Persistent de Rham-Hodge Laplacians in Eulerian representation for manifold topological learning

Recently, topological data analysis has become a trending topic in data science and engineering. However, the key technique of topological data analysis, i.e., persistent homology, is defined on point cloud data, which does not work directly for data on manifolds. Although earlier evolutionary de Rh...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 9; číslo 10; s. 27438 - 27470
Hlavní autoři: Su, Zhe, Tong, Yiying, Wei, Guo-Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States AIMS Press 01.01.2024
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recently, topological data analysis has become a trending topic in data science and engineering. However, the key technique of topological data analysis, i.e., persistent homology, is defined on point cloud data, which does not work directly for data on manifolds. Although earlier evolutionary de Rham-Hodge theory deals with data on manifolds, it is inconvenient for machine learning applications because of the numerical inconsistency caused by remeshing the involving manifolds in the Lagrangian representation. In this work, we introduced persistent de Rham-Hodge Laplacian, or persistent Hodge Laplacian (PHL), as an abbreviation for manifold topological learning. Our PHLs were constructed in the Eulerian representation via structure-persevering Cartesian grids, avoiding the numerical inconsistency over the multi-scale manifolds. To facilitate the manifold topological learning, we proposed a persistent Hodge Laplacian learning algorithm for data on manifolds or volumetric data. As a proof-of-principle application of the proposed manifold topological learning model, we considered the prediction of protein-ligand binding affinities with two benchmark datasets. Our numerical experiments highlighted the power and promise of the proposed method.
AbstractList Recently, topological data analysis has become a trending topic in data science and engineering. However, the key technique of topological data analysis, i.e., persistent homology, is defined on point cloud data, which does not work directly for data on manifolds. Although earlier evolutionary de Rham-Hodge theory deals with data on manifolds, it is inconvenient for machine learning applications because of the numerical inconsistency caused by remeshing the involving manifolds in the Lagrangian representation. In this work, we introduced persistent de Rham-Hodge Laplacian, or persistent Hodge Laplacian (PHL), as an abbreviation for manifold topological learning. Our PHLs were constructed in the Eulerian representation via structure-persevering Cartesian grids, avoiding the numerical inconsistency over the multi-scale manifolds. To facilitate the manifold topological learning, we proposed a persistent Hodge Laplacian learning algorithm for data on manifolds or volumetric data. As a proof-of-principle application of the proposed manifold topological learning model, we considered the prediction of protein-ligand binding affinities with two benchmark datasets. Our numerical experiments highlighted the power and promise of the proposed method.
Recently, topological data analysis has become a trending topic in data science and engineering. However, the key technique of topological data analysis, i.e., persistent homology, is defined on point cloud data, which does not work directly for data on manifolds. Although earlier evolutionary de Rham-Hodge theory deals with data on manifolds, it is inconvenient for machine learning applications because of the numerical inconsistency caused by remeshing the involving manifolds in the Lagrangian representation. In this work, we introduced persistent de Rham-Hodge Laplacian, or persistent Hodge Laplacian (PHL), as an abbreviation for manifold topological learning. Our PHLs were constructed in the Eulerian representation via structure-persevering Cartesian grids, avoiding the numerical inconsistency over the multi-scale manifolds. To facilitate the manifold topological learning, we proposed a persistent Hodge Laplacian learning algorithm for data on manifolds or volumetric data. As a proof-of-principle application of the proposed manifold topological learning model, we considered the prediction of protein-ligand binding affinities with two benchmark datasets. Our numerical experiments highlighted the power and promise of the proposed method.Recently, topological data analysis has become a trending topic in data science and engineering. However, the key technique of topological data analysis, i.e., persistent homology, is defined on point cloud data, which does not work directly for data on manifolds. Although earlier evolutionary de Rham-Hodge theory deals with data on manifolds, it is inconvenient for machine learning applications because of the numerical inconsistency caused by remeshing the involving manifolds in the Lagrangian representation. In this work, we introduced persistent de Rham-Hodge Laplacian, or persistent Hodge Laplacian (PHL), as an abbreviation for manifold topological learning. Our PHLs were constructed in the Eulerian representation via structure-persevering Cartesian grids, avoiding the numerical inconsistency over the multi-scale manifolds. To facilitate the manifold topological learning, we proposed a persistent Hodge Laplacian learning algorithm for data on manifolds or volumetric data. As a proof-of-principle application of the proposed manifold topological learning model, we considered the prediction of protein-ligand binding affinities with two benchmark datasets. Our numerical experiments highlighted the power and promise of the proposed method.
Author Tong, Yiying
Wei, Guo-Wei
Su, Zhe
Author_xml – sequence: 1
  givenname: Zhe
  surname: Su
  fullname: Su, Zhe
  organization: Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
– sequence: 2
  givenname: Yiying
  surname: Tong
  fullname: Tong, Yiying
  organization: Department of Computer Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
– sequence: 3
  givenname: Guo-Wei
  surname: Wei
  fullname: Wei, Guo-Wei
  organization: Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41019304$$D View this record in MEDLINE/PubMed
BookMark eNptkTtPHDEUhS1EBGRDSRu5TDPEz51xGSESkFYiipLauePHYuSxJ7a34N9nYFmEolR-6DvnXp3zHh2nnBxCF5RccsXF5wna_SUjTFDO-RE6Y6Ln3VoNw_Gb-yk6r_WBEMIoE6wXJ-hUUEIVJ-IM_f7uSg21udSwdfjHPUzdTbZbhzcwRzABUsUh4etddGV54OLm4uqCQws5YZ8LniAFn6PFLc855m0wEHF0UFJI2w_onYdY3fnLuUK_vl7_vLrpNnffbq--bDoQnLdu9GRUw8gJMEWINVIyPnDnQXg7EA_MDJKDoq7vx2VzSg1Vxsp1r3hvqLd8hW73vjbDg55LmKA86gxBP3_kstVQWjDRaUvGQcp-bbgwQo4CrBwMhcFTtfZkyXKFPu295pL_7FxtegrVuBghubyrmjMpRc_YM_rxBd2Nk7Ovgw8JLwDfA6bkWovz2oR9dq1AiJoS_VSlfqpSH6pcVN0_qoPx__m_RL2f7g
CitedBy_id crossref_primary_10_3390_math13020208
Cites_doi 10.1038/s41467-020-17035-5
10.1109/TNSE.2024.3358369
10.1101/2022.07.20.500902
10.1016/j.compbiomed.2022.106262
10.1090/S0273-0979-07-01191-3
10.1126/sciadv.abc5329
10.1137/21M1435471
10.1007/s10822-019-00237-5
10.1002/cnm.2914
10.2307/2373615
10.1039/C9CP06554G
10.1002/cnm.3376
10.3390/polym11030437
10.1215/S0012-7094-00-10131-7
10.1093/bib/bbab127
10.1021/acs.jpclett.1c03058
10.1515/mlbmb-2015-0009
10.1090/conm/453/08802
10.1137/22M1482299
10.1017/S0962492906210018
10.1021/acs.jpclett.2c00469
10.1371/journal.pcbi.1005929
10.1021/acs.jcim.2c01251
10.1016/j.compbiomed.2023.107250
10.1007/s00454-004-1146-y
10.1038/s42256-024-00855-1
10.1093/nar/gkv951
10.1109/TNSE.2024.3395710
10.1007/s10822-018-0146-6
10.1364/BOE.8.000679
10.1063/1.4737391
10.1007/s00454-013-9529-6
10.1016/j.jmb.2020.07.009
10.1002/cpa.3160080408
10.3934/fods.2024033
10.3934/dcdsb.2020257
10.1093/nar/gkw1074
10.1002/cnm.3179
10.1039/D3SC05552C
10.1021/ci049714+
10.1007/BFb0095978
10.1063/1.447964
10.1021/acs.jcim.8b00545
10.1021/acs.jcim.4c00132
10.1002/cnm.2655
10.1090/S0273-0979-09-01249-X
10.1021/acs.accounts.6b00491
10.1371/journal.pcbi.1005690
10.2307/2372488
10.1021/acs.jpclett.1c03380
10.1145/3355089.3356546
10.1007/s41468-021-00071-5
10.1038/srep46710
10.1021/acs.jcim.0c00411
10.3934/fods.2021006
10.3934/math.20241277
10.1146/annurev-statistics-031017-100045
10.26434/chemrxiv-2023-s83vq
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.3934/math.20241333
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 27470
ExternalDocumentID oai_doaj_org_article_d0b85576c34c45b4ad58c1a8f196f041
41019304
10_3934_math_20241333
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: R01 GM126189
– fundername: NIAID NIH HHS
  grantid: R01 AI164266
– fundername: NIGMS NIH HHS
  grantid: R35 GM148196
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
NPM
7X8
ID FETCH-LOGICAL-a433t-bf0b98b30a2900dc552383efa4fd80fa2c853a91e77b93011c19cd567937c1fd3
IEDL.DBID DOA
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001319667900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:51:35 EDT 2025
Mon Sep 29 18:30:45 EDT 2025
Fri Oct 03 01:51:56 EDT 2025
Sat Nov 29 06:04:48 EST 2025
Tue Nov 18 21:02:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords 55N31
protein-ligand binding
persistent Hodge Laplacian
manifold topological analysis
53Z50
manifold topological learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a433t-bf0b98b30a2900dc552383efa4fd80fa2c853a91e77b93011c19cd567937c1fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/d0b85576c34c45b4ad58c1a8f196f041
PMID 41019304
PQID 3255472241
PQPubID 23479
PageCount 33
ParticipantIDs doaj_primary_oai_doaj_org_article_d0b85576c34c45b4ad58c1a8f196f041
proquest_miscellaneous_3255472241
pubmed_primary_41019304
crossref_citationtrail_10_3934_math_20241333
crossref_primary_10_3934_math_20241333
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle AIMS mathematics
PublicationTitleAlternate AIMS Math
PublicationYear 2024
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20241333-61
key-10.3934/math.20241333-60
key-10.3934/math.20241333-21
key-10.3934/math.20241333-65
key-10.3934/math.20241333-20
key-10.3934/math.20241333-64
key-10.3934/math.20241333-63
key-10.3934/math.20241333-62
key-10.3934/math.20241333-25
key-10.3934/math.20241333-69
key-10.3934/math.20241333-24
key-10.3934/math.20241333-68
key-10.3934/math.20241333-23
key-10.3934/math.20241333-67
key-10.3934/math.20241333-22
key-10.3934/math.20241333-66
key-10.3934/math.20241333-29
key-10.3934/math.20241333-28
key-10.3934/math.20241333-27
key-10.3934/math.20241333-26
key-10.3934/math.20241333-50
key-10.3934/math.20241333-10
key-10.3934/math.20241333-54
key-10.3934/math.20241333-53
key-10.3934/math.20241333-52
key-10.3934/math.20241333-51
key-10.3934/math.20241333-14
key-10.3934/math.20241333-58
key-10.3934/math.20241333-13
key-10.3934/math.20241333-57
key-10.3934/math.20241333-12
key-10.3934/math.20241333-56
key-10.3934/math.20241333-11
key-10.3934/math.20241333-55
key-10.3934/math.20241333-18
key-10.3934/math.20241333-17
key-10.3934/math.20241333-16
key-10.3934/math.20241333-15
key-10.3934/math.20241333-59
key-10.3934/math.20241333-19
key-10.3934/math.20241333-43
key-10.3934/math.20241333-42
key-10.3934/math.20241333-41
key-10.3934/math.20241333-40
key-10.3934/math.20241333-47
key-10.3934/math.20241333-46
key-10.3934/math.20241333-45
key-10.3934/math.20241333-44
key-10.3934/math.20241333-1
key-10.3934/math.20241333-3
key-10.3934/math.20241333-49
key-10.3934/math.20241333-2
key-10.3934/math.20241333-48
key-10.3934/math.20241333-9
key-10.3934/math.20241333-8
key-10.3934/math.20241333-5
key-10.3934/math.20241333-4
key-10.3934/math.20241333-7
key-10.3934/math.20241333-6
key-10.3934/math.20241333-70
key-10.3934/math.20241333-32
key-10.3934/math.20241333-31
key-10.3934/math.20241333-30
key-10.3934/math.20241333-36
key-10.3934/math.20241333-35
key-10.3934/math.20241333-34
key-10.3934/math.20241333-33
key-10.3934/math.20241333-39
key-10.3934/math.20241333-38
key-10.3934/math.20241333-37
References_xml – ident: key-10.3934/math.20241333-1
– ident: key-10.3934/math.20241333-59
  doi: 10.1038/s41467-020-17035-5
– ident: key-10.3934/math.20241333-35
  doi: 10.1109/TNSE.2024.3358369
– ident: key-10.3934/math.20241333-32
  doi: 10.1101/2022.07.20.500902
– ident: key-10.3934/math.20241333-56
– ident: key-10.3934/math.20241333-15
  doi: 10.1016/j.compbiomed.2022.106262
– ident: key-10.3934/math.20241333-33
– ident: key-10.3934/math.20241333-27
  doi: 10.1090/S0273-0979-07-01191-3
– ident: key-10.3934/math.20241333-41
  doi: 10.1126/sciadv.abc5329
– ident: key-10.3934/math.20241333-5
– ident: key-10.3934/math.20241333-40
  doi: 10.1137/21M1435471
– ident: key-10.3934/math.20241333-46
  doi: 10.1007/s10822-019-00237-5
– ident: key-10.3934/math.20241333-10
  doi: 10.1002/cnm.2914
– ident: key-10.3934/math.20241333-21
  doi: 10.2307/2373615
– ident: key-10.3934/math.20241333-44
  doi: 10.1039/C9CP06554G
– ident: key-10.3934/math.20241333-61
  doi: 10.1002/cnm.3376
– ident: key-10.3934/math.20241333-20
– ident: key-10.3934/math.20241333-48
  doi: 10.3390/polym11030437
– ident: key-10.3934/math.20241333-30
  doi: 10.1215/S0012-7094-00-10131-7
– ident: key-10.3934/math.20241333-37
  doi: 10.1093/bib/bbab127
– ident: key-10.3934/math.20241333-13
  doi: 10.1021/acs.jpclett.1c03058
– ident: key-10.3934/math.20241333-8
  doi: 10.1515/mlbmb-2015-0009
– ident: key-10.3934/math.20241333-23
  doi: 10.1090/conm/453/08802
– ident: key-10.3934/math.20241333-52
  doi: 10.1137/22M1482299
– ident: key-10.3934/math.20241333-3
  doi: 10.1017/S0962492906210018
– ident: key-10.3934/math.20241333-17
  doi: 10.1021/acs.jpclett.2c00469
– ident: key-10.3934/math.20241333-7
  doi: 10.1371/journal.pcbi.1005929
– ident: key-10.3934/math.20241333-36
  doi: 10.1021/acs.jcim.2c01251
– ident: key-10.3934/math.20241333-51
  doi: 10.1016/j.compbiomed.2023.107250
– ident: key-10.3934/math.20241333-70
  doi: 10.1007/s00454-004-1146-y
– ident: key-10.3934/math.20241333-12
  doi: 10.1038/s42256-024-00855-1
– ident: key-10.3934/math.20241333-31
  doi: 10.1093/nar/gkv951
– ident: key-10.3934/math.20241333-34
  doi: 10.1109/TNSE.2024.3395710
– ident: key-10.3934/math.20241333-45
  doi: 10.1007/s10822-018-0146-6
– ident: key-10.3934/math.20241333-14
  doi: 10.1364/BOE.8.000679
– ident: key-10.3934/math.20241333-39
  doi: 10.1063/1.4737391
– ident: key-10.3934/math.20241333-42
  doi: 10.1007/s00454-013-9529-6
– ident: key-10.3934/math.20241333-16
  doi: 10.1016/j.jmb.2020.07.009
– ident: key-10.3934/math.20241333-25
  doi: 10.1002/cpa.3160080408
– ident: key-10.3934/math.20241333-65
  doi: 10.3934/fods.2024033
– ident: key-10.3934/math.20241333-18
  doi: 10.3934/dcdsb.2020257
– ident: key-10.3934/math.20241333-26
  doi: 10.1093/nar/gkw1074
– ident: key-10.3934/math.20241333-47
  doi: 10.1002/cnm.3179
– ident: key-10.3934/math.20241333-6
  doi: 10.1039/D3SC05552C
– ident: key-10.3934/math.20241333-19
– ident: key-10.3934/math.20241333-29
  doi: 10.1021/ci049714+
– ident: key-10.3934/math.20241333-50
– ident: key-10.3934/math.20241333-53
  doi: 10.1007/BFb0095978
– ident: key-10.3934/math.20241333-68
  doi: 10.1063/1.447964
– ident: key-10.3934/math.20241333-57
  doi: 10.1021/acs.jcim.8b00545
– ident: key-10.3934/math.20241333-58
  doi: 10.1021/acs.jcim.4c00132
– ident: key-10.3934/math.20241333-67
  doi: 10.1002/cnm.2655
– ident: key-10.3934/math.20241333-11
  doi: 10.1090/S0273-0979-09-01249-X
– ident: key-10.3934/math.20241333-28
– ident: key-10.3934/math.20241333-38
  doi: 10.1021/acs.accounts.6b00491
– ident: key-10.3934/math.20241333-64
– ident: key-10.3934/math.20241333-22
– ident: key-10.3934/math.20241333-49
– ident: key-10.3934/math.20241333-9
  doi: 10.1371/journal.pcbi.1005690
– ident: key-10.3934/math.20241333-43
  doi: 10.2307/2372488
– ident: key-10.3934/math.20241333-60
  doi: 10.1021/acs.jpclett.1c03380
– ident: key-10.3934/math.20241333-69
  doi: 10.1145/3355089.3356546
– ident: key-10.3934/math.20241333-4
  doi: 10.1007/s41468-021-00071-5
– ident: key-10.3934/math.20241333-66
  doi: 10.1038/srep46710
– ident: key-10.3934/math.20241333-24
  doi: 10.1021/acs.jcim.0c00411
– ident: key-10.3934/math.20241333-62
  doi: 10.3934/fods.2021006
– ident: key-10.3934/math.20241333-2
– ident: key-10.3934/math.20241333-55
  doi: 10.3934/math.20241277
– ident: key-10.3934/math.20241333-63
  doi: 10.1146/annurev-statistics-031017-100045
– ident: key-10.3934/math.20241333-54
  doi: 10.26434/chemrxiv-2023-s83vq
SSID ssj0002124274
Score 2.2835345
Snippet Recently, topological data analysis has become a trending topic in data science and engineering. However, the key technique of topological data analysis, i.e.,...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
StartPage 27438
SubjectTerms manifold topological analysis
manifold topological learning
persistent hodge laplacian
protein-ligand binding
Title Persistent de Rham-Hodge Laplacians in Eulerian representation for manifold topological learning
URI https://www.ncbi.nlm.nih.gov/pubmed/41019304
https://www.proquest.com/docview/3255472241
https://doaj.org/article/d0b85576c34c45b4ad58c1a8f196f041
Volume 9
WOSCitedRecordID wos001319667900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwELYAURwF4nF3LC8ZCVERkaztxC4BLaIAhE6HtF0YvzikJYvYLCW_nZkku-IKREOTIhrJzjw8M5nxN4wd5soJyD3atw0yQX-sE8hNSGLf2ihB505BM2yiuLnRw6G5_TDqi3rCWnjglnEnPrVaYVDshHRSWQleaZeBjqg6MW2urPcx6vmQTNEZjAeyxHyrBdUURsgTjP-o9kBlJCH-c0INVv_nAWbjaC7W2GoXIfLTdmfrbCFUG2zleg6vOtlk99S3TvKpau4D__MPnpLLsX8I_AqoyQpFPuGPFR9MR6RgFW-gK2fXjCqOgSon3Is4Hnlet2MSSFi8myHx8JPdXQz-nl8m3aiEBKQQdWJjao22IoW-SVPvFOaXWoQIMnqdRug7dMtgslAU1pBNu8w4r3JCx3NZ9OIXW6rGVdhi3KoAWSqUCCaTDrTNBEBmvLLkyQrVY8cz3pWuwxGncRajEvMJYnVJrC5nrO6xozn5cwug8RnhGQliTkS4180L1Iay04byK23osYOZGEu0Eyp-QBXG00kpMHciYEyi-d3Kd76UxHMJuSK3v2MLO-wHfVL7m2aXLdUv07DHlt1r_Th52WeLxVDvN8qKz-u3wTs9gu7L
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Persistent+de+Rham-Hodge+Laplacians+in+Eulerian+representation+for+manifold+topological+learning&rft.jtitle=AIMS+mathematics&rft.au=Su%2C+Zhe&rft.au=Tong%2C+Yiying&rft.au=Wei%2C+Guo-Wei&rft.date=2024-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=9&rft.issue=10&rft.spage=27438&rft.epage=27470&rft_id=info:doi/10.3934%2Fmath.20241333&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20241333
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon