hot mantle plumes. To better understand the seismic and volcanic activities in the region, it is necessary to study the detailed 3‐D structure of the crust and mantle. Here we apply a well‐established global tomography method to reveal the 3‐D P‐wave velocity (VP ${V}_{P}$) structure of the whole mantle beneath this region. We used ∼7 million P, pP, PP, PcP, and Pdiff wave arrival times of 23,666 earthquakes recorded at 14,181 seismograph stations worldwide. The resulting VP ${V}_{P}$ tomography clearly shows high‐VP ${V}_{P}$ subducted slabs, and low‐VP ${V}_{P}$ anomalies above and below the slabs, which may reflect corner flow in the mantle wedge and subslab hot mantle upwelling (SHMU), respectively. A slab window is revealed beneath the North Island of New Zealand. Given the development of SHMU beneath this region, the catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and SHMU through the slab window. Beneath the intraplate volcanoes along the eastern coast of Australia and the Tasman Sea, a thin low‐VP ${V}_{P}$ zone exists and extends down to the core‐mantle boundary, suggesting that the intraplate volcanoes might be, at least partially, fed by a plume rising from the lower mantle. Plain Language Summary Australia, New Zealand, and their surrounding regions consist of the Australian Plate, the Pacific Plate, and many microplates located along their boundaries. Complex interactions among these plates result in significant seismic and volcanic activities. Especially, the Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Furthermore, although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be associated with hot mantle plumes. To better understand the seismic and volcanic activities in the region, we investigated the 3‐D P‐wave velocity structure of the entire mantle beneath this region. The resulting tomography clearly shows subducted slabs, corner flow in the mantle wedge, and hot mantle upwelling below the slabs. An interesting feature is a possible slab window revealed beneath the Taupo volcano. The catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and the subslab hot mantle upwelling through the slab window. Our tomography also suggests that the intraplate volcanoes along the eastern coast of Australia are, at least partially, fed by a plume rising from the lower mantle. Key Points Fine whole‐mantle tomography is determined beneath Australia and New Zealand Super‐eruptions of the Taupo volcano on the North Island of New Zealand might be related to a slab window Intraplate volcanoes in eastern Australia and the Tasman Sea are fed by a hot plume rising from the lower mantle Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be caused by hot mantle plumes. To better understand the seismic and volcanic activities in the region, it is necessary to study the detailed 3‐D structure of the crust and mantle. Here we apply a well‐established global tomography method to reveal the 3‐D P‐wave velocity (VP ${V}_{P}$) structure of the whole mantle beneath this region. We used ∼7 million P, pP, PP, PcP, and Pdiff wave arrival times of 23,666 earthquakes recorded at 14,181 seismograph stations worldwide. The resulting VP ${V}_{P}$ tomography clearly shows high‐VP ${V}_{P}$ subducted slabs, and low‐VP ${V}_{P}$ anomalies above and below the slabs, which may reflect corner flow in the mantle wedge and subslab hot mantle upwelling (SHMU), respectively. A slab window is revealed beneath the North Island of New Zealand. Given the development of SHMU beneath this region, the catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and SHMU through the slab window. Beneath the intraplate volcanoes along the eastern coast of Australia and the Tasman Sea, a thin low‐VP ${V}_{P}$ zone exists and extends down to the core‐mantle boundary, suggesting that the intraplate volcanoes might be, at least partially, fed by a plume rising from the lower mantle. Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be caused by hot mantle plumes. To better understand the seismic and volcanic activities in the region, it is necessary to study the detailed 3‐D structure of the crust and mantle. Here we apply a well‐established global tomography method to reveal the 3‐D P ‐wave velocity () structure of the whole mantle beneath this region. We used ∼7 million P , pP , PP , PcP , and Pdiff wave arrival times of 23,666 earthquakes recorded at 14,181 seismograph stations worldwide. The resulting tomography clearly shows high‐ subducted slabs, and low‐ anomalies above and below the slabs, which may reflect corner flow in the mantle wedge and subslab hot mantle upwelling (SHMU), respectively. A slab window is revealed beneath the North Island of New Zealand. Given the development of SHMU beneath this region, the catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and SHMU through the slab window. Beneath the intraplate volcanoes along the eastern coast of Australia and the Tasman Sea, a thin low‐ zone exists and extends down to the core‐mantle boundary, suggesting that the intraplate volcanoes might be, at least partially, fed by a plume rising from the lower mantle. Australia, New Zealand, and their surrounding regions consist of the Australian Plate, the Pacific Plate, and many microplates located along their boundaries. Complex interactions among these plates result in significant seismic and volcanic activities. Especially, the Taupo volcano on the North Island of New Zealand has experienced multiple catastrophic eruptions. Furthermore, although Australia is known as a stable landmass with low seismic and volcanic activity, intraplate volcanoes along its eastern coast are considered to be associated with hot mantle plumes. To better understand the seismic and volcanic activities in the region, we investigated the 3‐D P ‐wave velocity structure of the entire mantle beneath this region. The resulting tomography clearly shows subducted slabs, corner flow in the mantle wedge, and hot mantle upwelling below the slabs. An interesting feature is a possible slab window revealed beneath the Taupo volcano. The catastrophic eruptions of the Taupo volcano might be powered by a mixture of island arc magma and the subslab hot mantle upwelling through the slab window. Our tomography also suggests that the intraplate volcanoes along the eastern coast of Australia are, at least partially, fed by a plume rising from the lower mantle. Fine whole‐mantle tomography is determined beneath Australia and New Zealand Super‐eruptions of the Taupo volcano on the North Island of New Zealand might be related to a slab window Intraplate volcanoes in eastern Australia and the Tasman Sea are fed by a hot plume rising from the lower mantle |
| Author | Toyokuni, Genti Zhao, Dapeng |
| Author_xml | – sequence: 1 givenname: Genti orcidid: 0000-0003-3786-207X surname: Toyokuni fullname: Toyokuni, Genti email: toyokuni@tohoku.ac.jp organization: Tohoku University – sequence: 2 givenname: Dapeng orcidid: 0000-0002-4407-594X surname: Zhao fullname: Zhao, Dapeng email: zhao@tohoku.ac.jp organization: Tohoku University |
| BookMark | eNp9UctqFEEULSSCSXTnBxS4dWI9u7rdxSFpB-IDjAhuitvdt2dqqKkaq2oIs_MT_Ea_xJ6MQhB0dR-ce-7hnDNyEmJAQp5zdsGZaF4JJlQ7Z5wb2Twip1wLPZt25uRB_4Sc5bxmjCut61Oy_OSh-_n9x0e_2yBdhIIJ-uJiyPQNBoSyope7XBJ4BxTCQN_jHf2K4Kf-9f2wCNktV4Vep7ihX1bR40T3DkLxSG_jJi4TbFf7p-TxCD7js9_1nHy-vrqdv53dfGgX88ubGSip1AzGQUuOCFgpHCoEgdCgZqMAbcZx6DnUqLGf9HPJoDdcM9N3bBhHUyvD5TlZHHmHCGu7TW4DaW8jOHu_iGlpIRXXe7SGsY6hFmB0pTqoG1QNq3sYKuh43XQT14sj1zbFbzvMxa7jLoVJvpVcSslrVh0-iiOqTzHnhKPtXYGDhZNrzlvO7CEc-zCc6ejlX0d_pP4DLo_wO-dx_1-sbdv2SkgtlPwFEmeh4w |
| CitedBy_id | crossref_primary_10_1016_j_pepi_2025_107425 crossref_primary_10_1029_2024JB029593 crossref_primary_10_1016_j_tecto_2024_230579 |
| Cites_doi | 10.1002/2013JB010466 10.1029/2018GC007584 10.1038/srep44487 10.1016/S0012‐821X(02)00705‐7 10.1029/90RG02372 10.1111/j.1365‐246X.2005.02716.x 10.1029/2022JB024298 10.22459/SN.08.2012.02 10.1126/sciadv.abd0953 10.1029/97RG02282 10.1002/2017JB014904 10.1093/gji/ggaa605 10.1016/S0377‐0273(01)00239‐6 10.1016/j.epsl.2009.12.003 10.1111/j.1365‐246X.2009.04368.x 10.1016/j.pepi.2003.07.032 10.1002/2013GL057401 10.1016/j.lithos.2021.106564 10.1029/2023JB026688 10.1029/2017TC004901 10.1016/S0024‐4937(99)00041‐9 10.18814/epiiugs/2012/v35i1/003 10.1111/j.1365‐246X.2010.04621.x 10.1029/2019EA000897 10.1016/j.tecto.2011.11.016 10.1016/j.jvolgeores.2009.11.017 10.1007/978-4-431-55360-1 10.1029/2018TC005462 10.1111/j.1400‐0952.2004.01075.x 10.1016/0040‐1951(74)90110‐3 10.1029/2002JB002254 10.1029/2022JB025976 10.1093/gji/ggv481 10.1360/04wd0125 10.1029/2007GC001806 10.1785/0220160186 10.1111/j.1365‐246X.2009.04491.x 10.1111/j.1365‐246X.2006.03040.x 10.1080/00288306.2020.1792515 10.1016/j.tecto.2017.03.006 10.1080/00288306.2000.9514913 10.17611/dp/emc.2020.gladm2500.1 10.1126/science.1092485 10.1038/s41561‐018‐0102‐z 10.1016/j.epsl.2005.01.009 10.1093/gji/ggy109 10.1002/2015JB012726 10.1029/2010JB007631 10.1130/0016‐7606(1971)82[2577:TGTAOT]2.0.CO;2 10.1016/S0377‐0273(02)00470‐5 10.1093/gji/ggaa253 10.1002/2013EO450001 10.1029/2018TC005116 10.1029/2001GC000252 10.1029/2022JB024782 10.1093/gji/ggz394 10.1029/2011JB008403 10.1029/2019JB017448 10.1029/2020JB019839 10.1029/2008JB005947 10.1016/j.precamres.2007.05.008 10.18814/epiiugs/2012/v35i1/004 10.5281/zenodo.13827388 10.1029/2018GC007431 10.1016/j.epsl.2012.11.010 10.1111/j.1365‐246X.1991.tb06724.x 10.1016/j.tecto.2008.11.013 10.1016/j.epsl.2008.11.004 10.1029/JB089iB12p09937 10.1029/2006GC001248 10.31905/PY08W6S3 10.31905/D808B830 10.1002/2015JB012026 10.1145/355984.355989 10.1186/s40645‐023‐00595‐7 10.1016/j.epsl.2019.05.044 10.1111/j.1365‐246X.2006.02897.x 10.1130/GES01513.1 10.1016/j.pepi.2014.07.008 10.1016/0040‐1951(85)90016‐2 10.1029/2007TC002116 10.1130/G24630A.1 10.1093/gji/ggad062 10.1785/gssrl.81.6.992 10.1029/2001JB000182 10.1029/2021GL097550 10.1029/2012JB009525 10.1016/0012‐821X(82)90190‐X 10.1046/j.1365‐246X.2002.01598.x 10.1016/j.jog.2013.10.006 10.1016/0012‐821X(88)90173‐2 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union. 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 The Author(s). Geochemistry, Geophysics, Geosystems published by Wiley Periodicals LLC on behalf of American Geophysical Union. – notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7TG 7TN F1W H96 KL. L.G DOA |
| DOI | 10.1029/2024GC011739 |
| DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1525-2027 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_700b0e52a7564ba89e4908cad6ab189b 10_1029_2024GC011739 GGGE23524 |
| Genre | researchArticle |
| GeographicLocations | New Zealand Australia North Island |
| GeographicLocations_xml | – name: North Island – name: Australia – name: New Zealand |
| GrantInformation_xml | – fundername: Japan Society for the Promotion of Science London funderid: 22K03749; 19H01996; 23K22582 |
| GroupedDBID | 05W 0R~ 1OC 24P 31~ 50Y 5GY 8-1 88I 8CJ 8FE 8FH 8G5 8R4 8R5 AAESR AAFWJ AAMMB AANHP AAYCA AAZKR ABCUV ABUWG ACAHQ ACBWZ ACCMX ACGFS ACGOD ACPOU ACRPL ACXQS ACYXJ ADBBV ADEOM ADIYS ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFPKN AGQPQ AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D1J DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MSFUL MSSTM MXFUL MXSTM MY~ M~E O9- OK1 P-X P2W PCBAR PHGZM PHGZT PQQKQ PROAC Q2X R.K ROL SUPJJ UB1 WBKPD ZZTAW ~02 ~OA AAYXX AFFHD CITATION WIN 7TG 7TN F1W H96 KL. L.G |
| ID | FETCH-LOGICAL-a4344-afd531eeae64ed6ea2ea9e50f2a57ffdc1a8e5ec001130ac71507cb0dff784713 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001369871800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1525-2027 |
| IngestDate | Fri Oct 03 12:49:49 EDT 2025 Fri Jul 25 23:18:25 EDT 2025 Tue Nov 18 22:37:23 EST 2025 Sat Nov 29 05:13:12 EST 2025 Sun Jul 06 04:45:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4344-afd531eeae64ed6ea2ea9e50f2a57ffdc1a8e5ec001130ac71507cb0dff784713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3786-207X 0000-0002-4407-594X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GC011739 |
| PQID | 3133318061 |
| PQPubID | 54722 |
| PageCount | 17 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_700b0e52a7564ba89e4908cad6ab189b proquest_journals_3133318061 crossref_citationtrail_10_1029_2024GC011739 crossref_primary_10_1029_2024GC011739 wiley_primary_10_1029_2024GC011739_GGGE23524 |
| PublicationCentury | 2000 |
| PublicationDate | November 2024 2024-11-00 20241101 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geochemistry, geophysics, geosystems : G3 |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2012; 572–573 1982; 58 2017; 7 1971; 82 2020; 64 2017; 88 2000; 43 2018; 123 1999; 48 2008; 36 2008; 9 2019; 520 2019; 124 2009; 278 2013; 361 2010; 181 2010; 182 2024 2020; 125 2009; 114 2020; 7 2020; 6 2010; 115 2013; 94 2008; 27 2013; 118 2018; 213 2020b 2002; 107 2003; 4 2020a 1988; 89 2006; 165 2002; 149 1982; 8 2010; 190 1991; 105 2003; 122 2022; 127 2006; 166 2018; 37 2023; 10 2004; 303 2004; 146 2012 2005; 231 2022; 408–409 2018; 746 2020; 220 2004; 49 2021; 225 2013; 40 1984; 89 2015; 120 2023; 128 2006; 7 2019; 38 2007 2016; 121 2009; 179 2016; 204 2010; 481 2020; 223 2010; 81 2004; 109 2012; 35 2008; 166 2022; 49 2014; 235 2003; 372 2018; 19 1991; 29 2001; 112 1974; 23 2004; 51 2005; 163 2023; 234 2002; 201 1985; 114 2016 2015 2014; 73 2018; 11 2010; 290 2012; 117 1998; 36 2018; 14 e_1_2_9_75_1 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 e_1_2_9_77_1 e_1_2_9_33_1 e_1_2_9_54_1 e_1_2_9_90_1 e_1_2_9_92_1 e_1_2_9_71_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_6_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_60_1 Debayle E. (e_1_2_9_12_1) 2003 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_78_1 e_1_2_9_95_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_63_1 e_1_2_9_88_1 Amaru M. L. (e_1_2_9_2_1) 2007 e_1_2_9_40_1 e_1_2_9_61_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_67_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_65_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 Hosseini K. (e_1_2_9_28_1) 2016 e_1_2_9_48_1 e_1_2_9_69_1 e_1_2_9_29_1 |
| References_xml | – volume: 234 start-page: 153 issue: 1 year: 2023 end-page: 189 article-title: Structure and evolution of the Australian plate and underlying upper mantle from waveform tomography with massive data sets publication-title: Geophysical Journal International – volume: 181 start-page: 1 issue: 1 year: 2010 end-page: 80 article-title: Geologically current plate motions publication-title: Geophysical Journal International – volume: 73 start-page: 1 year: 2014 end-page: 13 article-title: Geological, tomographic, kinematic and geodynamic constraints on the dynamics of sinking slabs publication-title: Journal of Geodynamics – volume: 146 start-page: 3 issue: 1–2 year: 2004 end-page: 34 article-title: Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics publication-title: Physics of the Earth and Planetary Interiors – volume: 481 start-page: 116 issue: 1–4 year: 2010 end-page: 125 article-title: Ambient seismic noise tomography of Australian continent publication-title: Tectonophysics – volume: 572–573 start-page: 111 year: 2012 end-page: 122 article-title: Seismic structure of the southeast Australian lithosphere from surface and body wave tomography publication-title: Tectonophysics – volume: 163 start-page: 1180 issue: 3 year: 2005 end-page: 1194 article-title: Seismic tomography of the Tongariro Volcanic Centre, New Zealand publication-title: Geophysical Journal International – volume: 37 start-page: 2647 issue: 8 year: 2018 end-page: 2674 article-title: Southwest Pacific absolute plate kinematic reconstruction reveals major Cenozoic Tonga‐Kermadec slab dragging publication-title: Tectonics – volume: 7 issue: 11 year: 2006 article-title: A catalogue of deep mantle plumes: New results from finite‐frequency tomography publication-title: Geochemistry, Geophysics, Geosystems – volume: 290 start-page: 270 issue: 3–4 year: 2010 end-page: 280 article-title: Full waveform tomography for radially anisotropic structure: New insights into present and past states of the Australasian upper mantle publication-title: Earth and Planetary Science Letters – year: 2024 – volume: 213 start-page: 2071 issue: 3 year: 2018 end-page: 2084 article-title: ‐wave velocity structure of the uppermost mantle beneath the Australian continent publication-title: Geophysical Journal International – volume: 746 start-page: 312 year: 2018 end-page: 324 article-title: The role of deep subduction in supercontinent breakup publication-title: Tectonophysics – volume: 115 issue: B12 year: 2010 article-title: GyPSuM: A joint tomographic model of mantle density and seismic wave speeds publication-title: Journal of Geophysical Research – volume: 27 issue: 4 year: 2008 article-title: Steps in lithospheric thickness within eastern Australia, evidence from surface wave tomography publication-title: Tectonics – volume: 166 start-page: 54 issue: 1–4 year: 2008 end-page: 80 article-title: A review of Australia’s Proterozoic mineral systems and genetic models publication-title: Precambrian Research – start-page: 1 year: 2015 end-page: 304 – volume: 38 start-page: 516 issue: 2 year: 2019 end-page: 551 article-title: Reconnaissance basement geology and tectonics of South Zealandia publication-title: Tectonics – volume: 36 start-page: 435 issue: 6 year: 2008 end-page: 438 article-title: Samoa reinstated as a primary hotspot trail publication-title: Geology – volume: 23 start-page: 49 issue: 1–2 year: 1974 end-page: 65 article-title: Cainozoic igneous activity in eastern Australia publication-title: Tectonophysics – volume: 120 start-page: 7789 issue: 11 year: 2015 end-page: 7813 article-title: Hydration of marginal basins and compositional variations within the continental lithospheric mantle inferred from a new global model of shear and compressional velocity publication-title: Journal of Geophysical Research: Solid Earth – volume: 11 year: 2018 article-title: Subduction‐driven Earth machine publication-title: Nature Geoscience – volume: 107 issue: B10 year: 2002 article-title: Three‐dimensional lithospheric structure below the New Zealand Southern Alps publication-title: Journal of Geophysical Research – volume: 361 start-page: 460 year: 2013 end-page: 468 article-title: The central role of the Hikurangi Plateau in the Cenozoic tectonics of New Zealand and the southwest Pacific publication-title: Earth and Planetary Science Letters – volume: 182 start-page: 73 issue: 1 year: 2010 end-page: 96 article-title: 3‐D imaging of Marlborough, New Zealand, subducted plate and strike‐slip fault systems publication-title: Geophysical Journal International – volume: 94 start-page: 409 issue: 45 year: 2013 end-page: 410 article-title: Generic Mapping Tools: Improved version released publication-title: Eos, Transactions, American Geophysical Union – volume: 9 issue: 5 year: 2008 article-title: A new global model for wave speed variations in Earth’s mantle publication-title: Geochemistry, Geophysics, Geosystems – volume: 19 start-page: 2243 issue: 7 year: 2018 end-page: 2261 article-title: GPlates: Building a virtual Earth through deep time publication-title: Geochemistry, Geophysics, Geosystems – volume: 58 start-page: 151 issue: 2 year: 1982 end-page: 160 article-title: A revised identification of the oldest sea‐floor spreading anomalies between Australia and Antarctica publication-title: Earth and Planetary Science Letters – volume: 49 start-page: 1401 year: 2004 end-page: 1408 article-title: Origin of the Changbai intraplate volcanism in northeast China: Evidence from seismic tomography publication-title: Chinese Science Bulletin – volume: 4 issue: 3 year: 2003 article-title: An updated digital model of plate boundaries publication-title: Geochemistry, Geophysics, Geosystems – volume: 303 start-page: 338 issue: 5656 year: 2004 end-page: 343 article-title: Finite‐frequency tomography reveals a variety of plumes in the mantle publication-title: Science – volume: 235 start-page: 33 year: 2014 end-page: 48 article-title: Radially anisotropic 3‐D shear wave structure of the Australian lithosphere and asthenosphere from multi‐mode surface waves publication-title: Physics of the Earth and Planetary Interiors – volume: 109 issue: B2 year: 2004 article-title: Multimode surface wave tomography for the Australian region using a three‐stage approach incorporating finite frequency effects publication-title: Journal of Geophysical Research – volume: 124 start-page: 11549 issue: 11 year: 2019 end-page: 11567 article-title: TX2019slab: A new and tomography model incorporating subducting slabs publication-title: Journal of Geophysical Research: Solid Earth – volume: 51 start-page: 563 issue: 4 year: 2004 end-page: 569 article-title: Contrasts in mantle structure beneath Australia: Relation to Tasman Lines? publication-title: Australian Journal of Earth Sciences – volume: 8 start-page: 43 issue: 1 year: 1982 end-page: 71 article-title: LSQR: An algorithm for sparse linear equations and sparse least squares publication-title: ACM Transactions on Mathematical Software – volume: 38 start-page: 1884 issue: 6 year: 2019 end-page: 1907 article-title: A global plate model including lithospheric deformation along major rifts and orogens since the Triassic publication-title: Tectonics – volume: 408–409 year: 2022 article-title: Slab tear as a cause of coeval arc‐intraplate volcanism in the Alexandra Volcanic Group, New Zealand publication-title: Lithos – volume: 128 issue: 7 year: 2023 article-title: A new shear‐velocity model of continental Australia based on multi‐scale surface‐wave tomography publication-title: Journal of Geophysical Research: Solid Earth – volume: 190 start-page: 58 issue: 1–2 year: 2010 end-page: 74 article-title: Crust–mantle structure of the central North Island, New Zealand, based on seismological observations publication-title: Journal of Volcanology and Geothermal Research – volume: 82 start-page: 2577 issue: 9 year: 1971 end-page: 2584 article-title: Tasmantid Guyots, the age of the Tasman Basin, and motion between the Australia Plate and the mantle publication-title: Geological Society of America Bulletin – volume: 220 start-page: 96 issue: 1 year: 2020 end-page: 141 article-title: Global mantle structure from multifrequency tomography using and ‐diffracted waves publication-title: Geophysical Journal International – volume: 35 start-page: 23 issue: 1 year: 2012 end-page: 43 article-title: Australia through time: A summary of its tectonic and metallogenic evolution publication-title: Episodes – volume: 89 start-page: 207 issue: 2 year: 1988 end-page: 220 article-title: Age progressive volcanism in the Tasmantid Seamounts publication-title: Earth and Planetary Science Letters – volume: 127 issue: 11 year: 2022 article-title: Whole‐mantle tomography of Southeast Asia: New insight into plumes and slabs publication-title: Journal of Geophysical Research: Solid Earth – volume: 40 start-page: 5652 issue: 21 year: 2013 end-page: 5657 article-title: Finite frequency whole mantle wave tomography: Improvement of subducted slab images publication-title: Geophysical Research Letters – volume: 81 start-page: 992 issue: 6 year: 2010 end-page: 1000 article-title: Establishing a versatile 3‐D seismic velocity model for New Zealand publication-title: Seismological Research Letters – volume: 223 start-page: 1 issue: 1 year: 2020 end-page: 21 article-title: Global adjoint tomography—Model GLAD‐M25 publication-title: Geophysical Journal International – volume: 123 start-page: 1405 issue: 2 year: 2018 end-page: 1418 article-title: Insights into layering in the Cratonic lithosphere beneath western Australia publication-title: Journal of Geophysical Research: Solid Earth – volume: 14 start-page: 572 issue: 2 year: 2018 end-page: 603 article-title: Anticipating future Volcanic Explosivity Index (VEI) 7 eruptions and their chilling impacts publication-title: Geosphere – volume: 225 start-page: 572 issue: 1 year: 2021 end-page: 588 article-title: Deep mantle structure and origin of Cenozoic intraplate volcanoes in Indochina, Hainan and South China Sea publication-title: Geophysical Journal International – volume: 118 start-page: 5920 issue: 11 year: 2013 end-page: 5938 article-title: Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity publication-title: Journal of Geophysical Research: Solid Earth – volume: 7 year: 2017 article-title: Tomography of the subducting Pacific slab and the 2015 Bonin deepest earthquake (Mw 7.9) publication-title: Scientific Reports – volume: 89 start-page: 9937 issue: B12 year: 1984 end-page: 9948 article-title: Evidence for a hot spot origin of the Caroline Islands publication-title: Journal of Geophysical Research – year: 2007 – volume: 204 start-page: 1024 issue: 2 year: 2016 end-page: 1039 article-title: SP12RTS: A degree‐12 model of shear‐ and compressional‐wave velocity for Earth’s mantle publication-title: Geophysical Journal International – volume: 179 start-page: 1703 issue: 3 year: 2009 end-page: 1725 article-title: Full seismic waveform tomography for upper‐mantle structure in the Australasian region using adjoint methods publication-title: Geophysical Journal International – start-page: 47 year: 2012 end-page: 119 – volume: 114 issue: B6 year: 2009 article-title: Three‐dimensional distribution of seismic anisotropy in the Hikurangi subduction zone beneath the central North Island, New Zealand publication-title: Journal of Geophysical Research – volume: 121 start-page: 3686 issue: 5 year: 2016 end-page: 3702 article-title: Lithospheric shear velocity structure of South Island, New Zealand, from amphibious Rayleigh wave tomography publication-title: Journal of Geophysical Research: Solid Earth – volume: 88 start-page: 319 issue: 2A year: 2017 end-page: 325 article-title: Model update May 2016: Upper‐mantle heterogeneity beneath North America from travel‐time tomography with global and USArray data publication-title: Seismological Research Letters – volume: 64 start-page: 320 issue: 2–3 year: 2020 end-page: 346 article-title: Taupō: An overview of New Zealand’s youngest supervolcano publication-title: New Zealand Journal of Geology and Geophysics – volume: 201 start-page: 321 issue: 2 year: 2002 end-page: 336 article-title: Subducted slabs beneath the eastern Indonesia–Tonga region: Insights from tomography publication-title: Earth and Planetary Science Letters – volume: 117 issue: B10 year: 2012 article-title: LLNL‐G3Dv3: Global P wave tomography model for improved regional and teleseismic travel time prediction publication-title: Journal of Geophysical Research – year: 2020a – year: 2016 – volume: 19 start-page: 1464 issue: 5 year: 2018 end-page: 1483 article-title: SubMachine: Web‐based tools for exploring seismic tomography and other models of Earth’s deep interior publication-title: Geochemistry, Geophysics, Geosystems – volume: 278 start-page: 143 issue: 3–4 year: 2009 end-page: 151 article-title: Plate reconstructions and tomography reveal a fossil lower mantle slab below the Tasman Sea publication-title: Earth and Planetary Science Letters – volume: 125 issue: 12 year: 2020 article-title: wave tomography beneath Greenland and surrounding regions: 2. Lower mantle publication-title: Journal of Geophysical Research: Solid Earth – volume: 112 start-page: 133 issue: 1–4 year: 2001 end-page: 174 article-title: The 26.5 ka Oruanui eruption, New Zealand: An introduction and overview publication-title: Journal of Volcanology and Geothermal Research – volume: 128 issue: 6 year: 2023 article-title: A slab window beneath North Sumatra revealed by P‐wave mantle tomography publication-title: Journal of Geophysical Research: Solid Earth – volume: 48 start-page: 17 issue: 1–4 year: 1999 end-page: 43 article-title: The deep structure of the Australian continent from surface wave tomography publication-title: Lithos – volume: 6 issue: 51 year: 2020 article-title: Intraplate volcanism triggered by bursts in slab flux publication-title: Science Advances – volume: 520 start-page: 212 year: 2019 end-page: 219 article-title: Incipient subduction at the contact with stretched continental crust: The Puysegur Trench publication-title: Earth and Planetary Science Letters – volume: 231 start-page: 163 issue: 3–4 year: 2005 end-page: 176 article-title: Contrasts in lithospheric structure within the Australian craton—Insights from surface wave tomography publication-title: Earth and Planetary Science Letters – volume: 166 start-page: 957 issue: 2 year: 2006 end-page: 969 article-title: Three‐dimensional tomographic imaging of the Taranaki volcanoes, New Zealand publication-title: Geophysical Journal International – volume: 36 start-page: 27 issue: 1 year: 1998 end-page: 78 article-title: The dynamics of Cenozoic and Mesozoic plate motions publication-title: Reviews of Geophysics – volume: 372 start-page: 25 year: 2003 end-page: 40 – volume: 35 start-page: 9 issue: 1 year: 2012 end-page: 22 article-title: Lithospheric framework of Australia publication-title: Episodes – volume: 114 start-page: 255 issue: 1–4 year: 1985 end-page: 279 article-title: Breakup between Australia and Antarctica: A brief review in the light of new data publication-title: Tectonophysics – volume: 149 start-page: 249 issue: 2 year: 2002 end-page: 266 article-title: Regional teleseismic tomography of the western Lachlan Orogen and the Newer Volcanic Province, southeast Australia publication-title: Geophysical Journal International – volume: 10 year: 2023 article-title: Ancient slabs beneath Arctic and surroundings: Izanagi, Farallon, and in‐betweens publication-title: Progress in Earth and Planetary Science – volume: 105 start-page: 429 issue: 2 year: 1991 end-page: 465 article-title: Traveltimes for global earthquake location and phase identification publication-title: Geophysical Journal International – volume: 43 start-page: 611 issue: 4 year: 2000 end-page: 638 article-title: Tectonic reconstructions of New Zealand: 40 Ma to the present publication-title: New Zealand Journal of Geology and Geophysics – volume: 122 start-page: 69 issue: 1–2 year: 2003 end-page: 88 article-title: Seismic velocity structure of the central Taupo Volcanic Zone, New Zealand, from local earthquake tomography publication-title: Journal of Volcanology and Geothermal Research – volume: 117 issue: B1 year: 2012 article-title: Crustal structure of Australia from ambient seismic noise tomography publication-title: Journal of Geophysical Research – volume: 49 issue: 5 year: 2022 article-title: Anisotropic tomography and dynamics of the big mantle wedge publication-title: Geophysical Research Letters – volume: 127 issue: 12 year: 2022 article-title: Mantle tomography of central‐eastern USA: Influence of inversion volume size publication-title: Journal of Geophysical Research: Solid Earth – year: 2020b – volume: 165 start-page: 565 issue: 2 year: 2006 end-page: 583 article-title: Imaging subduction from the trench to 300 km depth beneath the central North Island, New Zealand, with and publication-title: Geophysical Journal International – volume: 29 start-page: 31 issue: 1 year: 1991 end-page: 50 article-title: Hotspots, mantle plumes, flood basalts, and true polar wander publication-title: Reviews of Geophysics – volume: 7 issue: 1 year: 2020 article-title: ISC‐EHB 1964–2016, an improved data set for studies of Earth structure and global seismicity publication-title: Earth and Space Science – ident: e_1_2_9_24_1 doi: 10.1002/2013JB010466 – ident: e_1_2_9_56_1 doi: 10.1029/2018GC007584 – ident: e_1_2_9_93_1 doi: 10.1038/srep44487 – ident: e_1_2_9_27_1 doi: 10.1016/S0012‐821X(02)00705‐7 – ident: e_1_2_9_15_1 doi: 10.1029/90RG02372 – ident: e_1_2_9_66_1 doi: 10.1111/j.1365‐246X.2005.02716.x – ident: e_1_2_9_81_1 doi: 10.1029/2022JB024298 – ident: e_1_2_9_6_1 doi: 10.22459/SN.08.2012.02 – ident: e_1_2_9_51_1 doi: 10.1126/sciadv.abd0953 – volume-title: Global travel time tomography with 3‐D reference models. Ph. D. Thesis year: 2007 ident: e_1_2_9_2_1 – ident: e_1_2_9_48_1 doi: 10.1029/97RG02282 – ident: e_1_2_9_76_1 doi: 10.1002/2017JB014904 – ident: e_1_2_9_95_1 doi: 10.1093/gji/ggaa605 – ident: e_1_2_9_88_1 doi: 10.1016/S0377‐0273(01)00239‐6 – ident: e_1_2_9_21_1 doi: 10.1016/j.epsl.2009.12.003 – ident: e_1_2_9_20_1 doi: 10.1111/j.1365‐246X.2009.04368.x – ident: e_1_2_9_91_1 doi: 10.1016/j.pepi.2003.07.032 – ident: e_1_2_9_60_1 doi: 10.1002/2013GL057401 – ident: e_1_2_9_53_1 doi: 10.1016/j.lithos.2021.106564 – ident: e_1_2_9_50_1 doi: 10.1029/2023JB026688 – ident: e_1_2_9_83_1 doi: 10.1029/2017TC004901 – volume-title: Global multiple‐frequency seismic tomography using teleseismic and core‐diffracted body waves. Ph. D. Thesis year: 2016 ident: e_1_2_9_28_1 – ident: e_1_2_9_74_1 doi: 10.1016/S0024‐4937(99)00041‐9 – ident: e_1_2_9_36_1 doi: 10.18814/epiiugs/2012/v35i1/003 – ident: e_1_2_9_16_1 doi: 10.1111/j.1365‐246X.2010.04621.x – ident: e_1_2_9_19_1 doi: 10.1029/2019EA000897 – ident: e_1_2_9_63_1 doi: 10.1016/j.tecto.2011.11.016 – ident: e_1_2_9_75_1 doi: 10.1016/j.jvolgeores.2009.11.017 – ident: e_1_2_9_92_1 doi: 10.1007/978-4-431-55360-1 – ident: e_1_2_9_57_1 doi: 10.1029/2018TC005462 – ident: e_1_2_9_38_1 doi: 10.1111/j.1400‐0952.2004.01075.x – ident: e_1_2_9_86_1 doi: 10.1016/0040‐1951(74)90110‐3 – ident: e_1_2_9_90_1 doi: 10.1029/2002JB002254 – ident: e_1_2_9_31_1 doi: 10.1029/2022JB025976 – ident: e_1_2_9_40_1 doi: 10.1093/gji/ggv481 – ident: e_1_2_9_94_1 doi: 10.1360/04wd0125 – ident: e_1_2_9_45_1 doi: 10.1029/2007GC001806 – ident: e_1_2_9_7_1 doi: 10.1785/0220160186 – ident: e_1_2_9_14_1 doi: 10.1111/j.1365‐246X.2009.04491.x – ident: e_1_2_9_71_1 doi: 10.1111/j.1365‐246X.2006.03040.x – ident: e_1_2_9_4_1 doi: 10.1080/00288306.2020.1792515 – ident: e_1_2_9_11_1 doi: 10.1016/j.tecto.2017.03.006 – ident: e_1_2_9_39_1 doi: 10.1080/00288306.2000.9514913 – ident: e_1_2_9_44_1 doi: 10.17611/dp/emc.2020.gladm2500.1 – ident: e_1_2_9_55_1 doi: 10.1126/science.1092485 – ident: e_1_2_9_10_1 doi: 10.1038/s41561‐018‐0102‐z – ident: e_1_2_9_23_1 doi: 10.1016/j.epsl.2005.01.009 – ident: e_1_2_9_85_1 doi: 10.1093/gji/ggy109 – ident: e_1_2_9_3_1 doi: 10.1002/2015JB012726 – ident: e_1_2_9_72_1 doi: 10.1029/2010JB007631 – ident: e_1_2_9_84_1 doi: 10.1130/0016‐7606(1971)82[2577:TGTAOT]2.0.CO;2 – ident: e_1_2_9_70_1 doi: 10.1016/S0377‐0273(02)00470‐5 – ident: e_1_2_9_43_1 doi: 10.1093/gji/ggaa253 – ident: e_1_2_9_87_1 doi: 10.1002/2013EO450001 – ident: e_1_2_9_82_1 doi: 10.1029/2018TC005116 – ident: e_1_2_9_5_1 doi: 10.1029/2001GC000252 – ident: e_1_2_9_46_1 doi: 10.1029/2022JB024782 – start-page: 25 volume-title: Geological Society of Australia Special Publication year: 2003 ident: e_1_2_9_12_1 – ident: e_1_2_9_30_1 doi: 10.1093/gji/ggz394 – ident: e_1_2_9_68_1 doi: 10.1029/2011JB008403 – ident: e_1_2_9_49_1 doi: 10.1029/2019JB017448 – ident: e_1_2_9_78_1 doi: 10.1029/2020JB019839 – ident: e_1_2_9_17_1 doi: 10.1029/2008JB005947 – ident: e_1_2_9_62_1 doi: 10.1016/j.precamres.2007.05.008 – ident: e_1_2_9_32_1 doi: 10.18814/epiiugs/2012/v35i1/004 – ident: e_1_2_9_80_1 doi: 10.5281/zenodo.13827388 – ident: e_1_2_9_29_1 doi: 10.1029/2018GC007431 – ident: e_1_2_9_64_1 doi: 10.1016/j.epsl.2012.11.010 – ident: e_1_2_9_37_1 doi: 10.1111/j.1365‐246X.1991.tb06724.x – ident: e_1_2_9_67_1 doi: 10.1016/j.tecto.2008.11.013 – ident: e_1_2_9_69_1 doi: 10.1016/j.epsl.2008.11.004 – ident: e_1_2_9_35_1 doi: 10.1029/JB089iB12p09937 – ident: e_1_2_9_54_1 doi: 10.1029/2006GC001248 – ident: e_1_2_9_33_1 doi: 10.31905/PY08W6S3 – ident: e_1_2_9_34_1 doi: 10.31905/D808B830 – ident: e_1_2_9_77_1 doi: 10.1002/2015JB012026 – ident: e_1_2_9_61_1 doi: 10.1145/355984.355989 – ident: e_1_2_9_79_1 doi: 10.1186/s40645‐023‐00595‐7 – ident: e_1_2_9_26_1 doi: 10.1016/j.epsl.2019.05.044 – ident: e_1_2_9_65_1 doi: 10.1111/j.1365‐246X.2006.02897.x – ident: e_1_2_9_59_1 doi: 10.1130/GES01513.1 – ident: e_1_2_9_89_1 doi: 10.1016/j.pepi.2014.07.008 – ident: e_1_2_9_58_1 doi: 10.1016/0040‐1951(85)90016‐2 – ident: e_1_2_9_22_1 doi: 10.1029/2007TC002116 – ident: e_1_2_9_42_1 doi: 10.1130/G24630A.1 – ident: e_1_2_9_13_1 doi: 10.1093/gji/ggad062 – ident: e_1_2_9_18_1 doi: 10.1785/gssrl.81.6.992 – ident: e_1_2_9_41_1 doi: 10.1029/2001JB000182 – ident: e_1_2_9_47_1 doi: 10.1029/2021GL097550 – ident: e_1_2_9_73_1 doi: 10.1029/2012JB009525 – ident: e_1_2_9_9_1 doi: 10.1016/0012‐821X(82)90190‐X – ident: e_1_2_9_25_1 doi: 10.1046/j.1365‐246X.2002.01598.x – ident: e_1_2_9_8_1 doi: 10.1016/j.jog.2013.10.006 – ident: e_1_2_9_52_1 doi: 10.1016/0012‐821X(88)90173‐2 |
| SSID | ssj0014558 |
| Score | 2.4601088 |
| Snippet | Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The Taupo... Abstract Australia, New Zealand, and the surrounding regions have experienced complex plate interactions with significant seismic and volcanic activities. The... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Earthquakes Island arcs Lava Lower mantle Magma Mantle plumes Ocean circulation Plates Plumes Seismic activity seismic tomography Seismic velocities Seismographs Slabs subduction zone subslab hot mantle upwelling (SHMU) supereruptions Tomography Upwelling Volcanic activity Volcanic eruptions Volcanoes Wave velocity |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iCl7EJ64vctCTFtM2bRJv7uJWQUXweStJOhFBu7Krgjd_gr_RX2KSZpf1oF48tiQhzExmvsnjG4S2lOLC6JxH3IL7iApqIkE4RADKqCRROvVE2tcn7OyM396K87FSX-5OWEMP3AhujxGiCGSJZFlOleQC3FGVllUuVcyFct6XMDFMpsL5Ac0yHq65k0S4DJ8WHUd_5oqCjwUgz9P_DVyOQ1QfY7pzaDaAQ3zQTGoeTUC9gKYLX3z3bRHdXViVfb5_nDuHgv1eXvMsYYDb1mVZLIdHWxdY1hW2HgyHy4v7_uO4HrhkHHf7vUd840rj2uFOrXAfAF_2HgN99RK66h5edo6iUCghkjSlNJKmsksJQEJOocpBJiAFZMQkMmPGVDqWHDLQDv-lRGrmUKBWpDKGueiULqPJulfDCsK2byy4UbHRsQ1VnGuWyxRYaoECY9q00M5QeqUOLOKumMVD6U-zE1GOy7qFtketnxr2jB_atZ0iRm0c57X_YS2hDJZQ_mUJLbQ-VGMZFuKgTG0Obt2WRS0ttOtV--tEyqIoDhMLSunqf0xpDc240Zu3i-to8rn_AhtoSr8-3w_6m95kvwDA9O7r priority: 102 providerName: Directory of Open Access Journals |
| Title | Slab‐Plume Interactions Beneath Australia and New Zealand: New Insight From Whole‐Mantle Tomography |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024GC011739 https://www.proquest.com/docview/3133318061 https://doaj.org/article/700b0e52a7564ba89e4908cad6ab189b |
| Volume | 25 |
| WOSCitedRecordID | wos001369871800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1525-2027 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: DOA dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1525-2027 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1525-2027 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: PCBAR dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1525-2027 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1525-2027 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: M2O dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1525-2027 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: M2P dateStart: 20220101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1525-2027 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: DRFUL dateStart: 20000101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1525-2027 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014558 issn: 1525-2027 databaseCode: 24P dateStart: 20220101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELagBYkL_4iFsvIBThCRxE5sc2PLbkBql6i00FtkO-MKqc2iTUHixiPwjDwJY8eNtgeQEJdITuzIsmfG34ztbwh5aoxUzpYykQjuE664S1QqIQEwzuS5sSwQaX_cE8ulPD5WdQy4-bswAz_EGHDzmhHstVdwbfpINuA5MtFr59WupzRj6irZzjImvFTnvB53EXgR8nP6FD-Jd_LjwXds_3Kz9aUlKTD3X4Kbm6A1rDqLW__b39vkZsSb9PUgIHfIFejukutVyOf7_R45-YBS8OvHz9rbKBrCg8NNh57O0AoiPKRjNITqrqVoFGk8D_kqFN51vffv6WK9OqOffLZd_N0-ztcp0MPVWWTEvk-OFvPD3bdJzL2QaM44T7RrUTsBNJQc2hJ0DlpBkbpcF8K51mZaQgHWQ0qWais8sLQmbZ0TfsFjD8hWt-rgIaHYNlPSmczZDFc_Ka0oNQPBEHsIYd2EPL8Y_sZGYnKfH-O0CRvkuWo2h25Cno21vwyEHH-oN_MzOdbxNNrhxWp90kStbESamhSKXIui5EZLBX4f1Oq21CaTykzIzoUcNFG3-4ahW4-WEIHQhLwIM_7XjjRVVc1zxLn80b9Vf0xu-A_DxccdsnW-_gpPyDX77fxzv54GSZ-S7dl8WR9MQygBS28OFkd7WNrP34dn_RuTlgJ6 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BFgQX3oiFAj7ACSLycGKbGy3dtGK7qmALvUW2M66Q2izaLUjc-An8Rn4JHseNtgeQEMdEY8uy5_GNH98APDNGKmcrmUgP7hOuuEtUKjFBNM7kubFFINL-OBWzmTw6Ugexzim9hen5IYYNN7KM4K_JwGlDOrINEEmmT9t5vU2cZoW6DBvca1I5go237yeH0-EggZehRCdV-Ukoz493330Pr9bbX4hKgbz_AuJcx60h8Exu_veQb8GNiDnZm15JbsMl7O7A1TrU9P1-F44_eE349ePnAfkpFrYI-9cOK7blPaGHiGzYEWG6a5l3jCzeiXwdPva6FeX4bLJcnLJPVHHXd7fv1-wE2XxxGlmx78HhZGe-vZvE-guJ5gXniXatt1BEjRXHtkKdo1ZYpi7XpXCutZmWWKIlWFmk2goCl9akrXOCgl5xH0bdosMHwHzbTElnMmczHwGltKLSBYrC4w8hrBvDi_P5b2wkJ6caGSdNOCTPVbM-dWN4Pkh_6Uk5_iC3RUs5yBCVdvixWB430TIbkaYmxTLXoqy40VIhnYVa3VbaZFKZMWyeK0IT7XvVFD61997Qg6ExvAxL_teBNHVd7-Qe6_KH_yb-FK7tzvenzXRv9u4RXCeh_iHkJozOll_xMVyx384-r5ZPouL_BmFKAek |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BeYgLb8RCAR_gBBF5OLHNjZZuqCirlSjQm2U74wqpzVa7BYkbP4HfyC_B47jR9gAS4phobFn2PL7x4xuAp9ZK5V0jMxnAfcYV95nKJWaI1tuytK6KRNqf9sRsJg8O1DzVOaW3MAM_xLjhRpYR_TUZOJ50PrENEElmSNt5u02cZpW6CJd4HdwsUTvz-XiMwOtYoJNq_GSU5aeb76H9y_XW52JSpO4_hzfXUWsMO9Mb_z3gm3A9IU72elCRW3AB-9twpY0Vfb_fgcMPQQ9-_fg5Jy_F4gbh8NZhxbaCHwwAkY37Icz0HQtukaUbka_ix26_ogyfTZeLY_aZ6u2G7t6HFTtCtr84TpzYd-HjdGd_-22Wqi9khlecZ8Z3wT4RDTYcuwZNiUZhnfvS1ML7zhVGYo2OQGWVGycIWjqbd94LCnnVPdjoFz3eBxbaFkp6W3hXhPgnpRONqVBUAX0I4fwEnp_Nv3aJmpwqZBzpeEReKr0-dRN4NkqfDJQcf5DboqUcZYhIO_5YLA91skst8tzmWJdG1A23Riqkk1BnusbYQio7gc0zRdDJule6Col98IUBCk3gRVzyvw5Et227Uwakyx_8m_gTuDp_M9V7u7N3D-EayQyvIDdh43T5FR_BZfft9Mtq-Thq_W9KOf_D |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Slab%E2%80%90Plume+Interactions+Beneath+Australia+and+New+Zealand%3A+New+Insight+From+Whole%E2%80%90Mantle+Tomography&rft.jtitle=Geochemistry%2C+geophysics%2C+geosystems+%3A+G3&rft.au=Toyokuni%2C+Genti&rft.au=Zhao%2C+Dapeng&rft.date=2024-11-01&rft.issn=1525-2027&rft.eissn=1525-2027&rft.volume=25&rft.issue=11&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024GC011739&rft.externalDBID=10.1029%252F2024GC011739&rft.externalDocID=GGGE23524 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1525-2027&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1525-2027&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1525-2027&client=summon |