Persistent de Rham-Hodge Laplacians in Eulerian representation for manifold topological learning
Recently, topological data analysis has become a trending topic in data science and engineering. However, the key technique of topological data analysis, i.e., persistent homology, is defined on point cloud data, which does not work directly for data on manifolds. Although earlier evolutionary de Rh...
Gespeichert in:
| Veröffentlicht in: | AIMS mathematics Jg. 9; H. 10; S. 27438 - 27470 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
AIMS Press
01.01.2024
|
| Schlagworte: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Recently, topological data analysis has become a trending topic in data science and engineering. However, the key technique of topological data analysis, i.e., persistent homology, is defined on point cloud data, which does not work directly for data on manifolds. Although earlier evolutionary de Rham-Hodge theory deals with data on manifolds, it is inconvenient for machine learning applications because of the numerical inconsistency caused by remeshing the involving manifolds in the Lagrangian representation. In this work, we introduced persistent de Rham-Hodge Laplacian, or persistent Hodge Laplacian (PHL), as an abbreviation for manifold topological learning. Our PHLs were constructed in the Eulerian representation via structure-persevering Cartesian grids, avoiding the numerical inconsistency over the multi-scale manifolds. To facilitate the manifold topological learning, we proposed a persistent Hodge Laplacian learning algorithm for data on manifolds or volumetric data. As a proof-of-principle application of the proposed manifold topological learning model, we considered the prediction of protein-ligand binding affinities with two benchmark datasets. Our numerical experiments highlighted the power and promise of the proposed method. |
|---|---|
| AbstractList | Recently, topological data analysis has become a trending topic in data science and engineering. However, the key technique of topological data analysis, i.e., persistent homology, is defined on point cloud data, which does not work directly for data on manifolds. Although earlier evolutionary de Rham-Hodge theory deals with data on manifolds, it is inconvenient for machine learning applications because of the numerical inconsistency caused by remeshing the involving manifolds in the Lagrangian representation. In this work, we introduced persistent de Rham-Hodge Laplacian, or persistent Hodge Laplacian (PHL), as an abbreviation for manifold topological learning. Our PHLs were constructed in the Eulerian representation via structure-persevering Cartesian grids, avoiding the numerical inconsistency over the multi-scale manifolds. To facilitate the manifold topological learning, we proposed a persistent Hodge Laplacian learning algorithm for data on manifolds or volumetric data. As a proof-of-principle application of the proposed manifold topological learning model, we considered the prediction of protein-ligand binding affinities with two benchmark datasets. Our numerical experiments highlighted the power and promise of the proposed method. Recently, topological data analysis has become a trending topic in data science and engineering. However, the key technique of topological data analysis, i.e., persistent homology, is defined on point cloud data, which does not work directly for data on manifolds. Although earlier evolutionary de Rham-Hodge theory deals with data on manifolds, it is inconvenient for machine learning applications because of the numerical inconsistency caused by remeshing the involving manifolds in the Lagrangian representation. In this work, we introduced persistent de Rham-Hodge Laplacian, or persistent Hodge Laplacian (PHL), as an abbreviation for manifold topological learning. Our PHLs were constructed in the Eulerian representation via structure-persevering Cartesian grids, avoiding the numerical inconsistency over the multi-scale manifolds. To facilitate the manifold topological learning, we proposed a persistent Hodge Laplacian learning algorithm for data on manifolds or volumetric data. As a proof-of-principle application of the proposed manifold topological learning model, we considered the prediction of protein-ligand binding affinities with two benchmark datasets. Our numerical experiments highlighted the power and promise of the proposed method.Recently, topological data analysis has become a trending topic in data science and engineering. However, the key technique of topological data analysis, i.e., persistent homology, is defined on point cloud data, which does not work directly for data on manifolds. Although earlier evolutionary de Rham-Hodge theory deals with data on manifolds, it is inconvenient for machine learning applications because of the numerical inconsistency caused by remeshing the involving manifolds in the Lagrangian representation. In this work, we introduced persistent de Rham-Hodge Laplacian, or persistent Hodge Laplacian (PHL), as an abbreviation for manifold topological learning. Our PHLs were constructed in the Eulerian representation via structure-persevering Cartesian grids, avoiding the numerical inconsistency over the multi-scale manifolds. To facilitate the manifold topological learning, we proposed a persistent Hodge Laplacian learning algorithm for data on manifolds or volumetric data. As a proof-of-principle application of the proposed manifold topological learning model, we considered the prediction of protein-ligand binding affinities with two benchmark datasets. Our numerical experiments highlighted the power and promise of the proposed method. |
| Author | Tong, Yiying Wei, Guo-Wei Su, Zhe |
| Author_xml | – sequence: 1 givenname: Zhe surname: Su fullname: Su, Zhe organization: Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA – sequence: 2 givenname: Yiying surname: Tong fullname: Tong, Yiying organization: Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA – sequence: 3 givenname: Guo-Wei surname: Wei fullname: Wei, Guo-Wei organization: Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41019304$$D View this record in MEDLINE/PubMed |
| BookMark | eNptkTtPHDEUhS1EBGRDSRu5TDPEz51xGSESkFYiipLauePHYuSxJ7a34N9nYFmEolR-6DvnXp3zHh2nnBxCF5RccsXF5wna_SUjTFDO-RE6Y6Ln3VoNw_Gb-yk6r_WBEMIoE6wXJ-hUUEIVJ-IM_f7uSg21udSwdfjHPUzdTbZbhzcwRzABUsUh4etddGV54OLm4uqCQws5YZ8LniAFn6PFLc855m0wEHF0UFJI2w_onYdY3fnLuUK_vl7_vLrpNnffbq--bDoQnLdu9GRUw8gJMEWINVIyPnDnQXg7EA_MDJKDoq7vx2VzSg1Vxsp1r3hvqLd8hW73vjbDg55LmKA86gxBP3_kstVQWjDRaUvGQcp-bbgwQo4CrBwMhcFTtfZkyXKFPu295pL_7FxtegrVuBghubyrmjMpRc_YM_rxBd2Nk7Ovgw8JLwDfA6bkWovz2oR9dq1AiJoS_VSlfqpSH6pcVN0_qoPx__m_RL2f7g |
| CitedBy_id | crossref_primary_10_3390_math13020208 |
| Cites_doi | 10.1038/s41467-020-17035-5 10.1109/TNSE.2024.3358369 10.1101/2022.07.20.500902 10.1016/j.compbiomed.2022.106262 10.1090/S0273-0979-07-01191-3 10.1126/sciadv.abc5329 10.1137/21M1435471 10.1007/s10822-019-00237-5 10.1002/cnm.2914 10.2307/2373615 10.1039/C9CP06554G 10.1002/cnm.3376 10.3390/polym11030437 10.1215/S0012-7094-00-10131-7 10.1093/bib/bbab127 10.1021/acs.jpclett.1c03058 10.1515/mlbmb-2015-0009 10.1090/conm/453/08802 10.1137/22M1482299 10.1017/S0962492906210018 10.1021/acs.jpclett.2c00469 10.1371/journal.pcbi.1005929 10.1021/acs.jcim.2c01251 10.1016/j.compbiomed.2023.107250 10.1007/s00454-004-1146-y 10.1038/s42256-024-00855-1 10.1093/nar/gkv951 10.1109/TNSE.2024.3395710 10.1007/s10822-018-0146-6 10.1364/BOE.8.000679 10.1063/1.4737391 10.1007/s00454-013-9529-6 10.1016/j.jmb.2020.07.009 10.1002/cpa.3160080408 10.3934/fods.2024033 10.3934/dcdsb.2020257 10.1093/nar/gkw1074 10.1002/cnm.3179 10.1039/D3SC05552C 10.1021/ci049714+ 10.1007/BFb0095978 10.1063/1.447964 10.1021/acs.jcim.8b00545 10.1021/acs.jcim.4c00132 10.1002/cnm.2655 10.1090/S0273-0979-09-01249-X 10.1021/acs.accounts.6b00491 10.1371/journal.pcbi.1005690 10.2307/2372488 10.1021/acs.jpclett.1c03380 10.1145/3355089.3356546 10.1007/s41468-021-00071-5 10.1038/srep46710 10.1021/acs.jcim.0c00411 10.3934/fods.2021006 10.3934/math.20241277 10.1146/annurev-statistics-031017-100045 10.26434/chemrxiv-2023-s83vq |
| ContentType | Journal Article |
| DBID | AAYXX CITATION NPM 7X8 DOA |
| DOI | 10.3934/math.20241333 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 27470 |
| ExternalDocumentID | oai_doaj_org_article_d0b85576c34c45b4ad58c1a8f196f041 41019304 10_3934_math_20241333 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: R01 GM126189 – fundername: NIAID NIH HHS grantid: R01 AI164266 – fundername: NIGMS NIH HHS grantid: R35 GM148196 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN NPM 7X8 |
| ID | FETCH-LOGICAL-a433t-bf0b98b30a2900dc552383efa4fd80fa2c853a91e77b93011c19cd567937c1fd3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001319667900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:51:35 EDT 2025 Mon Sep 29 18:30:45 EDT 2025 Fri Oct 03 01:51:56 EDT 2025 Sat Nov 29 06:04:48 EST 2025 Tue Nov 18 21:02:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | 55N31 protein-ligand binding persistent Hodge Laplacian manifold topological analysis 53Z50 manifold topological learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a433t-bf0b98b30a2900dc552383efa4fd80fa2c853a91e77b93011c19cd567937c1fd3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://doaj.org/article/d0b85576c34c45b4ad58c1a8f196f041 |
| PMID | 41019304 |
| PQID | 3255472241 |
| PQPubID | 23479 |
| PageCount | 33 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d0b85576c34c45b4ad58c1a8f196f041 proquest_miscellaneous_3255472241 pubmed_primary_41019304 crossref_citationtrail_10_3934_math_20241333 crossref_primary_10_3934_math_20241333 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | AIMS mathematics |
| PublicationTitleAlternate | AIMS Math |
| PublicationYear | 2024 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.20241333-61 key-10.3934/math.20241333-60 key-10.3934/math.20241333-21 key-10.3934/math.20241333-65 key-10.3934/math.20241333-20 key-10.3934/math.20241333-64 key-10.3934/math.20241333-63 key-10.3934/math.20241333-62 key-10.3934/math.20241333-25 key-10.3934/math.20241333-69 key-10.3934/math.20241333-24 key-10.3934/math.20241333-68 key-10.3934/math.20241333-23 key-10.3934/math.20241333-67 key-10.3934/math.20241333-22 key-10.3934/math.20241333-66 key-10.3934/math.20241333-29 key-10.3934/math.20241333-28 key-10.3934/math.20241333-27 key-10.3934/math.20241333-26 key-10.3934/math.20241333-50 key-10.3934/math.20241333-10 key-10.3934/math.20241333-54 key-10.3934/math.20241333-53 key-10.3934/math.20241333-52 key-10.3934/math.20241333-51 key-10.3934/math.20241333-14 key-10.3934/math.20241333-58 key-10.3934/math.20241333-13 key-10.3934/math.20241333-57 key-10.3934/math.20241333-12 key-10.3934/math.20241333-56 key-10.3934/math.20241333-11 key-10.3934/math.20241333-55 key-10.3934/math.20241333-18 key-10.3934/math.20241333-17 key-10.3934/math.20241333-16 key-10.3934/math.20241333-15 key-10.3934/math.20241333-59 key-10.3934/math.20241333-19 key-10.3934/math.20241333-43 key-10.3934/math.20241333-42 key-10.3934/math.20241333-41 key-10.3934/math.20241333-40 key-10.3934/math.20241333-47 key-10.3934/math.20241333-46 key-10.3934/math.20241333-45 key-10.3934/math.20241333-44 key-10.3934/math.20241333-1 key-10.3934/math.20241333-3 key-10.3934/math.20241333-49 key-10.3934/math.20241333-2 key-10.3934/math.20241333-48 key-10.3934/math.20241333-9 key-10.3934/math.20241333-8 key-10.3934/math.20241333-5 key-10.3934/math.20241333-4 key-10.3934/math.20241333-7 key-10.3934/math.20241333-6 key-10.3934/math.20241333-70 key-10.3934/math.20241333-32 key-10.3934/math.20241333-31 key-10.3934/math.20241333-30 key-10.3934/math.20241333-36 key-10.3934/math.20241333-35 key-10.3934/math.20241333-34 key-10.3934/math.20241333-33 key-10.3934/math.20241333-39 key-10.3934/math.20241333-38 key-10.3934/math.20241333-37 |
| References_xml | – ident: key-10.3934/math.20241333-1 – ident: key-10.3934/math.20241333-59 doi: 10.1038/s41467-020-17035-5 – ident: key-10.3934/math.20241333-35 doi: 10.1109/TNSE.2024.3358369 – ident: key-10.3934/math.20241333-32 doi: 10.1101/2022.07.20.500902 – ident: key-10.3934/math.20241333-56 – ident: key-10.3934/math.20241333-15 doi: 10.1016/j.compbiomed.2022.106262 – ident: key-10.3934/math.20241333-33 – ident: key-10.3934/math.20241333-27 doi: 10.1090/S0273-0979-07-01191-3 – ident: key-10.3934/math.20241333-41 doi: 10.1126/sciadv.abc5329 – ident: key-10.3934/math.20241333-5 – ident: key-10.3934/math.20241333-40 doi: 10.1137/21M1435471 – ident: key-10.3934/math.20241333-46 doi: 10.1007/s10822-019-00237-5 – ident: key-10.3934/math.20241333-10 doi: 10.1002/cnm.2914 – ident: key-10.3934/math.20241333-21 doi: 10.2307/2373615 – ident: key-10.3934/math.20241333-44 doi: 10.1039/C9CP06554G – ident: key-10.3934/math.20241333-61 doi: 10.1002/cnm.3376 – ident: key-10.3934/math.20241333-20 – ident: key-10.3934/math.20241333-48 doi: 10.3390/polym11030437 – ident: key-10.3934/math.20241333-30 doi: 10.1215/S0012-7094-00-10131-7 – ident: key-10.3934/math.20241333-37 doi: 10.1093/bib/bbab127 – ident: key-10.3934/math.20241333-13 doi: 10.1021/acs.jpclett.1c03058 – ident: key-10.3934/math.20241333-8 doi: 10.1515/mlbmb-2015-0009 – ident: key-10.3934/math.20241333-23 doi: 10.1090/conm/453/08802 – ident: key-10.3934/math.20241333-52 doi: 10.1137/22M1482299 – ident: key-10.3934/math.20241333-3 doi: 10.1017/S0962492906210018 – ident: key-10.3934/math.20241333-17 doi: 10.1021/acs.jpclett.2c00469 – ident: key-10.3934/math.20241333-7 doi: 10.1371/journal.pcbi.1005929 – ident: key-10.3934/math.20241333-36 doi: 10.1021/acs.jcim.2c01251 – ident: key-10.3934/math.20241333-51 doi: 10.1016/j.compbiomed.2023.107250 – ident: key-10.3934/math.20241333-70 doi: 10.1007/s00454-004-1146-y – ident: key-10.3934/math.20241333-12 doi: 10.1038/s42256-024-00855-1 – ident: key-10.3934/math.20241333-31 doi: 10.1093/nar/gkv951 – ident: key-10.3934/math.20241333-34 doi: 10.1109/TNSE.2024.3395710 – ident: key-10.3934/math.20241333-45 doi: 10.1007/s10822-018-0146-6 – ident: key-10.3934/math.20241333-14 doi: 10.1364/BOE.8.000679 – ident: key-10.3934/math.20241333-39 doi: 10.1063/1.4737391 – ident: key-10.3934/math.20241333-42 doi: 10.1007/s00454-013-9529-6 – ident: key-10.3934/math.20241333-16 doi: 10.1016/j.jmb.2020.07.009 – ident: key-10.3934/math.20241333-25 doi: 10.1002/cpa.3160080408 – ident: key-10.3934/math.20241333-65 doi: 10.3934/fods.2024033 – ident: key-10.3934/math.20241333-18 doi: 10.3934/dcdsb.2020257 – ident: key-10.3934/math.20241333-26 doi: 10.1093/nar/gkw1074 – ident: key-10.3934/math.20241333-47 doi: 10.1002/cnm.3179 – ident: key-10.3934/math.20241333-6 doi: 10.1039/D3SC05552C – ident: key-10.3934/math.20241333-19 – ident: key-10.3934/math.20241333-29 doi: 10.1021/ci049714+ – ident: key-10.3934/math.20241333-50 – ident: key-10.3934/math.20241333-53 doi: 10.1007/BFb0095978 – ident: key-10.3934/math.20241333-68 doi: 10.1063/1.447964 – ident: key-10.3934/math.20241333-57 doi: 10.1021/acs.jcim.8b00545 – ident: key-10.3934/math.20241333-58 doi: 10.1021/acs.jcim.4c00132 – ident: key-10.3934/math.20241333-67 doi: 10.1002/cnm.2655 – ident: key-10.3934/math.20241333-11 doi: 10.1090/S0273-0979-09-01249-X – ident: key-10.3934/math.20241333-28 – ident: key-10.3934/math.20241333-38 doi: 10.1021/acs.accounts.6b00491 – ident: key-10.3934/math.20241333-64 – ident: key-10.3934/math.20241333-22 – ident: key-10.3934/math.20241333-49 – ident: key-10.3934/math.20241333-9 doi: 10.1371/journal.pcbi.1005690 – ident: key-10.3934/math.20241333-43 doi: 10.2307/2372488 – ident: key-10.3934/math.20241333-60 doi: 10.1021/acs.jpclett.1c03380 – ident: key-10.3934/math.20241333-69 doi: 10.1145/3355089.3356546 – ident: key-10.3934/math.20241333-4 doi: 10.1007/s41468-021-00071-5 – ident: key-10.3934/math.20241333-66 doi: 10.1038/srep46710 – ident: key-10.3934/math.20241333-24 doi: 10.1021/acs.jcim.0c00411 – ident: key-10.3934/math.20241333-62 doi: 10.3934/fods.2021006 – ident: key-10.3934/math.20241333-2 – ident: key-10.3934/math.20241333-55 doi: 10.3934/math.20241277 – ident: key-10.3934/math.20241333-63 doi: 10.1146/annurev-statistics-031017-100045 – ident: key-10.3934/math.20241333-54 doi: 10.26434/chemrxiv-2023-s83vq |
| SSID | ssj0002124274 |
| Score | 2.2830386 |
| Snippet | Recently, topological data analysis has become a trending topic in data science and engineering. However, the key technique of topological data analysis, i.e.,... |
| SourceID | doaj proquest pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database Enrichment Source |
| StartPage | 27438 |
| SubjectTerms | manifold topological analysis manifold topological learning persistent hodge laplacian protein-ligand binding |
| Title | Persistent de Rham-Hodge Laplacians in Eulerian representation for manifold topological learning |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41019304 https://www.proquest.com/docview/3255472241 https://doaj.org/article/d0b85576c34c45b4ad58c1a8f196f041 |
| Volume | 9 |
| WOSCitedRecordID | wos001319667900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ (Directory of Open Access Journals) customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09b9swECXaoEM7BE2bDydNwABFpwihTEqixrZwkMEOiqAtvKnHj0sNuHIQyxnz23MnyUY6BF26aBAOIHX3SN4TyXdCfAQIOUFFJSmCSkyJLnEaMAHMIcOCCEFbJeLnuLi6stNp-e1JqS8-E9bJA3eOOw_K2YySYq-NN5kzEDLrU7BI0EHVXlkfUtbzhEzxHEwTsiG-1Ylq6lKbc8r_eO-Bt5G0_msRarX6n08w24Xm4q3Y7jNE-bnr2Y54Eet34s1kI6-6fC9-8bl1jk_dyBDl9W_4k1wuwk2UY-BDVhTypZzVcrSaM8Bq2UpXrq8Z1ZISVcm6F7iYB9l0ZRI4WLKvIXGzK35cjL5_vUz6UgkJGK2bxKFypXVawbBUKviM-KXVEcFgsAph6GlZhjKNReFKHtM-LX3IclbH8ykGvSe26kUdD4T0UedBGbQhV6xsYwO4qBEzCEjkBgfibO27yvc64lzOYl4Rn2BXV-zqau3qgfi0Mb_tBDSeM_zCgdgYse51-4LQUPVoqP6FhoE4XYexonHCmx9Qx8VqWWniTiyMyTb7XXw3TRmal8gr5vB_dOFIvOZP6n7TfBBbzd0qHotX_r6ZLe9OxMtiak9asNJz8jB6BE5E75w |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Persistent+de+Rham-Hodge+Laplacians+in+Eulerian+representation+for+manifold+topological+learning&rft.jtitle=AIMS+mathematics&rft.au=Zhe+Su&rft.au=Yiying+Tong&rft.au=Guo-Wei+Wei&rft.date=2024-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=9&rft.issue=10&rft.spage=27438&rft.epage=27470&rft_id=info:doi/10.3934%2Fmath.20241333&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d0b85576c34c45b4ad58c1a8f196f041 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |