Anisotropic Tomography Beneath Northeast Tibet: Evidence for Regional Crustal Flow
We present high‐resolution tomographic images of isotropic P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by jointly inverting 62,339 arrival times of the first P and later PmP waves from 6,602 local earthquakes and 9 seismic explosions. Widespread low‐ve...
Gespeichert in:
| Veröffentlicht in: | Tectonics (Washington, D.C.) Jg. 39; H. 7 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Washington
Blackwell Publishing Ltd
01.07.2020
|
| Schlagworte: | |
| ISSN: | 0278-7407, 1944-9194 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present high‐resolution tomographic images of isotropic P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by jointly inverting 62,339 arrival times of the first P and later PmP waves from 6,602 local earthquakes and 9 seismic explosions. Widespread low‐velocity zones in the middle crust contribute most of seismic anisotropy in the crust beneath NE Tibet. The predominant fast‐velocity directions of azimuthal anisotropy are closely correlated with the stress field revealed by GPS observations and focal mechanism solutions in the transition zones among the Alxa block, the Ordos basin, and the Tibetan Plateau. We attribute this feature to regional crustal flow that has intruded northeastward into NE Tibet and possibly affected vertical ground motions, whereas the flow has been resisted by the surrounding rigid blocks and so failed to further extrude eastward between the Ordos basin and the Sichuan basin. The crustal flow is responsible for the intracrust and crust‐mantle decoupling beneath the transition zones of NE Tibet. High‐velocity zones with depth‐consistent anisotropy are found to border the southwestern Ordos basin between 105° and 106°E. The rigid blocks, major active faults (e.g., the Haiyuan, Qinling, and Kunlun faults), and their interactions cause the regional tectonic features and seismic activities. Accommodation of the different deformation patterns and the tectonic interactions may explain the complicated geodynamic evolution of the crust beneath NE Tibet.
Plain Language Summary
NE Tibet is a hot region for studying far‐field geodynamic evolution of the growing Tibetan Plateau, where deformation patterns remain debated mainly due to the low resolution of seismic results in the crust, especially the middle to lower crust. In order to illuminate the middle to lower crust, we use the Moho reflected PmP wave data of local earthquakes and explosions because the reflected waves have different ray paths from those of the direct P wave data. Seismic anisotropy can provide important information on the nature of deformation associated with tectonic stress. As a result, we determine the first P wave anisotropic tomography of the crust and uppermost mantle under NE Tibet. We find that widespread low‐velocity zones in the middle to lower crust may reflect regional crustal flow beneath NE Tibet. The crustal flow leads to the intracrust and crust‐mantle decoupling and vertical motion in the transition zone, whereas coherent crust‐mantle deformation more likely occurs in the surrounding rigid blocks. Our results shed new light on the complicated tectonics of NE Tibet with accommodation of the different deformation patterns and interactions of tectonic blocks and active faults.
Key Points
The first 3‐D P wave anisotropic tomography beneath NE Tibet is determined
The use of PmP reflected waves greatly improves the resolution of the middle to lower crust
Widespread low‐velocity zones in the middle to lower crust may reflect regional crustal flow |
|---|---|
| AbstractList | We present high‐resolution tomographic images of isotropic
P
wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by jointly inverting 62,339 arrival times of the first
P
and later PmP waves from 6,602 local earthquakes and 9 seismic explosions. Widespread low‐velocity zones in the middle crust contribute most of seismic anisotropy in the crust beneath NE Tibet. The predominant fast‐velocity directions of azimuthal anisotropy are closely correlated with the stress field revealed by GPS observations and focal mechanism solutions in the transition zones among the Alxa block, the Ordos basin, and the Tibetan Plateau. We attribute this feature to regional crustal flow that has intruded northeastward into NE Tibet and possibly affected vertical ground motions, whereas the flow has been resisted by the surrounding rigid blocks and so failed to further extrude eastward between the Ordos basin and the Sichuan basin. The crustal flow is responsible for the intracrust and crust‐mantle decoupling beneath the transition zones of NE Tibet. High‐velocity zones with depth‐consistent anisotropy are found to border the southwestern Ordos basin between 105° and 106°E. The rigid blocks, major active faults (e.g., the Haiyuan, Qinling, and Kunlun faults), and their interactions cause the regional tectonic features and seismic activities. Accommodation of the different deformation patterns and the tectonic interactions may explain the complicated geodynamic evolution of the crust beneath NE Tibet.
NE Tibet is a hot region for studying far‐field geodynamic evolution of the growing Tibetan Plateau, where deformation patterns remain debated mainly due to the low resolution of seismic results in the crust, especially the middle to lower crust. In order to illuminate the middle to lower crust, we use the Moho reflected PmP wave data of local earthquakes and explosions because the reflected waves have different ray paths from those of the direct
P
wave data. Seismic anisotropy can provide important information on the nature of deformation associated with tectonic stress. As a result, we determine the first
P
wave anisotropic tomography of the crust and uppermost mantle under NE Tibet. We find that widespread low‐velocity zones in the middle to lower crust may reflect regional crustal flow beneath NE Tibet. The crustal flow leads to the intracrust and crust‐mantle decoupling and vertical motion in the transition zone, whereas coherent crust‐mantle deformation more likely occurs in the surrounding rigid blocks. Our results shed new light on the complicated tectonics of NE Tibet with accommodation of the different deformation patterns and interactions of tectonic blocks and active faults.
The first 3‐D P wave anisotropic tomography beneath NE Tibet is determined
The use of PmP reflected waves greatly improves the resolution of the middle to lower crust
Widespread low‐velocity zones in the middle to lower crust may reflect regional crustal flow We present high‐resolution tomographic images of isotropic P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by jointly inverting 62,339 arrival times of the first P and later PmP waves from 6,602 local earthquakes and 9 seismic explosions. Widespread low‐velocity zones in the middle crust contribute most of seismic anisotropy in the crust beneath NE Tibet. The predominant fast‐velocity directions of azimuthal anisotropy are closely correlated with the stress field revealed by GPS observations and focal mechanism solutions in the transition zones among the Alxa block, the Ordos basin, and the Tibetan Plateau. We attribute this feature to regional crustal flow that has intruded northeastward into NE Tibet and possibly affected vertical ground motions, whereas the flow has been resisted by the surrounding rigid blocks and so failed to further extrude eastward between the Ordos basin and the Sichuan basin. The crustal flow is responsible for the intracrust and crust‐mantle decoupling beneath the transition zones of NE Tibet. High‐velocity zones with depth‐consistent anisotropy are found to border the southwestern Ordos basin between 105° and 106°E. The rigid blocks, major active faults (e.g., the Haiyuan, Qinling, and Kunlun faults), and their interactions cause the regional tectonic features and seismic activities. Accommodation of the different deformation patterns and the tectonic interactions may explain the complicated geodynamic evolution of the crust beneath NE Tibet. Plain Language Summary NE Tibet is a hot region for studying far‐field geodynamic evolution of the growing Tibetan Plateau, where deformation patterns remain debated mainly due to the low resolution of seismic results in the crust, especially the middle to lower crust. In order to illuminate the middle to lower crust, we use the Moho reflected PmP wave data of local earthquakes and explosions because the reflected waves have different ray paths from those of the direct P wave data. Seismic anisotropy can provide important information on the nature of deformation associated with tectonic stress. As a result, we determine the first P wave anisotropic tomography of the crust and uppermost mantle under NE Tibet. We find that widespread low‐velocity zones in the middle to lower crust may reflect regional crustal flow beneath NE Tibet. The crustal flow leads to the intracrust and crust‐mantle decoupling and vertical motion in the transition zone, whereas coherent crust‐mantle deformation more likely occurs in the surrounding rigid blocks. Our results shed new light on the complicated tectonics of NE Tibet with accommodation of the different deformation patterns and interactions of tectonic blocks and active faults. Key Points The first 3‐D P wave anisotropic tomography beneath NE Tibet is determined The use of PmP reflected waves greatly improves the resolution of the middle to lower crust Widespread low‐velocity zones in the middle to lower crust may reflect regional crustal flow We present high‐resolution tomographic images of isotropic P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by jointly inverting 62,339 arrival times of the first P and later PmP waves from 6,602 local earthquakes and 9 seismic explosions. Widespread low‐velocity zones in the middle crust contribute most of seismic anisotropy in the crust beneath NE Tibet. The predominant fast‐velocity directions of azimuthal anisotropy are closely correlated with the stress field revealed by GPS observations and focal mechanism solutions in the transition zones among the Alxa block, the Ordos basin, and the Tibetan Plateau. We attribute this feature to regional crustal flow that has intruded northeastward into NE Tibet and possibly affected vertical ground motions, whereas the flow has been resisted by the surrounding rigid blocks and so failed to further extrude eastward between the Ordos basin and the Sichuan basin. The crustal flow is responsible for the intracrust and crust‐mantle decoupling beneath the transition zones of NE Tibet. High‐velocity zones with depth‐consistent anisotropy are found to border the southwestern Ordos basin between 105° and 106°E. The rigid blocks, major active faults (e.g., the Haiyuan, Qinling, and Kunlun faults), and their interactions cause the regional tectonic features and seismic activities. Accommodation of the different deformation patterns and the tectonic interactions may explain the complicated geodynamic evolution of the crust beneath NE Tibet. |
| Author | Sun, Anhui Zhao, Dapeng |
| Author_xml | – sequence: 1 givenname: Anhui orcidid: 0000-0003-3809-7904 surname: Sun fullname: Sun, Anhui email: sah@ief.ac.cn organization: Institute of Earthquake Forecasting, China Earthquake Administration – sequence: 2 givenname: Dapeng orcidid: 0000-0002-4407-594X surname: Zhao fullname: Zhao, Dapeng email: zhao@tohoku.ac.jp organization: Tohoku University |
| BookMark | eNp9kE1PwzAMhiM0JMbgxg-IxJWC46bpym1UGyBNIE3lXKVdumXqmpJkTPv3BI0DQgIf7IOf1x_vORl0plOEXDG4ZYDZHQJCkQMIJtgJGbKM8ygLeUCGgOk4SjmkZ-TcuQ0A44kQQ7KYdNoZb02va1qYrVlZ2a8P9EF1Svo1fTHWr5V0nha6Uv6eTj_0UnW1oo2xdKFW2nSypbndOR_qrDX7C3LayNapy-86Im-zaZE_RfPXx-d8Mo8kjzlGFUrJoAKUMUrAqhaKN5CNhUhCZDKBZdZkAlWTJkpUMvSZqBJR4TjhmVzGI3J9nNtb875Tzpcbs7PhGlcixzQRGMciUDdHqrbGOauasrd6K-2hZFB-uVb-dC3g-AuvtZc-fOmt1O1fovgo2utWHf5dUBbTvEAWDIg_AdTPfwc |
| CitedBy_id | crossref_primary_10_1016_j_chemgeo_2023_121386 crossref_primary_10_1016_j_jseaes_2021_105050 crossref_primary_10_1016_j_jseaes_2024_106449 crossref_primary_10_1016_j_jseaes_2022_105430 crossref_primary_10_1016_j_jsg_2021_104464 crossref_primary_10_1016_j_earscirev_2021_103507 crossref_primary_10_1007_s11430_025_1636_9 crossref_primary_10_1016_j_pepi_2020_106634 crossref_primary_10_1016_j_tecto_2021_228743 crossref_primary_10_1016_j_tecto_2022_229413 crossref_primary_10_1016_j_pepi_2022_106853 crossref_primary_10_1016_j_pepi_2020_106573 crossref_primary_10_1007_s10712_022_09764_7 crossref_primary_10_1093_gji_ggaf297 crossref_primary_10_1016_j_tecto_2022_229619 crossref_primary_10_1111_ter_12736 crossref_primary_10_1016_j_pepi_2024_107269 crossref_primary_10_1360_N072025_0006 crossref_primary_10_1016_j_jseaes_2023_105800 crossref_primary_10_1016_j_chemgeo_2024_122280 crossref_primary_10_1016_j_tecto_2025_230878 crossref_primary_10_1016_j_tecto_2023_229846 crossref_primary_10_3389_fphy_2024_1502248 crossref_primary_10_1093_gji_ggaf104 crossref_primary_10_3390_rs14010110 crossref_primary_10_1016_j_gr_2022_04_012 |
| Cites_doi | 10.1029/2018JB017081 10.1002/2015GC005952 10.1111/j.1365-246X.2003.02044.x 10.1002/2015JB012209 10.1016/j.epsl.2018.06.010 10.1016/j.pepi.2008.06.005 10.1016/j.epsl.2005.04.039 10.1016/j.epsl.2007.11.042 10.1046/j.1365-246X.1998.00567.x 10.1093/gji/ggt086 10.1016/j.tecto.2013.02.040 10.1126/science.1155371 10.1016/j.tecto.2016.04.007 10.1029/95JB00046 10.1029/92JB00603 10.1029/TC006i004p00489 10.1029/2005JB004120 10.1038/ngeo2130 10.1146/annurev.earth.28.1.211 10.1130/G20554.1 10.1016/j.gr.2015.05.008 10.1144/GSL.SP.2006.268.01.03 10.1029/2018TC005214 10.1029/93JB03138 10.1016/j.tecto.2014.07.001 10.1086/627920 10.1016/j.epsl.2016.03.003 10.1126/science.105978 10.1002/2013JB010626 10.1002/2016GC006262 10.1016/j.pnsc.2008.01.018 10.1002/2013JB010374 10.1016/j.epsl.2017.09.048 10.3390/rs11010034 10.1093/gji/ggz013 10.1002/2014JB011784 10.1016/j.epsl.2015.01.002 10.1002/tect.20081 10.1007/BF02959446 10.1093/gji/ggz489 10.1029/98RG02075 10.1016/j.pepi.2016.06.005 10.1126/science.274.5294.1891 10.1038/ngeo830 10.2138/gsrmg.51.1.353 10.1111/j.1365-246X.1991.tb06724.x 10.1016/j.tecto.2006.01.026 10.1016/j.gr.2008.04.004 10.1002/2013JB010847 10.1360/02YD0047 10.1016/j.epsl.2017.08.030 10.1016/j.tecto.2018.07.007 10.1002/cjg2.1219 10.1111/j.1365-246X.2011.05249.x 10.1785/BSSA0760020521 10.1002/2015JB012692 10.1029/96JB00114 10.1016/j.pepi.2008.07.042 10.1046/j.1365-246X.2003.01894.x 10.1016/j.epsl.2011.01.021 10.1785/gssrl.70.2.154 10.1016/j.pepi.2019.106314 10.1016/j.jseaes.2012.11.009 10.1016/j.epsl.2013.03.015 10.1002/2015GL063921 10.1007/s11430-008-0008-5 10.1016/j.jseaes.2019.104027 10.1016/j.tecto.2019.228274 10.1029/2018TC005276 10.1093/gji/ggy177 10.1029/2007GL030026 10.1038/375774a0 10.1145/355984.355989 10.1002/cjg2.630 10.1016/j.gr.2015.08.009 10.1785/0120100112 10.3319/TAO.2019.01.18.03 10.1002/rog.20008 10.1016/j.wavemoti.2004.05.006 10.1360/N972018-00478 10.1016/j.pepi.2019.04.005 10.1016/j.epsl.2011.01.026 10.1093/gji/ggv420 10.1016/j.pepi.2018.12.003 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2 10.1016/j.tecto.2018.12.026 10.1093/gji/ggz267 10.1002/cjg2.776 10.1016/0165-2125(81)90026-3 10.1016/j.pepi.2011.08.009 10.1002/cjg2.233 10.1016/j.pepi.2006.03.024 10.1126/science.1010580 10.1002/2013JB010503 10.1126/science.255.5052.1663 10.1016/j.pepi.2015.04.005 10.1016/j.tecto.2017.01.025 10.1002/2014JB010963 10.1146/annurev.earth.24.1.385 10.1029/2009JB007142 10.1093/gji/ggx004 10.1029/2003JB002789 |
| ContentType | Journal Article |
| Copyright | 2020. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2020. American Geophysical Union. All Rights Reserved. |
| DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G |
| DOI | 10.1029/2020TC006161 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1944-9194 |
| EndPage | n/a |
| ExternalDocumentID | 10_1029_2020TC006161 TECT21342 |
| Genre | article |
| GeographicLocations | Tibet Tibetan Plateau |
| GeographicLocations_xml | – name: Tibetan Plateau – name: Tibet |
| GrantInformation_xml | – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) funderid: 19H01996 – fundername: National Natural Science Foundation of China funderid: 41974050 |
| GroupedDBID | -DZ -~X 05W 0R~ 123 1OB 1OC 24P 31~ 33P 3V. 50Y 702 8-1 8FE 8FH 8G5 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ABUWG ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFFPM AFGKR AFKRA AFPWT AFWVQ AFZJQ AGCDD AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ ALXUD AMYDB ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BFHJK BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FA8 FEDTE G-S GNUQQ GODZA GUQSH HCIFZ HGLYW HVGLF HZ~ H~9 LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MEWTI MSFUL MSSTM MVM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PCBAR PQQKQ PROAC R.K R05 RIWAO RJQFR ROL RXW SAMSI SJN SUPJJ TAE TAF TN5 UB1 UQL VJK WBKPD WH7 WIN WXSBR WYJ XJT XOL ZZTAW ~02 ~OA ~~A AAMMB AAYXX ABJIA ADXHL AEFGJ AETEA AEYWJ AFFHD AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 PHGZM PHGZT 7TG 7TN F1W H96 KL. L.G |
| ID | FETCH-LOGICAL-a4342-b2aa10b02a32a02bc6e4f0986655559a50d9f962ef75e6bac6e16b56b28549ad3 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 35 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556710300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-7407 |
| IngestDate | Sat Aug 16 21:25:48 EDT 2025 Sat Nov 29 04:56:49 EST 2025 Tue Nov 18 21:26:53 EST 2025 Wed Jan 22 16:32:49 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4342-b2aa10b02a32a02bc6e4f0986655559a50d9f962ef75e6bac6e16b56b28549ad3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3809-7904 0000-0002-4407-594X |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020TC006161 |
| PQID | 2427562336 |
| PQPubID | 30885 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_2427562336 crossref_primary_10_1029_2020TC006161 crossref_citationtrail_10_1029_2020TC006161 wiley_primary_10_1029_2020TC006161_TECT21342 |
| PublicationCentury | 2000 |
| PublicationDate | July 2020 |
| PublicationDateYYYYMMDD | 2020-07-01 |
| PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Tectonics (Washington, D.C.) |
| PublicationYear | 2020 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2019; 11 1986; 76 2013; 62 1995; 375 2003; 153 2019; 286 2016; 33 2004; 32 2017; 209 1973; 81 2015; 413 2013; 51 2010; 115 2013; 118 2018; 214 2003; 46 2010; 3 1991; 105 2013; 193 1989 2012; 188 2017; 60 2018; 744 2019; 30 1981; 3 2015; 244 2005; 235 2015; 120 2019; 38 2016; 442 2016; 204 2016; 17 2008; 51 2019; 185 1998; 135 2013; 369‐370 2004; 156 2011; 304 1992; 255 1999; 37 1994; 99 2019; 218 2019; 217 2019; 292 2019; 296 2017; 41 2013; 606 2002; 51 1987; 6 2019; 124 2008; 267 1992; 97 1996; 101 2007; 34 2017; 478 2001; 294 2001; 292 2002; 45 2015; 42 2018; 497 2016; 677‐678 2017; 480 1982; 8 2019; 752 2020; 774 1996; 24 2014; 7 2008; 170 2014; 119 2014; 634 2015; 16 2000; 28 2020; 220 2008; 18 2009 2008; 14 2005; 41 2016; 121 2006 2005 2018; 63 2008; 168 2004; 109 2008; 321 2005; 48 2017; 699 2006; 158 2007; 112 2013; 32 1995; 100 1996; 274 2016; 257 1999; 70 2011; 189 2006; 420 2011; 101 2006; 268 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_5_1 e_1_2_8_9_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_41_1 e_1_2_8_83_1 e_1_2_8_19_1 e_1_2_8_109_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_91_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_101_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_110_1 e_1_2_8_6_1 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_44_1 e_1_2_8_86_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_82_1 e_1_2_8_18_1 Zhan Y. (e_1_2_8_94_1) 2017; 60 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_79_1 e_1_2_8_90_1 e_1_2_8_98_1 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_106_1 e_1_2_8_33_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_102_1 e_1_2_8_71_1 e_1_2_8_28_1 Zhang P. (e_1_2_8_95_1) 2003; 46 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_17_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_70_1 e_1_2_8_97_1 Zervas C. E. (e_1_2_8_93_1) 1986; 76 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_103_1 e_1_2_8_46_1 e_1_2_8_27_1 Sun A. (e_1_2_8_69_1) 2019; 217 Ma X. (e_1_2_8_54_1) 1989 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_23_1 e_1_2_8_65_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_39_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_58_1 Qian Q. (e_1_2_8_60_1) 2017; 60 e_1_2_8_92_1 e_1_2_8_96_1 e_1_2_8_100_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_108_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_104_1 |
| References_xml | – volume: 33 start-page: 24 year: 2016 end-page: 43 article-title: Seismic anisotropy tomography: New insight into subduction dynamics publication-title: Gondwana Research – volume: 119 start-page: 1954 year: 2014 end-page: 1970 article-title: The distribution of the mid‐to‐lower crustal low‐velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography publication-title: Journal of Geophysical Research: Solid Earth – volume: 744 start-page: 484 year: 2018 end-page: 498 article-title: The world stress map database release 2016: Crustal stress pattern across scales publication-title: Tectonophysics – year: 2005 – start-page: 29 year: 1989 end-page: 30 – volume: 267 start-page: 118 issue: 1‐2 year: 2008 end-page: 128 article-title: Amphibole and lower crustal seismic properties publication-title: Earth and Planetary Science Letters – volume: 16 start-page: 4223 year: 2015 end-page: 4236 article-title: Anisotropic low‐velocity lower crust beneath the northeastern margin of Tibetan Plateau: Evidence for crustal channel flow publication-title: Geochemistry, Geophysics, Geosystems – volume: 6 start-page: 489 issue: 4 year: 1987 end-page: 504 article-title: Injection of Indian crust into Tibetan lower crust: A two‐dimensional finite element model study publication-title: Tectonics – volume: 292 start-page: 100 year: 2019 end-page: 113 article-title: Is there a big mantle wedge under eastern Tibet? publication-title: Physics of the Earth and Planetary Interiors – volume: 699 start-page: 93 year: 2017 end-page: 101 article-title: Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan Plateau using GPS and shear‐wave splitting data publication-title: Tectonophysics – volume: 153 start-page: 213 issue: 1 year: 2003 end-page: 228 article-title: Sensitivity kernels for shear wave splitting in transverse isotropic media publication-title: Geophysical Journal International – volume: 3 start-page: 343 issue: 4 year: 1981 end-page: 391 article-title: A review of wave motion in anisotropic and cracked elastic‐media publication-title: Wave Motion – volume: 105 start-page: 429 issue: 2 year: 1991 end-page: 465 article-title: Traveltimes for global earthquake location and phase identification publication-title: Geophysical Journal of the Royal Astronomical Society – volume: 244 start-page: 11 year: 2015 end-page: 22 article-title: Crustal structure and deformation under the Longmenshan and its surroundings revealed by receiver function data publication-title: Physics of the Earth and Planetary Interiors – volume: 217 start-page: 179 issue: 1 year: 2019 end-page: 189 article-title: Depth‐dependent Pn velocities and configuration of Indian and Asian lithosphere beneath the Tibetan Plateau publication-title: Geophysical Journal International – volume: 62 start-page: 606 year: 2013 end-page: 615 article-title: Seismic signature of the mantle transition zone beneath eastern Tibet and Sichuan Basin publication-title: Journal of Asian Earth Sciences – volume: 606 start-page: 140 issue: 0 year: 2013 end-page: 159 article-title: Crustal structure across northeastern Tibet from wide‐angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation publication-title: Tectonophysics – volume: 24 start-page: 385 issue: 1 year: 1996 end-page: 432 article-title: Seismic anisotropy beneath the continents: Probing the depths of geology publication-title: Annual Review of Earth and Planetary Sciences – volume: 188 start-page: 144 issue: 1 year: 2012 end-page: 164 article-title: Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data publication-title: Geophysical Journal International – volume: 774 start-page: 228274 year: 2020 article-title: Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan Plateau and tectonic implications of the Haiyuan fault publication-title: Tectonophysics – volume: 218 start-page: 2066 issue: 3 year: 2019 end-page: 2078 article-title: Focal mechanism and stress field in the northeastern Tibetan Plateau: Insight into layered crustal deformations publication-title: Geophysical Journal International – volume: 214 start-page: 1151 issue: 2 year: 2018 end-page: 1163 article-title: Crustal tomography of the 2016 Kumamoto earthquake area in West Japan using and PmP data publication-title: Geophysical Journal International – volume: 119 start-page: 2153 year: 2014 end-page: 2173 article-title: LITHO1. 0: An updated crust and lithospheric model of the Earth publication-title: Journal of Geophysical Research: Solid Earth – volume: 268 start-page: 39 issue: 1 year: 2006 end-page: 70 article-title: Crustal flow in Tibet: Geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow publication-title: Geological Society, London, Special Publications – volume: 304 start-page: 147 issue: 1‐2 year: 2011 end-page: 157 article-title: Seismic anisotropy of the northeastern Tibetan Plateau from shear wave splitting analysis publication-title: Earth and Planetary Science Letters – volume: 193 start-page: 1166 issue: 3 year: 2013 end-page: 1181 article-title: wave tomography for 3‐D radial and azimuthal anisotropy of Tohoku and Kyushu subduction zones publication-title: Geophysical Journal International – volume: 497 start-page: 204 year: 2018 end-page: 216 article-title: Complicated crustal deformation beneath the NE margin of the Tibetan Plateau and its adjacent areas revealed by multi‐station receiver‐function gathering publication-title: Earth and Planetary Science Letters – volume: 168 start-page: 134 issue: 3‐4 year: 2008 end-page: 146 article-title: Seismic images under the Beijing region inferred from and PmP data publication-title: Physics of the Earth and Planetary Interiors – volume: 109 year: 2004 article-title: Tomographic inversion of Pn travel times in China publication-title: Journal of Geophysical Research – volume: 442 start-page: 72 year: 2016 end-page: 79 article-title: Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas publication-title: Earth and Planetary Science Letters – volume: 420 start-page: 239 issue: 1‐2 year: 2006 end-page: 252 article-title: Crustal structure of mainland China from deep seismic sounding data publication-title: Tectonophysics – volume: 321 start-page: 1054 issue: 5892 year: 2008 end-page: 1058 article-title: The geological evolution of the Tibetan Plateau publication-title: Science – volume: 41 start-page: 400 year: 2017 end-page: 410 article-title: Crustal shear‐wave velocity structure of northeastern Tibet revealed by ambient seismic noise and receiver functions publication-title: Gondwana Research – volume: 204 start-page: 167 issue: 1 year: 2016 end-page: 179 article-title: Crustal structure and deformation beneath the NE margin of the Tibetan Plateau constrained by teleseismic receiver function data publication-title: Geophysical Journal International – volume: 48 start-page: 1613 issue: 10 year: 2005 end-page: 1626 article-title: Relation between electricity structure of the crust and deformation of crustal blocks on the northeastern margin of Qinghai‐Tibet Plateau publication-title: Science in China – volume: 70 start-page: 154 issue: 2 year: 1999 end-page: 160 article-title: The TauP toolkit: Flexible seismic travel‐time and ray‐path utilities publication-title: Seismological Research Letters – volume: 100 start-page: 6487 issue: B4 year: 1995 end-page: 6504 article-title: Tomographic imaging of the Alaska subduction zone publication-title: Journal of Geophysical Research – volume: 286 start-page: 179 year: 2019 end-page: 189 article-title: Distribution of the crustal low velocity zones beneath the central and northeastern Tibetan Plateau: Insights from joint analysis of receiver functions and surface wave dispersion observations publication-title: Physics of the Earth and Planetary Interiors – volume: 51 start-page: 76 year: 2013 end-page: 112 article-title: Constraints on subduction geodynamics from seismic anisotropy publication-title: Reviews of Geophysics – volume: 8 start-page: 43 issue: 1 year: 1982 end-page: 71 article-title: LSQR: An algorithm for sparse linear equations and sparse least squares publication-title: ACM Transactions on Mathematical Software (TOMS) – volume: 38 start-page: 3167 year: 2019 end-page: 3181 article-title: Variations in crustal and uppermost mantle structures across eastern Tibet and adjacent regions: Implications of crustal flow and asthenospheric upwelling combined for expansions of the Tibetan Plateau publication-title: Tectonics – volume: 257 start-page: 193 year: 2016 end-page: 204 article-title: Pn anisotropic tomography and mantle dynamics beneath China publication-title: Physics of the Earth and Planetary Interiors – volume: 677‐678 start-page: 227 year: 2016 end-page: 240 article-title: Continental deformation accommodated by non‐rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet publication-title: Tectonophysics – volume: 45 start-page: 210 issue: 2 year: 2002 end-page: 217 article-title: A preliminary study on the crustal velocity structure of Maqin‐Lanzhou‐Jingbian by means of deep seismic sounding profile (in Chinese with English abstract) publication-title: Chinese Journal of Geophysics – volume: 51 start-page: 353 issue: 1 year: 2002 end-page: 385 article-title: Seismic anisotropy and global geodynamics publication-title: Reviews in Mineralogy and Geochemistry – volume: 60 start-page: 2371 issue: 6 year: 2017 end-page: 2384 article-title: Deep electrical structure of crust beneath the Madongshan step area at the Haiyuan fault in the northeastern margin of the Tibetan Plateau and tectonic implications (in Chinese with English abstract) publication-title: Chinese Journal of Geophysics – volume: 413 start-page: 167 year: 2015 end-page: 175 article-title: Complex seismic anisotropy beneath western Tibet and its geodynamic implications publication-title: Earth and Planetary Science Letters – volume: 97 start-page: 19,909 issue: B13 year: 1992 end-page: 19,928 article-title: Tomographic imaging of and wave velocity structure beneath northeastern Japan publication-title: Journal of Geophysical Research – volume: 42 start-page: 4326 year: 2015 end-page: 4334 article-title: Depth‐variant azimuthal anisotropy in Tibet revealed by surface wave tomography publication-title: Geophysical Research Letters – volume: 292 start-page: 716 issue: 5517 year: 2001 end-page: 719 article-title: Detection of widespread fluids in the Tibetan crust by magnetotelluric studies publication-title: Science – volume: 634 start-page: 198 year: 2014 end-page: 207 article-title: The crustal thickness of NE Tibet and its implication for crustal shortening publication-title: Tectonophysics – volume: 375 start-page: 774 issue: 6534 year: 1995 end-page: 777 article-title: Lattice preferred orientation of olivine aggregates deformed in simple shear publication-title: Nature – volume: 369‐370 start-page: 129 year: 2013 end-page: 137 article-title: Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications publication-title: Earth and Planetary Science Letters – volume: 18 start-page: 843 issue: 7 year: 2008 end-page: 849 article-title: Heat flow distribution in Chinese continent and its adjacent areas publication-title: Progress in Natural Science – volume: 480 start-page: 33 year: 2017 end-page: 41 article-title: New images of the crustal structure beneath eastern Tibet from a high‐density seismic array publication-title: Earth and Planetary Science Letters – volume: 51 start-page: 378 issue: 2 year: 2008 end-page: 382 article-title: Study on crustal composition and geodynamics using seismic velocities in the northeastern margin of the Tibetan Plateau (in Chinese with English abstract) publication-title: Chinese Journal of Geophysics – year: 2009 – volume: 46 start-page: 13 issue: 2 year: 2003 end-page: 24 article-title: Active tectonic blocks and strong earthquakes in the continent of China publication-title: Science in China – volume: 185 start-page: 104027 year: 2019 article-title: Frequency‐dependent Pms splitting measurements across the Longmenshan thrust belt in the eastern Tibetan Plateau publication-title: Journal of Asian Earth Sciences – volume: 158 start-page: 292 issue: 2‐4 year: 2006 end-page: 320 article-title: Seismic anisotropy beneath stable continental interiors publication-title: Physics of the Earth and Planetary Interiors – volume: 217 start-page: 405 issue: 1 year: 2019 end-page: 421 article-title: Crustal seismic imaging of Northeast Tibet using first and later phases of earthquakes and explosions publication-title: Geophysical Journal International – volume: 60 start-page: 2338 issue: 6 year: 2017 end-page: 2349 article-title: Anisotropy of middle‐upper crust derived from shear‐wave splitting in the northeastern Tibetan Plateau and tectonic implications (in Chinese with English abstract) publication-title: Chinese Journal of Geophysics – volume: 28 start-page: 211 issue: 1 year: 2000 end-page: 280 article-title: Geologic evolution of the Himalayan‐Tibetan orogen publication-title: Annual Review of Earth and Planetary Sciences – volume: 48 start-page: 92 issue: 1 year: 2005 end-page: 100 article-title: Three dimensional Moho geometry beneath the northeast edge of the Qinghai‐Tibet Plateau (in Chinese with English abstract) publication-title: Chinese Journal of Geophysics – volume: 120 start-page: 3255 year: 2015 end-page: 3277 article-title: On the trade‐off between seismic anisotropy and heterogeneity: Numerical simulations and application to Northeast Japan publication-title: Journal of Geophysical Research: Solid Earth – volume: 38 start-page: 741 year: 2019 end-page: 766 article-title: Initial deformation of the northern Tibetan Plateau: Insights from deposition of the Lulehe formation in the Qaidam Basin publication-title: Tectonics – volume: 115 year: 2010 article-title: Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography publication-title: Journal of Geophysical Research – volume: 46 start-page: 356 issue: 4 year: 2003 end-page: 372 article-title: Basic characteristics of active tectonics of China publication-title: Science in China – volume: 296 start-page: 106314 year: 2019 article-title: Importance of later phases in seismic tomography publication-title: Physics of the Earth and Planetary Interiors – volume: 30 start-page: 127 issue: 1 year: 2019 end-page: 137 article-title: The lithospheric‐scale deformation in NE Tibet from joint inversion of receiver function and surface wave dispersion publication-title: Terrestrial, Atmospheric and Oceanic Sciences – volume: 121 start-page: 2608 year: 2016 end-page: 2635 article-title: Seismic tomography and anisotropy of the Helan‐Liupan tectonic belt: Insight into lower crustal flow and seismotectonics publication-title: Journal of Geophysical Research: Solid Earth – volume: 76 start-page: 521 issue: 2 year: 1986 end-page: 546 article-title: Pn observation and interpretation in Washington publication-title: Bulletin of the Seismological Society of America – volume: 119 start-page: 2174 year: 2014 end-page: 2198 article-title: Pn anisotropic tomography and dynamics under eastern Tibetan Plateau publication-title: Journal of Geophysical Research: Solid Earth – volume: 63 start-page: 3217 issue: 31 year: 2018 end-page: 3228 article-title: Eastward extrusion and northward expansion of the Tibetan Plateau—Discussions for the deep processes of the plateau uplift (in Chinese with English abstract) publication-title: Chinese Science Bulletin – volume: 32 start-page: 809 issue: 9 year: 2004 end-page: 812 article-title: Continuous deformation of the Tibetan Plateau from global positioning system data publication-title: Geology – volume: 17 start-page: 1861 year: 2016 end-page: 1884 article-title: Teleseismic wave tomography and mantle dynamics beneath eastern Tibet publication-title: Geochemistry, Geophysics, Geosystems – volume: 189 start-page: 157 issue: 3‐4 year: 2011 end-page: 170 article-title: Seismic anisotropy and implications for mantle deformation beneath the NE margin of the Tibet Plateau and Ordos Plateau publication-title: Physics of the Earth and Planetary Interiors – volume: 34 year: 2007 article-title: Mapping the crustal structure under active volcanoes in central Tohoku, Japan using and PmP data publication-title: Geophysical Research Letters – volume: 135 start-page: 1 issue: 1 year: 1998 end-page: 47 article-title: Crustal thickening in Gansu‐Qinghai, lithospheric mantle subduction, and oblique, strike‐slip controlled growth of the Tibet Plateau publication-title: Geophysical Journal International – volume: 156 start-page: 237 issue: 2 year: 2004 end-page: 254 article-title: Including anisotropy in 3‐D velocity inversion and application to Marlborough, New Zealand publication-title: Geophysical Journal International – volume: 14 start-page: 535 issue: 3 year: 2008 end-page: 542 article-title: Seismic imaging of southwest Japan using and PmP data: Implications for arc magmatism and seismotectonics publication-title: Gondwana Research – volume: 752 start-page: 24 year: 2019 end-page: 34 article-title: Tomographic imaging of the 2017 Ms7.0 Jiuzhaigou earthquake source region and its implications on material extrusion in the northeast Tibetan Plateau publication-title: Tectonophysics – volume: 32 start-page: 1358 year: 2013 end-page: 1370 article-title: The growth of northeastern Tibet and its relevance to large‐scale continental geodynamics: A review of recent studies publication-title: Tectonics – volume: 48 start-page: 1205 issue: 5 year: 2005 end-page: 1216 article-title: Electrical conductivity structure of the crust and upper mantle in the northeastern margin of the Qinghai‐Tibet Plateau along the profile Maqên‐Lanzhou‐Jingbian (in Chinese with English abstract) publication-title: Chinese Journal of Geophysics – volume: 112 year: 2007 article-title: Present‐day crustal motion within the Tibetan Plateau inferred from GPS measurements publication-title: Journal of Geophysical Research – volume: 28 start-page: 703 issue: 8 year: 2000 end-page: 706 article-title: Topographic ooze: Building the eastern margin of Tibet by lower crustal flow publication-title: Geology – volume: 81 start-page: 683 issue: 6 year: 1973 end-page: 692 article-title: Tibetan, Variscan, and Precambrian basement reactivation: Products of continental collision publication-title: The Journal of Geology – volume: 124 start-page: 10,331 year: 2019 end-page: 10,346 article-title: Complex lithospheric deformation in eastern and northeastern Tibet from shear wave splitting observations and its geodynamic implications publication-title: Journal of Geophysical Research: Solid Earth – volume: 37 start-page: 65 issue: 1 year: 1999 end-page: 106 article-title: Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? publication-title: Reviews of Geophysics – volume: 3 start-page: 358 issue: 5 year: 2010 end-page: 362 article-title: Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging publication-title: Nature Geoscience – volume: 255 start-page: 1663 issue: 5052 year: 1992 end-page: 1670 article-title: Raising Tibet publication-title: Science – volume: 51 start-page: 263 issue: 2 year: 2008 end-page: 274 article-title: ‐wave crustal and upper mantle's velocity structure in the eastern Tibetan Plateau—Deep environment of lower crustal flow publication-title: Science in China – volume: 118 start-page: 5722 year: 2013 end-page: 5732 article-title: Three‐dimensional velocity field of present‐day crustal motion of the Tibetan Plateau derived from GPS measurements publication-title: Journal of Geophysical Research: Solid Earth – volume: 41 start-page: 59 issue: 1 year: 2005 end-page: 77 article-title: A review of shear‐wave splitting in the compliant crack‐critical anisotropic Earth publication-title: Wave Motion – volume: 209 start-page: ggx004 issue: 1 year: 2017 end-page: ggx491 article-title: Crustal anisotropy across eastern Tibet and surroundings modeled as a depth‐dependent tilted hexagonally symmetric medium publication-title: Geophysical Journal International – volume: 99 start-page: 19,635 issue: B10 year: 1994 end-page: 19,646 article-title: Initial reference models in local earthquake tomography publication-title: Journal of Geophysical Research – volume: 235 start-page: 623 issue: 3‐4 year: 2005 end-page: 631 article-title: Local earthquake reflection tomography of the Landers aftershock area publication-title: Earth and Planetary Science Letters – volume: 120 start-page: 6404 year: 2015 end-page: 6430 article-title: Magnitude and symmetry of seismic anisotropy in mica‐ and amphibole‐bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan Plateau publication-title: Journal of Geophysical Research: Solid Earth – volume: 304 start-page: 103 issue: 1‐2 year: 2011 end-page: 112 article-title: Rayleigh wave tomography of the northeastern margin of the Tibetan Plateau publication-title: Earth and Planetary Science Letters – volume: 478 start-page: 66 year: 2017 end-page: 75 article-title: Insight into NE Tibetan Plateau expansion from crustal and upper mantle anisotropy revealed by shear‐wave splitting publication-title: Earth and Planetary Science Letters – volume: 119 start-page: 5686 year: 2014 end-page: 5712 article-title: Three‐dimensional wave azimuthal anisotropy in the lithosphere beneath China: 3D wave anisotropy beneath China publication-title: Journal of Geophysical Research: Solid Earth – volume: 220 start-page: 1491 issue: 3 year: 2020 end-page: 1503 article-title: Crustal seismic anisotropy of the northeastern Tibetan Plateau and the adjacent areas from shear‐wave splitting measurements publication-title: Geophysical Journal International – volume: 11 start-page: 34 issue: 1 year: 2019 article-title: Crustal deformation on the northeastern margin of the Tibetan Plateau from continuous GPS observations publication-title: Remote Sensing – volume: 170 start-page: 115 issue: 1‐2 year: 2008 end-page: 133 article-title: wave anisotropic tomography beneath northeast Japan publication-title: Physics of the Earth and Planetary Interiors – year: 2006 – volume: 101 start-page: 2782 issue: 6 year: 2011 end-page: 2795 article-title: The crustal and upper‐mantle structures beneath the northeastern margin of Tibet publication-title: Bulletin of the Seismological Society of America – volume: 294 start-page: 1671 issue: 5547 year: 2001 end-page: 1677 article-title: Oblique stepwise rise and growth of the Tibet Plateau publication-title: Science – volume: 101 start-page: 8403 issue: B4 year: 1996 end-page: 8414 article-title: Anisotropy Pn tomography in the western United States publication-title: Journal of Geophysical Research – volume: 274 start-page: 1891 issue: 5294 year: 1996 end-page: 1894 article-title: Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter? publication-title: Science – volume: 7 start-page: 361 issue: 5 year: 2014 end-page: 365 article-title: Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults publication-title: Nature Geoscience – volume: 217 start-page: 405 issue: 1 year: 2019 ident: e_1_2_8_69_1 article-title: Crustal seismic imaging of Northeast Tibet using first and later phases of earthquakes and explosions publication-title: Geophysical Journal International – ident: e_1_2_8_20_1 doi: 10.1029/2018JB017081 – ident: e_1_2_8_65_1 doi: 10.1002/2015GC005952 – ident: e_1_2_8_16_1 doi: 10.1111/j.1365-246X.2003.02044.x – ident: e_1_2_8_31_1 doi: 10.1002/2015JB012209 – ident: e_1_2_8_88_1 doi: 10.1016/j.epsl.2018.06.010 – ident: e_1_2_8_38_1 doi: 10.1016/j.pepi.2008.06.005 – ident: e_1_2_8_104_1 doi: 10.1016/j.epsl.2005.04.039 – ident: e_1_2_8_76_1 doi: 10.1016/j.epsl.2007.11.042 – ident: e_1_2_8_55_1 doi: 10.1046/j.1365-246X.1998.00567.x – ident: e_1_2_8_81_1 doi: 10.1093/gji/ggt086 – ident: e_1_2_8_99_1 doi: 10.1016/j.tecto.2013.02.040 – ident: e_1_2_8_62_1 doi: 10.1126/science.1155371 – ident: e_1_2_8_111_1 doi: 10.1016/j.tecto.2016.04.007 – ident: e_1_2_8_101_1 doi: 10.1029/95JB00046 – ident: e_1_2_8_102_1 doi: 10.1029/92JB00603 – ident: e_1_2_8_108_1 doi: 10.1029/TC006i004p00489 – ident: e_1_2_8_19_1 doi: 10.1029/2005JB004120 – ident: e_1_2_8_51_1 doi: 10.1038/ngeo2130 – ident: e_1_2_8_91_1 doi: 10.1146/annurev.earth.28.1.211 – ident: e_1_2_8_96_1 doi: 10.1130/G20554.1 – ident: e_1_2_8_105_1 doi: 10.1016/j.gr.2015.05.008 – ident: e_1_2_8_35_1 doi: 10.1144/GSL.SP.2006.268.01.03 – ident: e_1_2_8_7_1 doi: 10.1029/2018TC005214 – ident: e_1_2_8_34_1 doi: 10.1029/93JB03138 – ident: e_1_2_8_77_1 doi: 10.1016/j.tecto.2014.07.001 – ident: e_1_2_8_15_1 doi: 10.1086/627920 – ident: e_1_2_8_36_1 doi: 10.1016/j.epsl.2016.03.003 – ident: e_1_2_8_75_1 doi: 10.1126/science.105978 – ident: e_1_2_8_59_1 doi: 10.1002/2013JB010626 – ident: e_1_2_8_39_1 doi: 10.1002/2016GC006262 – ident: e_1_2_8_74_1 doi: 10.1016/j.pnsc.2008.01.018 – ident: e_1_2_8_41_1 doi: 10.1002/2013JB010374 – ident: e_1_2_8_52_1 doi: 10.1016/j.epsl.2017.09.048 – ident: e_1_2_8_68_1 doi: 10.3390/rs11010034 – ident: e_1_2_8_24_1 doi: 10.1093/gji/ggz013 – ident: e_1_2_8_30_1 doi: 10.1002/2014JB011784 – ident: e_1_2_8_84_1 doi: 10.1016/j.epsl.2015.01.002 – ident: e_1_2_8_92_1 doi: 10.1002/tect.20081 – ident: e_1_2_8_13_1 doi: 10.1007/BF02959446 – ident: e_1_2_8_27_1 doi: 10.1093/gji/ggz489 – ident: e_1_2_8_63_1 doi: 10.1029/98RG02075 – ident: e_1_2_8_110_1 doi: 10.1016/j.pepi.2016.06.005 – ident: e_1_2_8_103_1 doi: 10.1126/science.274.5294.1891 – ident: e_1_2_8_3_1 doi: 10.1038/ngeo830 – ident: e_1_2_8_56_1 doi: 10.2138/gsrmg.51.1.353 – ident: e_1_2_8_33_1 doi: 10.1111/j.1365-246X.1991.tb06724.x – ident: e_1_2_8_44_1 doi: 10.1016/j.tecto.2006.01.026 – ident: e_1_2_8_70_1 doi: 10.1016/j.gr.2008.04.004 – ident: e_1_2_8_37_1 doi: 10.1002/2013JB010847 – ident: e_1_2_8_106_1 doi: 10.1360/02YD0047 – ident: e_1_2_8_28_1 doi: 10.1016/j.epsl.2017.08.030 – ident: e_1_2_8_25_1 doi: 10.1016/j.tecto.2018.07.007 – ident: e_1_2_8_50_1 doi: 10.1002/cjg2.1219 – ident: e_1_2_8_49_1 doi: 10.1111/j.1365-246X.2011.05249.x – volume: 76 start-page: 521 issue: 2 year: 1986 ident: e_1_2_8_93_1 article-title: Pn observation and interpretation in Washington publication-title: Bulletin of the Seismological Society of America doi: 10.1785/BSSA0760020521 – ident: e_1_2_8_6_1 doi: 10.1002/2015JB012692 – ident: e_1_2_8_32_1 – ident: e_1_2_8_23_1 doi: 10.1029/96JB00114 – ident: e_1_2_8_80_1 doi: 10.1016/j.pepi.2008.07.042 – volume: 60 start-page: 2338 issue: 6 year: 2017 ident: e_1_2_8_60_1 article-title: Anisotropy of middle‐upper crust derived from shear‐wave splitting in the northeastern Tibetan Plateau and tectonic implications (in Chinese with English abstract) publication-title: Chinese Journal of Geophysics – ident: e_1_2_8_17_1 doi: 10.1046/j.1365-246X.2003.01894.x – ident: e_1_2_8_97_1 doi: 10.1016/j.epsl.2011.01.021 – ident: e_1_2_8_12_1 doi: 10.1785/gssrl.70.2.154 – ident: e_1_2_8_100_1 doi: 10.1016/j.pepi.2019.106314 – start-page: 29 volume-title: Editorial Board for Lithospheric Dynamics Atlas of China year: 1989 ident: e_1_2_8_54_1 – ident: e_1_2_8_26_1 doi: 10.1016/j.jseaes.2012.11.009 – ident: e_1_2_8_4_1 doi: 10.1016/j.epsl.2013.03.015 – ident: e_1_2_8_58_1 doi: 10.1002/2015GL063921 – ident: e_1_2_8_78_1 doi: 10.1007/s11430-008-0008-5 – ident: e_1_2_8_71_1 doi: 10.1016/j.jseaes.2019.104027 – ident: e_1_2_8_66_1 doi: 10.1016/j.tecto.2019.228274 – volume: 46 start-page: 13 issue: 2 year: 2003 ident: e_1_2_8_95_1 article-title: Active tectonic blocks and strong earthquakes in the continent of China publication-title: Science in China – ident: e_1_2_8_109_1 doi: 10.1029/2018TC005276 – ident: e_1_2_8_79_1 doi: 10.1093/gji/ggy177 – ident: e_1_2_8_86_1 doi: 10.1029/2007GL030026 – ident: e_1_2_8_98_1 doi: 10.1038/375774a0 – ident: e_1_2_8_57_1 doi: 10.1145/355984.355989 – ident: e_1_2_8_107_1 doi: 10.1002/cjg2.630 – ident: e_1_2_8_85_1 doi: 10.1016/j.gr.2015.08.009 – ident: e_1_2_8_64_1 doi: 10.1785/0120100112 – ident: e_1_2_8_14_1 doi: 10.3319/TAO.2019.01.18.03 – ident: e_1_2_8_53_1 doi: 10.1002/rog.20008 – ident: e_1_2_8_11_1 doi: 10.1016/j.wavemoti.2004.05.006 – ident: e_1_2_8_90_1 doi: 10.1360/N972018-00478 – ident: e_1_2_8_40_1 doi: 10.1016/j.pepi.2019.04.005 – ident: e_1_2_8_46_1 doi: 10.1016/j.epsl.2011.01.026 – ident: e_1_2_8_82_1 doi: 10.1093/gji/ggv420 – volume: 60 start-page: 2371 issue: 6 year: 2017 ident: e_1_2_8_94_1 article-title: Deep electrical structure of crust beneath the Madongshan step area at the Haiyuan fault in the northeastern margin of the Tibetan Plateau and tectonic implications (in Chinese with English abstract) publication-title: Chinese Journal of Geophysics – ident: e_1_2_8_43_1 doi: 10.1016/j.pepi.2018.12.003 – ident: e_1_2_8_9_1 doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2 – ident: e_1_2_8_61_1 doi: 10.1016/j.tecto.2018.12.026 – ident: e_1_2_8_21_1 doi: 10.1093/gji/ggz267 – ident: e_1_2_8_73_1 doi: 10.1002/cjg2.776 – ident: e_1_2_8_10_1 doi: 10.1016/0165-2125(81)90026-3 – ident: e_1_2_8_42_1 doi: 10.1016/j.pepi.2011.08.009 – ident: e_1_2_8_45_1 doi: 10.1002/cjg2.233 – ident: e_1_2_8_18_1 doi: 10.1016/j.pepi.2006.03.024 – ident: e_1_2_8_83_1 doi: 10.1126/science.1010580 – ident: e_1_2_8_2_1 – ident: e_1_2_8_48_1 doi: 10.1002/2013JB010503 – ident: e_1_2_8_22_1 doi: 10.1126/science.255.5052.1663 – ident: e_1_2_8_72_1 doi: 10.1016/j.pepi.2015.04.005 – ident: e_1_2_8_8_1 – ident: e_1_2_8_5_1 doi: 10.1016/j.tecto.2017.01.025 – ident: e_1_2_8_29_1 doi: 10.1002/2014JB010963 – ident: e_1_2_8_67_1 doi: 10.1146/annurev.earth.24.1.385 – ident: e_1_2_8_89_1 doi: 10.1029/2009JB007142 – ident: e_1_2_8_87_1 doi: 10.1093/gji/ggx004 – ident: e_1_2_8_47_1 doi: 10.1029/2003JB002789 |
| SSID | ssj0014566 |
| Score | 2.4600046 |
| Snippet | We present high‐resolution tomographic images of isotropic P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by... We present high‐resolution tomographic images of isotropic P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Accommodation Anisotropy crustal flow Deformation Earthquakes Elastic waves Evolution Explosions Fault lines Faults Flow Ground motion Mantle Moho Ray paths reflected waves Resolution Seismic activity seismic anisotropy tomography Seismic velocities Seismic wave velocities seismicity Tectonics Tomography Transition zone Velocity Vertical motion Wave data Wave velocity |
| Title | Anisotropic Tomography Beneath Northeast Tibet: Evidence for Regional Crustal Flow |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020TC006161 https://www.proquest.com/docview/2427562336 |
| Volume | 39 |
| WOSCitedRecordID | wos000556710300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-9194 dateEnd: 20231213 omitProxy: false ssIdentifier: ssj0014566 issn: 0278-7407 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-9194 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014566 issn: 0278-7407 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yFbz4LU7nyEFPWkzT9CPe5txUGENGp7uVJEulMNexTsX_3iTN5jwoiL30kJdSkveSX97L-z0ATrmHIiEi4nhkSB0SCOowgUJHppreLPUpM5fHHzthtxsNBvTBOtx0LkzJD7FwuGnLMOu1NnDGC0s2oDky1akdabd44JrTj0uMXT7ddxdBBIUNTKgSh5oyE4X23rvqfrnc-fuO9AUzl8Gq2W3aW__9z22waXEmbJSKsQNW5HgXrN-aOr4fe6DXGGdFPpvmk0zAOH-xxNXwWi19ChNCE87RZX1gnHE5u4Lz6qNQgVzYk8_GgwibOmNDvduj_H0f9NutuHnn2PIKDiMewQ7HjLmII8w8zBDmIpAkRVQT4KmHMh8NqZoxLNPQlwFnqt0NuB9wnXRJ2dA7AJVxPpaHAAZpSlwkqVB6SQSKuOT65MOGCixg30ur4Hw-xImw3OO6BMYoMTFwTJPlUaqCs4X0pOTc-EGuNp-txFpekSjIEWpM5wVVcGHm5ddvJHGrGWtWO3z0N_FjsKEbypu7NVCZTV_lCVgTb7OsmNbB6k2v3e_UjUJ-Ar3R24Q |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6tyiL2sry1XV4-wAkiHMdJam7QpYAoFapS1Ftkuw6q1G1Q290V_x6P65ZyYCVELjlkbEX22P48j28ADlVEa1rXeBDxngh4okUgNU0DUyC9WREL6YLHH5ppq1XrdsW9r3OKuTBTfoi5wQ1XhtuvcYGjQdqzDSBJpr22U7SLJyFef5a41aS4Aku_2o1Oc-5IsPjAuStZirSZNPWx77aH08X2b0-lV6i5CFjdidNY_fS_rsF3DzbJ-VQ71uGLGW7A8pUr5vu8Ce3zYX9cTkblU1-TrPzt2avJhd3_LDAkzqeDtX1I1ldmckZmJUiJRbqkbR6dGZHUMW3DvhuD8t8WdBqXWf068DUWAskjzgLFpAypokxGTFKmdGJ4QQWy4NlHyJj2hJ02Zoo0NomS9nuYqDhRmHkpZC_ahsqwHJofQJKi4CE1Qlvl5JrWlFF4_ZE9ixhYHBVVOJ6Nca49ATnWwRjkzhHORL44SlU4mks_TYk33pHbnU1X7pffOLe4I0VgFyVVOHET898-8uyyniG1Hfv5MfEDWLnO7pp586Z1uwPfUGgayrsLlcnoj9mDr_rvpD8e7Xu9fAFD1N8w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_iF178FudnDnrSYpam6eJNp1VxDBlVvJUkTWWg69im4n9vXpbNeVAQe-mhL6Ekeckv7-P3EDpQIalpXWNByHIRMK5FIDWJA1MAvVkRCemCxx8acbNZe3wUd77OKeTCDPkhxgY30Ay3X4OCm25eeLYBIMm013YCdnFehevPDIsEt5o5c9FK7htjR4LFB85dSWOgzSSxj323PZxMtv9-Kn1BzUnA6k6cZOnf_7qMFj3YxGfD1bGCpkxnFc1duWK-H2uoddZp98tBr-y2NU7LF89ejc_t_meBIXY-Hajtg9O2MoNTPCpBii3SxS3z5MyIuA5pG_adPJfv6-g-uUzr14GvsRBIFjIaKCpllShCZUgloUpzwwoigAXPPkJGJBd22qgp4shwJe33KlcRV5B5KWQebqDpTtkxmwjzomBVYoS2i5NpUlNGwfVH5hYx0CgsKuhoNMaZ9gTkUAfjOXOOcCqyyVGqoMOxdHdIvPGD3M5oujKvfv3M4o4YgF3IK-jYTcyvfWTpZT0Faju69TfxfTR_d5FkjZvm7TZaAJlhJO8Omh70Xs0umtVvg3a_t-eX5Sf8Bt6r |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+Tomography+Beneath+Northeast+Tibet%3A+Evidence+for+Regional+Crustal+Flow&rft.jtitle=Tectonics+%28Washington%2C+D.C.%29&rft.au=Sun%2C+Anhui&rft.au=Zhao%2C+Dapeng&rft.date=2020-07-01&rft.issn=0278-7407&rft.eissn=1944-9194&rft.volume=39&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020TC006161&rft.externalDBID=10.1029%252F2020TC006161&rft.externalDocID=TECT21342 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-7407&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-7407&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-7407&client=summon |