Anisotropic Tomography Beneath Northeast Tibet: Evidence for Regional Crustal Flow

We present high‐resolution tomographic images of isotropic P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by jointly inverting 62,339 arrival times of the first P and later PmP waves from 6,602 local earthquakes and 9 seismic explosions. Widespread low‐ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tectonics (Washington, D.C.) Jg. 39; H. 7
Hauptverfasser: Sun, Anhui, Zhao, Dapeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Washington Blackwell Publishing Ltd 01.07.2020
Schlagworte:
ISSN:0278-7407, 1944-9194
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present high‐resolution tomographic images of isotropic P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by jointly inverting 62,339 arrival times of the first P and later PmP waves from 6,602 local earthquakes and 9 seismic explosions. Widespread low‐velocity zones in the middle crust contribute most of seismic anisotropy in the crust beneath NE Tibet. The predominant fast‐velocity directions of azimuthal anisotropy are closely correlated with the stress field revealed by GPS observations and focal mechanism solutions in the transition zones among the Alxa block, the Ordos basin, and the Tibetan Plateau. We attribute this feature to regional crustal flow that has intruded northeastward into NE Tibet and possibly affected vertical ground motions, whereas the flow has been resisted by the surrounding rigid blocks and so failed to further extrude eastward between the Ordos basin and the Sichuan basin. The crustal flow is responsible for the intracrust and crust‐mantle decoupling beneath the transition zones of NE Tibet. High‐velocity zones with depth‐consistent anisotropy are found to border the southwestern Ordos basin between 105° and 106°E. The rigid blocks, major active faults (e.g., the Haiyuan, Qinling, and Kunlun faults), and their interactions cause the regional tectonic features and seismic activities. Accommodation of the different deformation patterns and the tectonic interactions may explain the complicated geodynamic evolution of the crust beneath NE Tibet. Plain Language Summary NE Tibet is a hot region for studying far‐field geodynamic evolution of the growing Tibetan Plateau, where deformation patterns remain debated mainly due to the low resolution of seismic results in the crust, especially the middle to lower crust. In order to illuminate the middle to lower crust, we use the Moho reflected PmP wave data of local earthquakes and explosions because the reflected waves have different ray paths from those of the direct P wave data. Seismic anisotropy can provide important information on the nature of deformation associated with tectonic stress. As a result, we determine the first P wave anisotropic tomography of the crust and uppermost mantle under NE Tibet. We find that widespread low‐velocity zones in the middle to lower crust may reflect regional crustal flow beneath NE Tibet. The crustal flow leads to the intracrust and crust‐mantle decoupling and vertical motion in the transition zone, whereas coherent crust‐mantle deformation more likely occurs in the surrounding rigid blocks. Our results shed new light on the complicated tectonics of NE Tibet with accommodation of the different deformation patterns and interactions of tectonic blocks and active faults. Key Points The first 3‐D P wave anisotropic tomography beneath NE Tibet is determined The use of PmP reflected waves greatly improves the resolution of the middle to lower crust Widespread low‐velocity zones in the middle to lower crust may reflect regional crustal flow
AbstractList We present high‐resolution tomographic images of isotropic P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by jointly inverting 62,339 arrival times of the first P and later PmP waves from 6,602 local earthquakes and 9 seismic explosions. Widespread low‐velocity zones in the middle crust contribute most of seismic anisotropy in the crust beneath NE Tibet. The predominant fast‐velocity directions of azimuthal anisotropy are closely correlated with the stress field revealed by GPS observations and focal mechanism solutions in the transition zones among the Alxa block, the Ordos basin, and the Tibetan Plateau. We attribute this feature to regional crustal flow that has intruded northeastward into NE Tibet and possibly affected vertical ground motions, whereas the flow has been resisted by the surrounding rigid blocks and so failed to further extrude eastward between the Ordos basin and the Sichuan basin. The crustal flow is responsible for the intracrust and crust‐mantle decoupling beneath the transition zones of NE Tibet. High‐velocity zones with depth‐consistent anisotropy are found to border the southwestern Ordos basin between 105° and 106°E. The rigid blocks, major active faults (e.g., the Haiyuan, Qinling, and Kunlun faults), and their interactions cause the regional tectonic features and seismic activities. Accommodation of the different deformation patterns and the tectonic interactions may explain the complicated geodynamic evolution of the crust beneath NE Tibet. NE Tibet is a hot region for studying far‐field geodynamic evolution of the growing Tibetan Plateau, where deformation patterns remain debated mainly due to the low resolution of seismic results in the crust, especially the middle to lower crust. In order to illuminate the middle to lower crust, we use the Moho reflected PmP wave data of local earthquakes and explosions because the reflected waves have different ray paths from those of the direct P wave data. Seismic anisotropy can provide important information on the nature of deformation associated with tectonic stress. As a result, we determine the first P wave anisotropic tomography of the crust and uppermost mantle under NE Tibet. We find that widespread low‐velocity zones in the middle to lower crust may reflect regional crustal flow beneath NE Tibet. The crustal flow leads to the intracrust and crust‐mantle decoupling and vertical motion in the transition zone, whereas coherent crust‐mantle deformation more likely occurs in the surrounding rigid blocks. Our results shed new light on the complicated tectonics of NE Tibet with accommodation of the different deformation patterns and interactions of tectonic blocks and active faults. The first 3‐D P wave anisotropic tomography beneath NE Tibet is determined The use of PmP reflected waves greatly improves the resolution of the middle to lower crust Widespread low‐velocity zones in the middle to lower crust may reflect regional crustal flow
We present high‐resolution tomographic images of isotropic P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by jointly inverting 62,339 arrival times of the first P and later PmP waves from 6,602 local earthquakes and 9 seismic explosions. Widespread low‐velocity zones in the middle crust contribute most of seismic anisotropy in the crust beneath NE Tibet. The predominant fast‐velocity directions of azimuthal anisotropy are closely correlated with the stress field revealed by GPS observations and focal mechanism solutions in the transition zones among the Alxa block, the Ordos basin, and the Tibetan Plateau. We attribute this feature to regional crustal flow that has intruded northeastward into NE Tibet and possibly affected vertical ground motions, whereas the flow has been resisted by the surrounding rigid blocks and so failed to further extrude eastward between the Ordos basin and the Sichuan basin. The crustal flow is responsible for the intracrust and crust‐mantle decoupling beneath the transition zones of NE Tibet. High‐velocity zones with depth‐consistent anisotropy are found to border the southwestern Ordos basin between 105° and 106°E. The rigid blocks, major active faults (e.g., the Haiyuan, Qinling, and Kunlun faults), and their interactions cause the regional tectonic features and seismic activities. Accommodation of the different deformation patterns and the tectonic interactions may explain the complicated geodynamic evolution of the crust beneath NE Tibet. Plain Language Summary NE Tibet is a hot region for studying far‐field geodynamic evolution of the growing Tibetan Plateau, where deformation patterns remain debated mainly due to the low resolution of seismic results in the crust, especially the middle to lower crust. In order to illuminate the middle to lower crust, we use the Moho reflected PmP wave data of local earthquakes and explosions because the reflected waves have different ray paths from those of the direct P wave data. Seismic anisotropy can provide important information on the nature of deformation associated with tectonic stress. As a result, we determine the first P wave anisotropic tomography of the crust and uppermost mantle under NE Tibet. We find that widespread low‐velocity zones in the middle to lower crust may reflect regional crustal flow beneath NE Tibet. The crustal flow leads to the intracrust and crust‐mantle decoupling and vertical motion in the transition zone, whereas coherent crust‐mantle deformation more likely occurs in the surrounding rigid blocks. Our results shed new light on the complicated tectonics of NE Tibet with accommodation of the different deformation patterns and interactions of tectonic blocks and active faults. Key Points The first 3‐D P wave anisotropic tomography beneath NE Tibet is determined The use of PmP reflected waves greatly improves the resolution of the middle to lower crust Widespread low‐velocity zones in the middle to lower crust may reflect regional crustal flow
We present high‐resolution tomographic images of isotropic P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by jointly inverting 62,339 arrival times of the first P and later PmP waves from 6,602 local earthquakes and 9 seismic explosions. Widespread low‐velocity zones in the middle crust contribute most of seismic anisotropy in the crust beneath NE Tibet. The predominant fast‐velocity directions of azimuthal anisotropy are closely correlated with the stress field revealed by GPS observations and focal mechanism solutions in the transition zones among the Alxa block, the Ordos basin, and the Tibetan Plateau. We attribute this feature to regional crustal flow that has intruded northeastward into NE Tibet and possibly affected vertical ground motions, whereas the flow has been resisted by the surrounding rigid blocks and so failed to further extrude eastward between the Ordos basin and the Sichuan basin. The crustal flow is responsible for the intracrust and crust‐mantle decoupling beneath the transition zones of NE Tibet. High‐velocity zones with depth‐consistent anisotropy are found to border the southwestern Ordos basin between 105° and 106°E. The rigid blocks, major active faults (e.g., the Haiyuan, Qinling, and Kunlun faults), and their interactions cause the regional tectonic features and seismic activities. Accommodation of the different deformation patterns and the tectonic interactions may explain the complicated geodynamic evolution of the crust beneath NE Tibet.
Author Sun, Anhui
Zhao, Dapeng
Author_xml – sequence: 1
  givenname: Anhui
  orcidid: 0000-0003-3809-7904
  surname: Sun
  fullname: Sun, Anhui
  email: sah@ief.ac.cn
  organization: Institute of Earthquake Forecasting, China Earthquake Administration
– sequence: 2
  givenname: Dapeng
  orcidid: 0000-0002-4407-594X
  surname: Zhao
  fullname: Zhao, Dapeng
  email: zhao@tohoku.ac.jp
  organization: Tohoku University
BookMark eNp9kE1PwzAMhiM0JMbgxg-IxJWC46bpym1UGyBNIE3lXKVdumXqmpJkTPv3BI0DQgIf7IOf1x_vORl0plOEXDG4ZYDZHQJCkQMIJtgJGbKM8ygLeUCGgOk4SjmkZ-TcuQ0A44kQQ7KYdNoZb02va1qYrVlZ2a8P9EF1Svo1fTHWr5V0nha6Uv6eTj_0UnW1oo2xdKFW2nSypbndOR_qrDX7C3LayNapy-86Im-zaZE_RfPXx-d8Mo8kjzlGFUrJoAKUMUrAqhaKN5CNhUhCZDKBZdZkAlWTJkpUMvSZqBJR4TjhmVzGI3J9nNtb875Tzpcbs7PhGlcixzQRGMciUDdHqrbGOauasrd6K-2hZFB-uVb-dC3g-AuvtZc-fOmt1O1fovgo2utWHf5dUBbTvEAWDIg_AdTPfwc
CitedBy_id crossref_primary_10_1016_j_chemgeo_2023_121386
crossref_primary_10_1016_j_jseaes_2021_105050
crossref_primary_10_1016_j_jseaes_2024_106449
crossref_primary_10_1016_j_jseaes_2022_105430
crossref_primary_10_1016_j_jsg_2021_104464
crossref_primary_10_1016_j_earscirev_2021_103507
crossref_primary_10_1007_s11430_025_1636_9
crossref_primary_10_1016_j_pepi_2020_106634
crossref_primary_10_1016_j_tecto_2021_228743
crossref_primary_10_1016_j_tecto_2022_229413
crossref_primary_10_1016_j_pepi_2022_106853
crossref_primary_10_1016_j_pepi_2020_106573
crossref_primary_10_1007_s10712_022_09764_7
crossref_primary_10_1093_gji_ggaf297
crossref_primary_10_1016_j_tecto_2022_229619
crossref_primary_10_1111_ter_12736
crossref_primary_10_1016_j_pepi_2024_107269
crossref_primary_10_1360_N072025_0006
crossref_primary_10_1016_j_jseaes_2023_105800
crossref_primary_10_1016_j_chemgeo_2024_122280
crossref_primary_10_1016_j_tecto_2025_230878
crossref_primary_10_1016_j_tecto_2023_229846
crossref_primary_10_3389_fphy_2024_1502248
crossref_primary_10_1093_gji_ggaf104
crossref_primary_10_3390_rs14010110
crossref_primary_10_1016_j_gr_2022_04_012
Cites_doi 10.1029/2018JB017081
10.1002/2015GC005952
10.1111/j.1365-246X.2003.02044.x
10.1002/2015JB012209
10.1016/j.epsl.2018.06.010
10.1016/j.pepi.2008.06.005
10.1016/j.epsl.2005.04.039
10.1016/j.epsl.2007.11.042
10.1046/j.1365-246X.1998.00567.x
10.1093/gji/ggt086
10.1016/j.tecto.2013.02.040
10.1126/science.1155371
10.1016/j.tecto.2016.04.007
10.1029/95JB00046
10.1029/92JB00603
10.1029/TC006i004p00489
10.1029/2005JB004120
10.1038/ngeo2130
10.1146/annurev.earth.28.1.211
10.1130/G20554.1
10.1016/j.gr.2015.05.008
10.1144/GSL.SP.2006.268.01.03
10.1029/2018TC005214
10.1029/93JB03138
10.1016/j.tecto.2014.07.001
10.1086/627920
10.1016/j.epsl.2016.03.003
10.1126/science.105978
10.1002/2013JB010626
10.1002/2016GC006262
10.1016/j.pnsc.2008.01.018
10.1002/2013JB010374
10.1016/j.epsl.2017.09.048
10.3390/rs11010034
10.1093/gji/ggz013
10.1002/2014JB011784
10.1016/j.epsl.2015.01.002
10.1002/tect.20081
10.1007/BF02959446
10.1093/gji/ggz489
10.1029/98RG02075
10.1016/j.pepi.2016.06.005
10.1126/science.274.5294.1891
10.1038/ngeo830
10.2138/gsrmg.51.1.353
10.1111/j.1365-246X.1991.tb06724.x
10.1016/j.tecto.2006.01.026
10.1016/j.gr.2008.04.004
10.1002/2013JB010847
10.1360/02YD0047
10.1016/j.epsl.2017.08.030
10.1016/j.tecto.2018.07.007
10.1002/cjg2.1219
10.1111/j.1365-246X.2011.05249.x
10.1785/BSSA0760020521
10.1002/2015JB012692
10.1029/96JB00114
10.1016/j.pepi.2008.07.042
10.1046/j.1365-246X.2003.01894.x
10.1016/j.epsl.2011.01.021
10.1785/gssrl.70.2.154
10.1016/j.pepi.2019.106314
10.1016/j.jseaes.2012.11.009
10.1016/j.epsl.2013.03.015
10.1002/2015GL063921
10.1007/s11430-008-0008-5
10.1016/j.jseaes.2019.104027
10.1016/j.tecto.2019.228274
10.1029/2018TC005276
10.1093/gji/ggy177
10.1029/2007GL030026
10.1038/375774a0
10.1145/355984.355989
10.1002/cjg2.630
10.1016/j.gr.2015.08.009
10.1785/0120100112
10.3319/TAO.2019.01.18.03
10.1002/rog.20008
10.1016/j.wavemoti.2004.05.006
10.1360/N972018-00478
10.1016/j.pepi.2019.04.005
10.1016/j.epsl.2011.01.026
10.1093/gji/ggv420
10.1016/j.pepi.2018.12.003
10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
10.1016/j.tecto.2018.12.026
10.1093/gji/ggz267
10.1002/cjg2.776
10.1016/0165-2125(81)90026-3
10.1016/j.pepi.2011.08.009
10.1002/cjg2.233
10.1016/j.pepi.2006.03.024
10.1126/science.1010580
10.1002/2013JB010503
10.1126/science.255.5052.1663
10.1016/j.pepi.2015.04.005
10.1016/j.tecto.2017.01.025
10.1002/2014JB010963
10.1146/annurev.earth.24.1.385
10.1029/2009JB007142
10.1093/gji/ggx004
10.1029/2003JB002789
ContentType Journal Article
Copyright 2020. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2020. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
DOI 10.1029/2020TC006161
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList CrossRef

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1944-9194
EndPage n/a
ExternalDocumentID 10_1029_2020TC006161
TECT21342
Genre article
GeographicLocations Tibet
Tibetan Plateau
GeographicLocations_xml – name: Tibetan Plateau
– name: Tibet
GrantInformation_xml – fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  funderid: 19H01996
– fundername: National Natural Science Foundation of China
  funderid: 41974050
GroupedDBID -DZ
-~X
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
702
8-1
8FE
8FH
8G5
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AFZJQ
AGCDD
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
ALXUD
AMYDB
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BFHJK
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FA8
FEDTE
G-S
GNUQQ
GODZA
GUQSH
HCIFZ
HGLYW
HVGLF
HZ~
H~9
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MEWTI
MSFUL
MSSTM
MVM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PCBAR
PQQKQ
PROAC
R.K
R05
RIWAO
RJQFR
ROL
RXW
SAMSI
SJN
SUPJJ
TAE
TAF
TN5
UB1
UQL
VJK
WBKPD
WH7
WIN
WXSBR
WYJ
XJT
XOL
ZZTAW
~02
~OA
~~A
AAMMB
AAYXX
ABJIA
ADXHL
AEFGJ
AETEA
AEYWJ
AFFHD
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
PHGZM
PHGZT
7TG
7TN
F1W
H96
KL.
L.G
ID FETCH-LOGICAL-a4342-b2aa10b02a32a02bc6e4f0986655559a50d9f962ef75e6bac6e16b56b28549ad3
IEDL.DBID WIN
ISICitedReferencesCount 35
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000556710300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-7407
IngestDate Sat Aug 16 21:25:48 EDT 2025
Sat Nov 29 04:56:49 EST 2025
Tue Nov 18 21:26:53 EST 2025
Wed Jan 22 16:32:49 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4342-b2aa10b02a32a02bc6e4f0986655559a50d9f962ef75e6bac6e16b56b28549ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3809-7904
0000-0002-4407-594X
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2020TC006161
PQID 2427562336
PQPubID 30885
PageCount 18
ParticipantIDs proquest_journals_2427562336
crossref_primary_10_1029_2020TC006161
crossref_citationtrail_10_1029_2020TC006161
wiley_primary_10_1029_2020TC006161_TECT21342
PublicationCentury 2000
PublicationDate July 2020
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Tectonics (Washington, D.C.)
PublicationYear 2020
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2019; 11
1986; 76
2013; 62
1995; 375
2003; 153
2019; 286
2016; 33
2004; 32
2017; 209
1973; 81
2015; 413
2013; 51
2010; 115
2013; 118
2018; 214
2003; 46
2010; 3
1991; 105
2013; 193
1989
2012; 188
2017; 60
2018; 744
2019; 30
1981; 3
2015; 244
2005; 235
2015; 120
2019; 38
2016; 442
2016; 204
2016; 17
2008; 51
2019; 185
1998; 135
2013; 369‐370
2004; 156
2011; 304
1992; 255
1999; 37
1994; 99
2019; 218
2019; 217
2019; 292
2019; 296
2017; 41
2013; 606
2002; 51
1987; 6
2019; 124
2008; 267
1992; 97
1996; 101
2007; 34
2017; 478
2001; 294
2001; 292
2002; 45
2015; 42
2018; 497
2016; 677‐678
2017; 480
1982; 8
2019; 752
2020; 774
1996; 24
2014; 7
2008; 170
2014; 119
2014; 634
2015; 16
2000; 28
2020; 220
2008; 18
2009
2008; 14
2005; 41
2016; 121
2006
2005
2018; 63
2008; 168
2004; 109
2008; 321
2005; 48
2017; 699
2006; 158
2007; 112
2013; 32
1995; 100
1996; 274
2016; 257
1999; 70
2011; 189
2006; 420
2011; 101
2006; 268
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_83_1
e_1_2_8_19_1
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
Zhan Y. (e_1_2_8_94_1) 2017; 60
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_28_1
Zhang P. (e_1_2_8_95_1) 2003; 46
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
Zervas C. E. (e_1_2_8_93_1) 1986; 76
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_46_1
e_1_2_8_27_1
Sun A. (e_1_2_8_69_1) 2019; 217
Ma X. (e_1_2_8_54_1) 1989
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Qian Q. (e_1_2_8_60_1) 2017; 60
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – volume: 33
  start-page: 24
  year: 2016
  end-page: 43
  article-title: Seismic anisotropy tomography: New insight into subduction dynamics
  publication-title: Gondwana Research
– volume: 119
  start-page: 1954
  year: 2014
  end-page: 1970
  article-title: The distribution of the mid‐to‐lower crustal low‐velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 744
  start-page: 484
  year: 2018
  end-page: 498
  article-title: The world stress map database release 2016: Crustal stress pattern across scales
  publication-title: Tectonophysics
– year: 2005
– start-page: 29
  year: 1989
  end-page: 30
– volume: 267
  start-page: 118
  issue: 1‐2
  year: 2008
  end-page: 128
  article-title: Amphibole and lower crustal seismic properties
  publication-title: Earth and Planetary Science Letters
– volume: 16
  start-page: 4223
  year: 2015
  end-page: 4236
  article-title: Anisotropic low‐velocity lower crust beneath the northeastern margin of Tibetan Plateau: Evidence for crustal channel flow
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 6
  start-page: 489
  issue: 4
  year: 1987
  end-page: 504
  article-title: Injection of Indian crust into Tibetan lower crust: A two‐dimensional finite element model study
  publication-title: Tectonics
– volume: 292
  start-page: 100
  year: 2019
  end-page: 113
  article-title: Is there a big mantle wedge under eastern Tibet?
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 699
  start-page: 93
  year: 2017
  end-page: 101
  article-title: Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan Plateau using GPS and shear‐wave splitting data
  publication-title: Tectonophysics
– volume: 153
  start-page: 213
  issue: 1
  year: 2003
  end-page: 228
  article-title: Sensitivity kernels for shear wave splitting in transverse isotropic media
  publication-title: Geophysical Journal International
– volume: 3
  start-page: 343
  issue: 4
  year: 1981
  end-page: 391
  article-title: A review of wave motion in anisotropic and cracked elastic‐media
  publication-title: Wave Motion
– volume: 105
  start-page: 429
  issue: 2
  year: 1991
  end-page: 465
  article-title: Traveltimes for global earthquake location and phase identification
  publication-title: Geophysical Journal of the Royal Astronomical Society
– volume: 244
  start-page: 11
  year: 2015
  end-page: 22
  article-title: Crustal structure and deformation under the Longmenshan and its surroundings revealed by receiver function data
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 217
  start-page: 179
  issue: 1
  year: 2019
  end-page: 189
  article-title: Depth‐dependent Pn velocities and configuration of Indian and Asian lithosphere beneath the Tibetan Plateau
  publication-title: Geophysical Journal International
– volume: 62
  start-page: 606
  year: 2013
  end-page: 615
  article-title: Seismic signature of the mantle transition zone beneath eastern Tibet and Sichuan Basin
  publication-title: Journal of Asian Earth Sciences
– volume: 606
  start-page: 140
  issue: 0
  year: 2013
  end-page: 159
  article-title: Crustal structure across northeastern Tibet from wide‐angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation
  publication-title: Tectonophysics
– volume: 24
  start-page: 385
  issue: 1
  year: 1996
  end-page: 432
  article-title: Seismic anisotropy beneath the continents: Probing the depths of geology
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 188
  start-page: 144
  issue: 1
  year: 2012
  end-page: 164
  article-title: Estimating crustal seismic anisotropy with a joint analysis of radial and transverse receiver function data
  publication-title: Geophysical Journal International
– volume: 774
  start-page: 228274
  year: 2020
  article-title: Multiscale spatial distribution of crustal seismic anisotropy beneath the northeastern margin of the Tibetan Plateau and tectonic implications of the Haiyuan fault
  publication-title: Tectonophysics
– volume: 218
  start-page: 2066
  issue: 3
  year: 2019
  end-page: 2078
  article-title: Focal mechanism and stress field in the northeastern Tibetan Plateau: Insight into layered crustal deformations
  publication-title: Geophysical Journal International
– volume: 214
  start-page: 1151
  issue: 2
  year: 2018
  end-page: 1163
  article-title: Crustal tomography of the 2016 Kumamoto earthquake area in West Japan using and PmP data
  publication-title: Geophysical Journal International
– volume: 119
  start-page: 2153
  year: 2014
  end-page: 2173
  article-title: LITHO1. 0: An updated crust and lithospheric model of the Earth
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 268
  start-page: 39
  issue: 1
  year: 2006
  end-page: 70
  article-title: Crustal flow in Tibet: Geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow
  publication-title: Geological Society, London, Special Publications
– volume: 304
  start-page: 147
  issue: 1‐2
  year: 2011
  end-page: 157
  article-title: Seismic anisotropy of the northeastern Tibetan Plateau from shear wave splitting analysis
  publication-title: Earth and Planetary Science Letters
– volume: 193
  start-page: 1166
  issue: 3
  year: 2013
  end-page: 1181
  article-title: wave tomography for 3‐D radial and azimuthal anisotropy of Tohoku and Kyushu subduction zones
  publication-title: Geophysical Journal International
– volume: 497
  start-page: 204
  year: 2018
  end-page: 216
  article-title: Complicated crustal deformation beneath the NE margin of the Tibetan Plateau and its adjacent areas revealed by multi‐station receiver‐function gathering
  publication-title: Earth and Planetary Science Letters
– volume: 168
  start-page: 134
  issue: 3‐4
  year: 2008
  end-page: 146
  article-title: Seismic images under the Beijing region inferred from and PmP data
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 109
  year: 2004
  article-title: Tomographic inversion of Pn travel times in China
  publication-title: Journal of Geophysical Research
– volume: 442
  start-page: 72
  year: 2016
  end-page: 79
  article-title: Crustal anisotropy and ductile flow beneath the eastern Tibetan Plateau and adjacent areas
  publication-title: Earth and Planetary Science Letters
– volume: 420
  start-page: 239
  issue: 1‐2
  year: 2006
  end-page: 252
  article-title: Crustal structure of mainland China from deep seismic sounding data
  publication-title: Tectonophysics
– volume: 321
  start-page: 1054
  issue: 5892
  year: 2008
  end-page: 1058
  article-title: The geological evolution of the Tibetan Plateau
  publication-title: Science
– volume: 41
  start-page: 400
  year: 2017
  end-page: 410
  article-title: Crustal shear‐wave velocity structure of northeastern Tibet revealed by ambient seismic noise and receiver functions
  publication-title: Gondwana Research
– volume: 204
  start-page: 167
  issue: 1
  year: 2016
  end-page: 179
  article-title: Crustal structure and deformation beneath the NE margin of the Tibetan Plateau constrained by teleseismic receiver function data
  publication-title: Geophysical Journal International
– volume: 48
  start-page: 1613
  issue: 10
  year: 2005
  end-page: 1626
  article-title: Relation between electricity structure of the crust and deformation of crustal blocks on the northeastern margin of Qinghai‐Tibet Plateau
  publication-title: Science in China
– volume: 70
  start-page: 154
  issue: 2
  year: 1999
  end-page: 160
  article-title: The TauP toolkit: Flexible seismic travel‐time and ray‐path utilities
  publication-title: Seismological Research Letters
– volume: 100
  start-page: 6487
  issue: B4
  year: 1995
  end-page: 6504
  article-title: Tomographic imaging of the Alaska subduction zone
  publication-title: Journal of Geophysical Research
– volume: 286
  start-page: 179
  year: 2019
  end-page: 189
  article-title: Distribution of the crustal low velocity zones beneath the central and northeastern Tibetan Plateau: Insights from joint analysis of receiver functions and surface wave dispersion observations
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 51
  start-page: 76
  year: 2013
  end-page: 112
  article-title: Constraints on subduction geodynamics from seismic anisotropy
  publication-title: Reviews of Geophysics
– volume: 8
  start-page: 43
  issue: 1
  year: 1982
  end-page: 71
  article-title: LSQR: An algorithm for sparse linear equations and sparse least squares
  publication-title: ACM Transactions on Mathematical Software (TOMS)
– volume: 38
  start-page: 3167
  year: 2019
  end-page: 3181
  article-title: Variations in crustal and uppermost mantle structures across eastern Tibet and adjacent regions: Implications of crustal flow and asthenospheric upwelling combined for expansions of the Tibetan Plateau
  publication-title: Tectonics
– volume: 257
  start-page: 193
  year: 2016
  end-page: 204
  article-title: Pn anisotropic tomography and mantle dynamics beneath China
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 677‐678
  start-page: 227
  year: 2016
  end-page: 240
  article-title: Continental deformation accommodated by non‐rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet
  publication-title: Tectonophysics
– volume: 45
  start-page: 210
  issue: 2
  year: 2002
  end-page: 217
  article-title: A preliminary study on the crustal velocity structure of Maqin‐Lanzhou‐Jingbian by means of deep seismic sounding profile (in Chinese with English abstract)
  publication-title: Chinese Journal of Geophysics
– volume: 51
  start-page: 353
  issue: 1
  year: 2002
  end-page: 385
  article-title: Seismic anisotropy and global geodynamics
  publication-title: Reviews in Mineralogy and Geochemistry
– volume: 60
  start-page: 2371
  issue: 6
  year: 2017
  end-page: 2384
  article-title: Deep electrical structure of crust beneath the Madongshan step area at the Haiyuan fault in the northeastern margin of the Tibetan Plateau and tectonic implications (in Chinese with English abstract)
  publication-title: Chinese Journal of Geophysics
– volume: 413
  start-page: 167
  year: 2015
  end-page: 175
  article-title: Complex seismic anisotropy beneath western Tibet and its geodynamic implications
  publication-title: Earth and Planetary Science Letters
– volume: 97
  start-page: 19,909
  issue: B13
  year: 1992
  end-page: 19,928
  article-title: Tomographic imaging of and wave velocity structure beneath northeastern Japan
  publication-title: Journal of Geophysical Research
– volume: 42
  start-page: 4326
  year: 2015
  end-page: 4334
  article-title: Depth‐variant azimuthal anisotropy in Tibet revealed by surface wave tomography
  publication-title: Geophysical Research Letters
– volume: 292
  start-page: 716
  issue: 5517
  year: 2001
  end-page: 719
  article-title: Detection of widespread fluids in the Tibetan crust by magnetotelluric studies
  publication-title: Science
– volume: 634
  start-page: 198
  year: 2014
  end-page: 207
  article-title: The crustal thickness of NE Tibet and its implication for crustal shortening
  publication-title: Tectonophysics
– volume: 375
  start-page: 774
  issue: 6534
  year: 1995
  end-page: 777
  article-title: Lattice preferred orientation of olivine aggregates deformed in simple shear
  publication-title: Nature
– volume: 369‐370
  start-page: 129
  year: 2013
  end-page: 137
  article-title: Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications
  publication-title: Earth and Planetary Science Letters
– volume: 18
  start-page: 843
  issue: 7
  year: 2008
  end-page: 849
  article-title: Heat flow distribution in Chinese continent and its adjacent areas
  publication-title: Progress in Natural Science
– volume: 480
  start-page: 33
  year: 2017
  end-page: 41
  article-title: New images of the crustal structure beneath eastern Tibet from a high‐density seismic array
  publication-title: Earth and Planetary Science Letters
– volume: 51
  start-page: 378
  issue: 2
  year: 2008
  end-page: 382
  article-title: Study on crustal composition and geodynamics using seismic velocities in the northeastern margin of the Tibetan Plateau (in Chinese with English abstract)
  publication-title: Chinese Journal of Geophysics
– year: 2009
– volume: 46
  start-page: 13
  issue: 2
  year: 2003
  end-page: 24
  article-title: Active tectonic blocks and strong earthquakes in the continent of China
  publication-title: Science in China
– volume: 185
  start-page: 104027
  year: 2019
  article-title: Frequency‐dependent Pms splitting measurements across the Longmenshan thrust belt in the eastern Tibetan Plateau
  publication-title: Journal of Asian Earth Sciences
– volume: 158
  start-page: 292
  issue: 2‐4
  year: 2006
  end-page: 320
  article-title: Seismic anisotropy beneath stable continental interiors
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 217
  start-page: 405
  issue: 1
  year: 2019
  end-page: 421
  article-title: Crustal seismic imaging of Northeast Tibet using first and later phases of earthquakes and explosions
  publication-title: Geophysical Journal International
– volume: 60
  start-page: 2338
  issue: 6
  year: 2017
  end-page: 2349
  article-title: Anisotropy of middle‐upper crust derived from shear‐wave splitting in the northeastern Tibetan Plateau and tectonic implications (in Chinese with English abstract)
  publication-title: Chinese Journal of Geophysics
– volume: 28
  start-page: 211
  issue: 1
  year: 2000
  end-page: 280
  article-title: Geologic evolution of the Himalayan‐Tibetan orogen
  publication-title: Annual Review of Earth and Planetary Sciences
– volume: 48
  start-page: 92
  issue: 1
  year: 2005
  end-page: 100
  article-title: Three dimensional Moho geometry beneath the northeast edge of the Qinghai‐Tibet Plateau (in Chinese with English abstract)
  publication-title: Chinese Journal of Geophysics
– volume: 120
  start-page: 3255
  year: 2015
  end-page: 3277
  article-title: On the trade‐off between seismic anisotropy and heterogeneity: Numerical simulations and application to Northeast Japan
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 38
  start-page: 741
  year: 2019
  end-page: 766
  article-title: Initial deformation of the northern Tibetan Plateau: Insights from deposition of the Lulehe formation in the Qaidam Basin
  publication-title: Tectonics
– volume: 115
  year: 2010
  article-title: Heterogeneity and anisotropy of the lithosphere of SE Tibet from surface wave array tomography
  publication-title: Journal of Geophysical Research
– volume: 46
  start-page: 356
  issue: 4
  year: 2003
  end-page: 372
  article-title: Basic characteristics of active tectonics of China
  publication-title: Science in China
– volume: 296
  start-page: 106314
  year: 2019
  article-title: Importance of later phases in seismic tomography
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 30
  start-page: 127
  issue: 1
  year: 2019
  end-page: 137
  article-title: The lithospheric‐scale deformation in NE Tibet from joint inversion of receiver function and surface wave dispersion
  publication-title: Terrestrial, Atmospheric and Oceanic Sciences
– volume: 121
  start-page: 2608
  year: 2016
  end-page: 2635
  article-title: Seismic tomography and anisotropy of the Helan‐Liupan tectonic belt: Insight into lower crustal flow and seismotectonics
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 76
  start-page: 521
  issue: 2
  year: 1986
  end-page: 546
  article-title: Pn observation and interpretation in Washington
  publication-title: Bulletin of the Seismological Society of America
– volume: 119
  start-page: 2174
  year: 2014
  end-page: 2198
  article-title: Pn anisotropic tomography and dynamics under eastern Tibetan Plateau
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 63
  start-page: 3217
  issue: 31
  year: 2018
  end-page: 3228
  article-title: Eastward extrusion and northward expansion of the Tibetan Plateau—Discussions for the deep processes of the plateau uplift (in Chinese with English abstract)
  publication-title: Chinese Science Bulletin
– volume: 32
  start-page: 809
  issue: 9
  year: 2004
  end-page: 812
  article-title: Continuous deformation of the Tibetan Plateau from global positioning system data
  publication-title: Geology
– volume: 17
  start-page: 1861
  year: 2016
  end-page: 1884
  article-title: Teleseismic wave tomography and mantle dynamics beneath eastern Tibet
  publication-title: Geochemistry, Geophysics, Geosystems
– volume: 189
  start-page: 157
  issue: 3‐4
  year: 2011
  end-page: 170
  article-title: Seismic anisotropy and implications for mantle deformation beneath the NE margin of the Tibet Plateau and Ordos Plateau
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 34
  year: 2007
  article-title: Mapping the crustal structure under active volcanoes in central Tohoku, Japan using and PmP data
  publication-title: Geophysical Research Letters
– volume: 135
  start-page: 1
  issue: 1
  year: 1998
  end-page: 47
  article-title: Crustal thickening in Gansu‐Qinghai, lithospheric mantle subduction, and oblique, strike‐slip controlled growth of the Tibet Plateau
  publication-title: Geophysical Journal International
– volume: 156
  start-page: 237
  issue: 2
  year: 2004
  end-page: 254
  article-title: Including anisotropy in 3‐D velocity inversion and application to Marlborough, New Zealand
  publication-title: Geophysical Journal International
– volume: 14
  start-page: 535
  issue: 3
  year: 2008
  end-page: 542
  article-title: Seismic imaging of southwest Japan using and PmP data: Implications for arc magmatism and seismotectonics
  publication-title: Gondwana Research
– volume: 752
  start-page: 24
  year: 2019
  end-page: 34
  article-title: Tomographic imaging of the 2017 Ms7.0 Jiuzhaigou earthquake source region and its implications on material extrusion in the northeast Tibetan Plateau
  publication-title: Tectonophysics
– volume: 32
  start-page: 1358
  year: 2013
  end-page: 1370
  article-title: The growth of northeastern Tibet and its relevance to large‐scale continental geodynamics: A review of recent studies
  publication-title: Tectonics
– volume: 48
  start-page: 1205
  issue: 5
  year: 2005
  end-page: 1216
  article-title: Electrical conductivity structure of the crust and upper mantle in the northeastern margin of the Qinghai‐Tibet Plateau along the profile Maqên‐Lanzhou‐Jingbian (in Chinese with English abstract)
  publication-title: Chinese Journal of Geophysics
– volume: 112
  year: 2007
  article-title: Present‐day crustal motion within the Tibetan Plateau inferred from GPS measurements
  publication-title: Journal of Geophysical Research
– volume: 28
  start-page: 703
  issue: 8
  year: 2000
  end-page: 706
  article-title: Topographic ooze: Building the eastern margin of Tibet by lower crustal flow
  publication-title: Geology
– volume: 81
  start-page: 683
  issue: 6
  year: 1973
  end-page: 692
  article-title: Tibetan, Variscan, and Precambrian basement reactivation: Products of continental collision
  publication-title: The Journal of Geology
– volume: 124
  start-page: 10,331
  year: 2019
  end-page: 10,346
  article-title: Complex lithospheric deformation in eastern and northeastern Tibet from shear wave splitting observations and its geodynamic implications
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 37
  start-page: 65
  issue: 1
  year: 1999
  end-page: 106
  article-title: Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting?
  publication-title: Reviews of Geophysics
– volume: 3
  start-page: 358
  issue: 5
  year: 2010
  end-page: 362
  article-title: Crustal deformation of the eastern Tibetan Plateau revealed by magnetotelluric imaging
  publication-title: Nature Geoscience
– volume: 255
  start-page: 1663
  issue: 5052
  year: 1992
  end-page: 1670
  article-title: Raising Tibet
  publication-title: Science
– volume: 51
  start-page: 263
  issue: 2
  year: 2008
  end-page: 274
  article-title: ‐wave crustal and upper mantle's velocity structure in the eastern Tibetan Plateau—Deep environment of lower crustal flow
  publication-title: Science in China
– volume: 118
  start-page: 5722
  year: 2013
  end-page: 5732
  article-title: Three‐dimensional velocity field of present‐day crustal motion of the Tibetan Plateau derived from GPS measurements
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 41
  start-page: 59
  issue: 1
  year: 2005
  end-page: 77
  article-title: A review of shear‐wave splitting in the compliant crack‐critical anisotropic Earth
  publication-title: Wave Motion
– volume: 209
  start-page: ggx004
  issue: 1
  year: 2017
  end-page: ggx491
  article-title: Crustal anisotropy across eastern Tibet and surroundings modeled as a depth‐dependent tilted hexagonally symmetric medium
  publication-title: Geophysical Journal International
– volume: 99
  start-page: 19,635
  issue: B10
  year: 1994
  end-page: 19,646
  article-title: Initial reference models in local earthquake tomography
  publication-title: Journal of Geophysical Research
– volume: 235
  start-page: 623
  issue: 3‐4
  year: 2005
  end-page: 631
  article-title: Local earthquake reflection tomography of the Landers aftershock area
  publication-title: Earth and Planetary Science Letters
– volume: 120
  start-page: 6404
  year: 2015
  end-page: 6430
  article-title: Magnitude and symmetry of seismic anisotropy in mica‐ and amphibole‐bearing metamorphic rocks and implications for tectonic interpretation of seismic data from the southeast Tibetan Plateau
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 304
  start-page: 103
  issue: 1‐2
  year: 2011
  end-page: 112
  article-title: Rayleigh wave tomography of the northeastern margin of the Tibetan Plateau
  publication-title: Earth and Planetary Science Letters
– volume: 478
  start-page: 66
  year: 2017
  end-page: 75
  article-title: Insight into NE Tibetan Plateau expansion from crustal and upper mantle anisotropy revealed by shear‐wave splitting
  publication-title: Earth and Planetary Science Letters
– volume: 119
  start-page: 5686
  year: 2014
  end-page: 5712
  article-title: Three‐dimensional wave azimuthal anisotropy in the lithosphere beneath China: 3D wave anisotropy beneath China
  publication-title: Journal of Geophysical Research: Solid Earth
– volume: 220
  start-page: 1491
  issue: 3
  year: 2020
  end-page: 1503
  article-title: Crustal seismic anisotropy of the northeastern Tibetan Plateau and the adjacent areas from shear‐wave splitting measurements
  publication-title: Geophysical Journal International
– volume: 11
  start-page: 34
  issue: 1
  year: 2019
  article-title: Crustal deformation on the northeastern margin of the Tibetan Plateau from continuous GPS observations
  publication-title: Remote Sensing
– volume: 170
  start-page: 115
  issue: 1‐2
  year: 2008
  end-page: 133
  article-title: wave anisotropic tomography beneath northeast Japan
  publication-title: Physics of the Earth and Planetary Interiors
– year: 2006
– volume: 101
  start-page: 2782
  issue: 6
  year: 2011
  end-page: 2795
  article-title: The crustal and upper‐mantle structures beneath the northeastern margin of Tibet
  publication-title: Bulletin of the Seismological Society of America
– volume: 294
  start-page: 1671
  issue: 5547
  year: 2001
  end-page: 1677
  article-title: Oblique stepwise rise and growth of the Tibet Plateau
  publication-title: Science
– volume: 101
  start-page: 8403
  issue: B4
  year: 1996
  end-page: 8414
  article-title: Anisotropy Pn tomography in the western United States
  publication-title: Journal of Geophysical Research
– volume: 274
  start-page: 1891
  issue: 5294
  year: 1996
  end-page: 1894
  article-title: Tomography of the source area of the 1995 Kobe earthquake: Evidence for fluids at the hypocenter?
  publication-title: Science
– volume: 7
  start-page: 361
  issue: 5
  year: 2014
  end-page: 365
  article-title: Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults
  publication-title: Nature Geoscience
– volume: 217
  start-page: 405
  issue: 1
  year: 2019
  ident: e_1_2_8_69_1
  article-title: Crustal seismic imaging of Northeast Tibet using first and later phases of earthquakes and explosions
  publication-title: Geophysical Journal International
– ident: e_1_2_8_20_1
  doi: 10.1029/2018JB017081
– ident: e_1_2_8_65_1
  doi: 10.1002/2015GC005952
– ident: e_1_2_8_16_1
  doi: 10.1111/j.1365-246X.2003.02044.x
– ident: e_1_2_8_31_1
  doi: 10.1002/2015JB012209
– ident: e_1_2_8_88_1
  doi: 10.1016/j.epsl.2018.06.010
– ident: e_1_2_8_38_1
  doi: 10.1016/j.pepi.2008.06.005
– ident: e_1_2_8_104_1
  doi: 10.1016/j.epsl.2005.04.039
– ident: e_1_2_8_76_1
  doi: 10.1016/j.epsl.2007.11.042
– ident: e_1_2_8_55_1
  doi: 10.1046/j.1365-246X.1998.00567.x
– ident: e_1_2_8_81_1
  doi: 10.1093/gji/ggt086
– ident: e_1_2_8_99_1
  doi: 10.1016/j.tecto.2013.02.040
– ident: e_1_2_8_62_1
  doi: 10.1126/science.1155371
– ident: e_1_2_8_111_1
  doi: 10.1016/j.tecto.2016.04.007
– ident: e_1_2_8_101_1
  doi: 10.1029/95JB00046
– ident: e_1_2_8_102_1
  doi: 10.1029/92JB00603
– ident: e_1_2_8_108_1
  doi: 10.1029/TC006i004p00489
– ident: e_1_2_8_19_1
  doi: 10.1029/2005JB004120
– ident: e_1_2_8_51_1
  doi: 10.1038/ngeo2130
– ident: e_1_2_8_91_1
  doi: 10.1146/annurev.earth.28.1.211
– ident: e_1_2_8_96_1
  doi: 10.1130/G20554.1
– ident: e_1_2_8_105_1
  doi: 10.1016/j.gr.2015.05.008
– ident: e_1_2_8_35_1
  doi: 10.1144/GSL.SP.2006.268.01.03
– ident: e_1_2_8_7_1
  doi: 10.1029/2018TC005214
– ident: e_1_2_8_34_1
  doi: 10.1029/93JB03138
– ident: e_1_2_8_77_1
  doi: 10.1016/j.tecto.2014.07.001
– ident: e_1_2_8_15_1
  doi: 10.1086/627920
– ident: e_1_2_8_36_1
  doi: 10.1016/j.epsl.2016.03.003
– ident: e_1_2_8_75_1
  doi: 10.1126/science.105978
– ident: e_1_2_8_59_1
  doi: 10.1002/2013JB010626
– ident: e_1_2_8_39_1
  doi: 10.1002/2016GC006262
– ident: e_1_2_8_74_1
  doi: 10.1016/j.pnsc.2008.01.018
– ident: e_1_2_8_41_1
  doi: 10.1002/2013JB010374
– ident: e_1_2_8_52_1
  doi: 10.1016/j.epsl.2017.09.048
– ident: e_1_2_8_68_1
  doi: 10.3390/rs11010034
– ident: e_1_2_8_24_1
  doi: 10.1093/gji/ggz013
– ident: e_1_2_8_30_1
  doi: 10.1002/2014JB011784
– ident: e_1_2_8_84_1
  doi: 10.1016/j.epsl.2015.01.002
– ident: e_1_2_8_92_1
  doi: 10.1002/tect.20081
– ident: e_1_2_8_13_1
  doi: 10.1007/BF02959446
– ident: e_1_2_8_27_1
  doi: 10.1093/gji/ggz489
– ident: e_1_2_8_63_1
  doi: 10.1029/98RG02075
– ident: e_1_2_8_110_1
  doi: 10.1016/j.pepi.2016.06.005
– ident: e_1_2_8_103_1
  doi: 10.1126/science.274.5294.1891
– ident: e_1_2_8_3_1
  doi: 10.1038/ngeo830
– ident: e_1_2_8_56_1
  doi: 10.2138/gsrmg.51.1.353
– ident: e_1_2_8_33_1
  doi: 10.1111/j.1365-246X.1991.tb06724.x
– ident: e_1_2_8_44_1
  doi: 10.1016/j.tecto.2006.01.026
– ident: e_1_2_8_70_1
  doi: 10.1016/j.gr.2008.04.004
– ident: e_1_2_8_37_1
  doi: 10.1002/2013JB010847
– ident: e_1_2_8_106_1
  doi: 10.1360/02YD0047
– ident: e_1_2_8_28_1
  doi: 10.1016/j.epsl.2017.08.030
– ident: e_1_2_8_25_1
  doi: 10.1016/j.tecto.2018.07.007
– ident: e_1_2_8_50_1
  doi: 10.1002/cjg2.1219
– ident: e_1_2_8_49_1
  doi: 10.1111/j.1365-246X.2011.05249.x
– volume: 76
  start-page: 521
  issue: 2
  year: 1986
  ident: e_1_2_8_93_1
  article-title: Pn observation and interpretation in Washington
  publication-title: Bulletin of the Seismological Society of America
  doi: 10.1785/BSSA0760020521
– ident: e_1_2_8_6_1
  doi: 10.1002/2015JB012692
– ident: e_1_2_8_32_1
– ident: e_1_2_8_23_1
  doi: 10.1029/96JB00114
– ident: e_1_2_8_80_1
  doi: 10.1016/j.pepi.2008.07.042
– volume: 60
  start-page: 2338
  issue: 6
  year: 2017
  ident: e_1_2_8_60_1
  article-title: Anisotropy of middle‐upper crust derived from shear‐wave splitting in the northeastern Tibetan Plateau and tectonic implications (in Chinese with English abstract)
  publication-title: Chinese Journal of Geophysics
– ident: e_1_2_8_17_1
  doi: 10.1046/j.1365-246X.2003.01894.x
– ident: e_1_2_8_97_1
  doi: 10.1016/j.epsl.2011.01.021
– ident: e_1_2_8_12_1
  doi: 10.1785/gssrl.70.2.154
– ident: e_1_2_8_100_1
  doi: 10.1016/j.pepi.2019.106314
– start-page: 29
  volume-title: Editorial Board for Lithospheric Dynamics Atlas of China
  year: 1989
  ident: e_1_2_8_54_1
– ident: e_1_2_8_26_1
  doi: 10.1016/j.jseaes.2012.11.009
– ident: e_1_2_8_4_1
  doi: 10.1016/j.epsl.2013.03.015
– ident: e_1_2_8_58_1
  doi: 10.1002/2015GL063921
– ident: e_1_2_8_78_1
  doi: 10.1007/s11430-008-0008-5
– ident: e_1_2_8_71_1
  doi: 10.1016/j.jseaes.2019.104027
– ident: e_1_2_8_66_1
  doi: 10.1016/j.tecto.2019.228274
– volume: 46
  start-page: 13
  issue: 2
  year: 2003
  ident: e_1_2_8_95_1
  article-title: Active tectonic blocks and strong earthquakes in the continent of China
  publication-title: Science in China
– ident: e_1_2_8_109_1
  doi: 10.1029/2018TC005276
– ident: e_1_2_8_79_1
  doi: 10.1093/gji/ggy177
– ident: e_1_2_8_86_1
  doi: 10.1029/2007GL030026
– ident: e_1_2_8_98_1
  doi: 10.1038/375774a0
– ident: e_1_2_8_57_1
  doi: 10.1145/355984.355989
– ident: e_1_2_8_107_1
  doi: 10.1002/cjg2.630
– ident: e_1_2_8_85_1
  doi: 10.1016/j.gr.2015.08.009
– ident: e_1_2_8_64_1
  doi: 10.1785/0120100112
– ident: e_1_2_8_14_1
  doi: 10.3319/TAO.2019.01.18.03
– ident: e_1_2_8_53_1
  doi: 10.1002/rog.20008
– ident: e_1_2_8_11_1
  doi: 10.1016/j.wavemoti.2004.05.006
– ident: e_1_2_8_90_1
  doi: 10.1360/N972018-00478
– ident: e_1_2_8_40_1
  doi: 10.1016/j.pepi.2019.04.005
– ident: e_1_2_8_46_1
  doi: 10.1016/j.epsl.2011.01.026
– ident: e_1_2_8_82_1
  doi: 10.1093/gji/ggv420
– volume: 60
  start-page: 2371
  issue: 6
  year: 2017
  ident: e_1_2_8_94_1
  article-title: Deep electrical structure of crust beneath the Madongshan step area at the Haiyuan fault in the northeastern margin of the Tibetan Plateau and tectonic implications (in Chinese with English abstract)
  publication-title: Chinese Journal of Geophysics
– ident: e_1_2_8_43_1
  doi: 10.1016/j.pepi.2018.12.003
– ident: e_1_2_8_9_1
  doi: 10.1130/0091-7613(2000)28<703:TOBTEM>2.0.CO;2
– ident: e_1_2_8_61_1
  doi: 10.1016/j.tecto.2018.12.026
– ident: e_1_2_8_21_1
  doi: 10.1093/gji/ggz267
– ident: e_1_2_8_73_1
  doi: 10.1002/cjg2.776
– ident: e_1_2_8_10_1
  doi: 10.1016/0165-2125(81)90026-3
– ident: e_1_2_8_42_1
  doi: 10.1016/j.pepi.2011.08.009
– ident: e_1_2_8_45_1
  doi: 10.1002/cjg2.233
– ident: e_1_2_8_18_1
  doi: 10.1016/j.pepi.2006.03.024
– ident: e_1_2_8_83_1
  doi: 10.1126/science.1010580
– ident: e_1_2_8_2_1
– ident: e_1_2_8_48_1
  doi: 10.1002/2013JB010503
– ident: e_1_2_8_22_1
  doi: 10.1126/science.255.5052.1663
– ident: e_1_2_8_72_1
  doi: 10.1016/j.pepi.2015.04.005
– ident: e_1_2_8_8_1
– ident: e_1_2_8_5_1
  doi: 10.1016/j.tecto.2017.01.025
– ident: e_1_2_8_29_1
  doi: 10.1002/2014JB010963
– ident: e_1_2_8_67_1
  doi: 10.1146/annurev.earth.24.1.385
– ident: e_1_2_8_89_1
  doi: 10.1029/2009JB007142
– ident: e_1_2_8_87_1
  doi: 10.1093/gji/ggx004
– ident: e_1_2_8_47_1
  doi: 10.1029/2003JB002789
SSID ssj0014566
Score 2.4600046
Snippet We present high‐resolution tomographic images of isotropic P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by...
We present high‐resolution tomographic images of isotropic P wave velocity and azimuthal anisotropy in the crust and uppermost mantle beneath NE Tibet by...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accommodation
Anisotropy
crustal flow
Deformation
Earthquakes
Elastic waves
Evolution
Explosions
Fault lines
Faults
Flow
Ground motion
Mantle
Moho
Ray paths
reflected waves
Resolution
Seismic activity
seismic anisotropy tomography
Seismic velocities
Seismic wave velocities
seismicity
Tectonics
Tomography
Transition zone
Velocity
Vertical motion
Wave data
Wave velocity
Title Anisotropic Tomography Beneath Northeast Tibet: Evidence for Regional Crustal Flow
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2020TC006161
https://www.proquest.com/docview/2427562336
Volume 39
WOSCitedRecordID wos000556710300024&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-9194
  dateEnd: 20231213
  omitProxy: false
  ssIdentifier: ssj0014566
  issn: 0278-7407
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-9194
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014566
  issn: 0278-7407
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yFbz4LU7nyEFPWkzT9CPe5txUGENGp7uVJEulMNexTsX_3iTN5jwoiL30kJdSkveSX97L-z0ATrmHIiEi4nhkSB0SCOowgUJHppreLPUpM5fHHzthtxsNBvTBOtx0LkzJD7FwuGnLMOu1NnDGC0s2oDky1akdabd44JrTj0uMXT7ddxdBBIUNTKgSh5oyE4X23rvqfrnc-fuO9AUzl8Gq2W3aW__9z22waXEmbJSKsQNW5HgXrN-aOr4fe6DXGGdFPpvmk0zAOH-xxNXwWi19ChNCE87RZX1gnHE5u4Lz6qNQgVzYk8_GgwibOmNDvduj_H0f9NutuHnn2PIKDiMewQ7HjLmII8w8zBDmIpAkRVQT4KmHMh8NqZoxLNPQlwFnqt0NuB9wnXRJ2dA7AJVxPpaHAAZpSlwkqVB6SQSKuOT65MOGCixg30ur4Hw-xImw3OO6BMYoMTFwTJPlUaqCs4X0pOTc-EGuNp-txFpekSjIEWpM5wVVcGHm5ddvJHGrGWtWO3z0N_FjsKEbypu7NVCZTV_lCVgTb7OsmNbB6k2v3e_UjUJ-Ar3R24Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6tyiL2sry1XV4-wAkiHMdJam7QpYAoFapS1Ftkuw6q1G1Q290V_x6P65ZyYCVELjlkbEX22P48j28ADlVEa1rXeBDxngh4okUgNU0DUyC9WREL6YLHH5ppq1XrdsW9r3OKuTBTfoi5wQ1XhtuvcYGjQdqzDSBJpr22U7SLJyFef5a41aS4Aku_2o1Oc-5IsPjAuStZirSZNPWx77aH08X2b0-lV6i5CFjdidNY_fS_rsF3DzbJ-VQ71uGLGW7A8pUr5vu8Ce3zYX9cTkblU1-TrPzt2avJhd3_LDAkzqeDtX1I1ldmckZmJUiJRbqkbR6dGZHUMW3DvhuD8t8WdBqXWf068DUWAskjzgLFpAypokxGTFKmdGJ4QQWy4NlHyJj2hJ02Zoo0NomS9nuYqDhRmHkpZC_ahsqwHJofQJKi4CE1Qlvl5JrWlFF4_ZE9ixhYHBVVOJ6Nca49ATnWwRjkzhHORL44SlU4mks_TYk33pHbnU1X7pffOLe4I0VgFyVVOHET898-8uyyniG1Hfv5MfEDWLnO7pp586Z1uwPfUGgayrsLlcnoj9mDr_rvpD8e7Xu9fAFD1N8w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA_iF178FudnDnrSYpam6eJNp1VxDBlVvJUkTWWg69im4n9vXpbNeVAQe-mhL6Ekeckv7-P3EDpQIalpXWNByHIRMK5FIDWJA1MAvVkRCemCxx8acbNZe3wUd77OKeTCDPkhxgY30Ay3X4OCm25eeLYBIMm013YCdnFehevPDIsEt5o5c9FK7htjR4LFB85dSWOgzSSxj323PZxMtv9-Kn1BzUnA6k6cZOnf_7qMFj3YxGfD1bGCpkxnFc1duWK-H2uoddZp98tBr-y2NU7LF89ejc_t_meBIXY-Hajtg9O2MoNTPCpBii3SxS3z5MyIuA5pG_adPJfv6-g-uUzr14GvsRBIFjIaKCpllShCZUgloUpzwwoigAXPPkJGJBd22qgp4shwJe33KlcRV5B5KWQebqDpTtkxmwjzomBVYoS2i5NpUlNGwfVH5hYx0CgsKuhoNMaZ9gTkUAfjOXOOcCqyyVGqoMOxdHdIvPGD3M5oujKvfv3M4o4YgF3IK-jYTcyvfWTpZT0Faju69TfxfTR_d5FkjZvm7TZaAJlhJO8Omh70Xs0umtVvg3a_t-eX5Sf8Bt6r
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+Tomography+Beneath+Northeast+Tibet%3A+Evidence+for+Regional+Crustal+Flow&rft.jtitle=Tectonics+%28Washington%2C+D.C.%29&rft.au=Sun%2C+Anhui&rft.au=Zhao%2C+Dapeng&rft.date=2020-07-01&rft.issn=0278-7407&rft.eissn=1944-9194&rft.volume=39&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2020TC006161&rft.externalDBID=10.1029%252F2020TC006161&rft.externalDocID=TECT21342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-7407&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-7407&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-7407&client=summon