Comparing Physics‐Based, Conceptual and Machine‐Learning Models to Predict Groundwater Levels by BMA

Groundwater level observations are used as decision variables for aquifer management, often in conjunction with models to provide predictions for operational forecasting. In this study, we compare different model classes for this task: a spatially explicit 3D groundwater flow model (MODFLOW), an eig...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ground water Ročník 63; číslo 4; s. 484 - 505
Hlavní autoři: Wöhling, Thomas, Delgadillo, Alvaro Oliver Crespo, Kraft, Moritz, Guthke, Anneli
Médium: Journal Article
Jazyk:angličtina
Vydáno: Malden, US Blackwell Publishing Ltd 01.07.2025
Ground Water Publishing Company
Témata:
ISSN:0017-467X, 1745-6584, 1745-6584
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Groundwater level observations are used as decision variables for aquifer management, often in conjunction with models to provide predictions for operational forecasting. In this study, we compare different model classes for this task: a spatially explicit 3D groundwater flow model (MODFLOW), an eigenmodel, a transfer‐function model, and three machine learning models, namely, multi‐layer perceptron models, long short‐term memory models, and random forest models. The models differ widely in their complexity, input requirements, calibration effort, and run‐times. They are tested on four groundwater level time series from the Wairau Aquifer in New Zealand to investigate the potential of the data‐driven approaches to outperform the MODFLOW model in predicting individual target wells. Further, we wish to reveal whether the MODFLOW model has advantages in predicting all four wells simultaneously because it can use the available information in a physics‐based, integrated manner, or whether structural limitations spoil this effect. Our results demonstrate that data‐driven models with low input requirements and short run‐times are competitive candidates for local groundwater level predictions even for system states that lie outside the calibration data range. There is no “single best” model that performs best in all cases, which motivates ensemble forecasting with different model classes using Bayesian model averaging. The obtained Bayesian model weights clearly favor MODFLOW when targeting all wells simultaneously, even though the competing approaches had the chance to fine‐tune for each tested well individually. This is a remarkable result that strengthens the argument for physics‐based approaches even for seemingly “simple” groundwater level prediction tasks.
AbstractList Groundwater level observations are used as decision variables for aquifer management, often in conjunction with models to provide predictions for operational forecasting. In this study, we compare different model classes for this task: a spatially explicit 3D groundwater flow model (MODFLOW), an eigenmodel, a transfer-function model, and three machine learning models, namely, multi-layer perceptron models, long short-term memory models, and random forest models. The models differ widely in their complexity, input requirements, calibration effort, and run-times. They are tested on four groundwater level time series from the Wairau Aquifer in New Zealand to investigate the potential of the data-driven approaches to outperform the MODFLOW model in predicting individual target wells. Further, we wish to reveal whether the MODFLOW model has advantages in predicting all four wells simultaneously because it can use the available information in a physics-based, integrated manner, or whether structural limitations spoil this effect. Our results demonstrate that data-driven models with low input requirements and short run-times are competitive candidates for local groundwater level predictions even for system states that lie outside the calibration data range. There is no "single best" model that performs best in all cases, which motivates ensemble forecasting with different model classes using Bayesian model averaging. The obtained Bayesian model weights clearly favor MODFLOW when targeting all wells simultaneously, even though the competing approaches had the chance to fine-tune for each tested well individually. This is a remarkable result that strengthens the argument for physics-based approaches even for seemingly "simple" groundwater level prediction tasks.Groundwater level observations are used as decision variables for aquifer management, often in conjunction with models to provide predictions for operational forecasting. In this study, we compare different model classes for this task: a spatially explicit 3D groundwater flow model (MODFLOW), an eigenmodel, a transfer-function model, and three machine learning models, namely, multi-layer perceptron models, long short-term memory models, and random forest models. The models differ widely in their complexity, input requirements, calibration effort, and run-times. They are tested on four groundwater level time series from the Wairau Aquifer in New Zealand to investigate the potential of the data-driven approaches to outperform the MODFLOW model in predicting individual target wells. Further, we wish to reveal whether the MODFLOW model has advantages in predicting all four wells simultaneously because it can use the available information in a physics-based, integrated manner, or whether structural limitations spoil this effect. Our results demonstrate that data-driven models with low input requirements and short run-times are competitive candidates for local groundwater level predictions even for system states that lie outside the calibration data range. There is no "single best" model that performs best in all cases, which motivates ensemble forecasting with different model classes using Bayesian model averaging. The obtained Bayesian model weights clearly favor MODFLOW when targeting all wells simultaneously, even though the competing approaches had the chance to fine-tune for each tested well individually. This is a remarkable result that strengthens the argument for physics-based approaches even for seemingly "simple" groundwater level prediction tasks.
Groundwater level observations are used as decision variables for aquifer management, often in conjunction with models to provide predictions for operational forecasting. In this study, we compare different model classes for this task: a spatially explicit 3D groundwater flow model (MODFLOW), an eigenmodel, a transfer‐function model, and three machine learning models, namely, multi‐layer perceptron models, long short‐term memory models, and random forest models. The models differ widely in their complexity, input requirements, calibration effort, and run‐times. They are tested on four groundwater level time series from the Wairau Aquifer in New Zealand to investigate the potential of the data‐driven approaches to outperform the MODFLOW model in predicting individual target wells. Further, we wish to reveal whether the MODFLOW model has advantages in predicting all four wells simultaneously because it can use the available information in a physics‐based, integrated manner, or whether structural limitations spoil this effect. Our results demonstrate that data‐driven models with low input requirements and short run‐times are competitive candidates for local groundwater level predictions even for system states that lie outside the calibration data range. There is no “single best” model that performs best in all cases, which motivates ensemble forecasting with different model classes using Bayesian model averaging. The obtained Bayesian model weights clearly favor MODFLOW when targeting all wells simultaneously, even though the competing approaches had the chance to fine‐tune for each tested well individually. This is a remarkable result that strengthens the argument for physics‐based approaches even for seemingly “simple” groundwater level prediction tasks.
Author Delgadillo, Alvaro Oliver Crespo
Wöhling, Thomas
Kraft, Moritz
Guthke, Anneli
AuthorAffiliation 1 Chair of Hydrology Dresden University of Technology (TUD) 01069 Dresden Germany
2 University of Stuttgart, Stuttgart Center for Simulation Science (SC SimTech) 70569 Stuttgart Germany
AuthorAffiliation_xml – name: 2 University of Stuttgart, Stuttgart Center for Simulation Science (SC SimTech) 70569 Stuttgart Germany
– name: 1 Chair of Hydrology Dresden University of Technology (TUD) 01069 Dresden Germany
Author_xml – sequence: 1
  givenname: Thomas
  orcidid: 0000-0003-2963-0965
  surname: Wöhling
  fullname: Wöhling, Thomas
  email: thomas.woehling@tu-dresden.de
– sequence: 2
  givenname: Alvaro Oliver Crespo
  surname: Delgadillo
  fullname: Delgadillo, Alvaro Oliver Crespo
  organization: Dresden University of Technology (TUD)
– sequence: 3
  givenname: Moritz
  surname: Kraft
  fullname: Kraft, Moritz
  organization: Dresden University of Technology (TUD)
– sequence: 4
  givenname: Anneli
  surname: Guthke
  fullname: Guthke, Anneli
  organization: University of Stuttgart, Stuttgart Center for Simulation Science (SC SimTech)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40256895$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1uEzEUhS1URNPChgdAI7FBiCn-HY9XKI0gICWiiyLYWR77TjLVxA72TKvseIQ-Y58Eh5QKWHA3vtL57tGxzgk68sEDQs8JPiN53q5uzHBGGK_lIzQhkouyEjU_QhOMiSx5Jb8do5OUrjDGTGH1BB1zTEVVKzFB61nYbE3s_Kq4WO9SZ9Pdj9tzk8C9KWbBW9gOo-kL412xNHbdecj6Akz0-5NlcNCnYgjFRQTX2aGYxzB6lwNBLBZwvVebXXG-nD5Fj1vTJ3h2_56iLx_eX84-lovP80-z6aI0nDFZNkY55WgrGsxrQYHUljFLAdcNMXmlLXMKc8uhwgC4bWsl64ZVTQvMSUvZKXp38N2OzQacBT9E0-tt7DYm7nQwnf5b8d1ar8K1JpRKirHKDq_uHWL4PkIa9KZLFvreeAhj0owoykTFapbRl_-gV2GMPv9PM8oIVkIKnKkXf0Z6yPK7hQy8PgA2hpQitA8IwXpfsd5XrH9VnGFygG-6Hnb_IfX86_TycPMT0m2rGA
Cites_doi 10.1029/2011WR011471
10.1016/j.scitotenv.2020.141220
10.3390/w12010005
10.1038/s41598‐020‐60698‐9
10.3133/tm6A16
10.1016/j.jher.2017.11.004
10.1002/2014WR016292
10.5194/hess‐23‐4323‐2019
10.1016/j.advwatres.2012.10.001
10.1038/s41467‐022‐28770‐2
10.1016/j.watres.2024.121249
10.1111/gwat.12925
10.1029/2005WR004828
10.1088/1748‐9326/ab8e8c
10.1023/A:1010933404324
10.13189/cea.2022.100304
10.5194/hess‐23‐3057‐2019
10.5194/hess‐2024‐111
10.1007/s12145‐021‐00654‐x
10.1029/2009WR008933
10.1111/gwat.12625
10.1016/j.jhydrol.2017.07.021
10.5194/hess‐28‐2167‐2024
10.1029/wr019i001p00087
10.1016/j.jhydrol.2015.07.047
10.5194/hess‐27‐2397‐2023
10.1016/j.catena.2015.10.010
10.1007/s13201‐018‐0742‐6
10.1007/s10040‐013‐1029‐5
10.5194/hess-12-975-2008
10.1111/gwat.12819
10.1111/j.1745‐6584.2007.00382.x
10.3390/w11051098
10.1016/j.jhydrol.2022.127630
10.1029/2019WR027009
10.1029/2020WR029500
10.1007/s11269‐018‐2126‐y
10.1111/j.1745-6584.2003.tb02580.x
10.1016/j.scitotenv.2021.146948
10.1016/j.jhydrol.2012.02.031
10.1016/j.gsd.2019.100237
10.1007/s12665‐014‐3608‐8
10.1016/j.jhydrol.2018.12.037
10.1016/j.scitotenv.2014.01.001
10.1016/j.jhydrol.2009.08.003
10.1080/00949650410001729472
10.1016/j.scitotenv.2023.168760
10.1016/j.jhydrol.2020.124871
10.3133/tm6A37
10.1002/joc.1350
10.1016/j.jhydrol.2021.126735
10.1016/j.jhydrol.2004.12.001
10.1029/2010wr010174
10.2307/3315929
10.1002/2013WR014800
10.1016/j.jhydrol.2021.127347
10.1016/j.jhydrol.2021.126674
10.1080/00288306.1981.10422739
10.1016/j.jhydrol.2011.08.002
10.1111/gwat.12927
10.1007/s12665‐013‐2306‐2
10.1029/2007WR006735
10.1016/j.matcom.2005.02.023
10.5194/hess‐25‐1671‐2021
10.1016/j.jhydrol.2005.02.026
10.1016/j.jhydrol.2013.07.012
10.1002/wrcr.20496
10.1029/2007WR006678
10.1016/j.jhydrol.2016.03.026
10.1111/gwat.12554
10.1029/2010WR009265
10.5675/HyWa
10.1029/2001WR001136
10.1016/j.envsoft.2012.06.003
10.1214/ss/1009212519
10.1162/neco.1997.9.8.1735
10.1016/j.ejrh.2020.100715
10.1016/j.jhydrol.2012.01.045
10.1016/j.advwatres.2019.01.006
10.3389/frwa.2020.573034
10.1007/s11069‐010‐9603‐9
10.1002/2014WR016062
10.1007/s10898‐020‐00912‐0
10.1016/j.neucom.2022.03.014
10.1007/978-3-642-38739-5
10.1002/hyp.8214
10.3133/sir20105168
10.1002/2017WR021902
10.2166/nh.2016.264
10.1016/j.jhydrol.2018.01.045
10.1016/j.jhydrol.2011.06.013
10.1007/s12665‐023‐11012‐z
10.1038/s41586‐023‐06879‐8
10.1016/j.jhydrol.2019.01.072
10.1002/9783527611515
ContentType Journal Article
Copyright 2025 The Author(s). published by Wiley Periodicals LLC on behalf of National Ground Water Association.
2025 The Author(s). Groundwater published by Wiley Periodicals LLC on behalf of National Ground Water Association.
2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 The Author(s). published by Wiley Periodicals LLC on behalf of National Ground Water Association.
– notice: 2025 The Author(s). Groundwater published by Wiley Periodicals LLC on behalf of National Ground Water Association.
– notice: 2025. This work is published under Creative Commons Attribution License~https://creativecommons.org/licenses/by/3.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7UA
C1K
F1W
H96
H97
K9.
L.G
SOI
7X8
5PM
DOI 10.1111/gwat.13487
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
ProQuest Health & Medical Complete (Alumni)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Health & Medical Complete (Alumni)
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


CrossRef
MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Physics
DocumentTitleAlternate Comparing Physics‐Based, Conceptual and Machine‐Learning Models to Predict Groundwater Levels by BMA
EISSN 1745-6584
EndPage 505
ExternalDocumentID PMC12272009
40256895
10_1111_gwat_13487
GWAT13487
Genre researchArticle
Journal Article
Comparative Study
GeographicLocations New Zealand
GeographicLocations_xml – name: New Zealand
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  funderid: EXC 2075 390740016
– fundername: Ministry for Business Innovation and Employment
  funderid: 1964‐MLDC149
– fundername: Ministry for Business Innovation and Employment
  grantid: 1964-MLDC149
– fundername: Deutsche Forschungsgemeinschaft
  grantid: EXC 2075 390740016
– fundername: ;
  grantid: EXC 2075 390740016
– fundername: ;
  grantid: 1964‐MLDC149
GroupedDBID ---
-DZ
-~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
186
1OB
1OC
24P
29I
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
7X2
7X7
7XC
8-0
8-1
8-3
8-4
8-5
88E
88I
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJCF
ABJNI
ABPPZ
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AETEA
AEUYN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AI.
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BCR
BCU
BDRZF
BEC
BENPR
BES
BFHJK
BGLVJ
BHBCM
BHPHI
BKOMP
BKSAR
BLC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
D1J
D1K
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
F5P
FEDTE
FYUFA
FZ0
G-S
G.N
GNUQQ
GODZA
GUQSH
H.T
H.X
HCIFZ
HF~
HGLYW
HMCUK
HVGLF
HZI
HZ~
IAG
IAO
IEA
IEP
IOF
ITC
IX1
J0M
K48
K6-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK5
LOXES
LP6
LP7
LUTES
LW6
LYRES
M0K
M1P
M2O
M2P
M7R
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PCBAR
PEA
PHGZM
PHGZT
PPXIY
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
R.K
R05
RIWAO
RJQFR
ROL
RWL
RX1
S0X
SAMSI
SJFOW
SUPJJ
TAE
TN5
UB1
UKHRP
V8K
VH1
VJK
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
Y6R
ZCA
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AFFHD
AIQQE
CITATION
O8X
PJZUB
CGR
CUY
CVF
ECM
EIF
NPM
7QH
7ST
7UA
C1K
F1W
H96
H97
K9.
L.G
SOI
7X8
5PM
ID FETCH-LOGICAL-a4337-ba9d9d2f5b04852e18c33c2e08b1ac332f3d904c4e60ee0ff8978b36bfe3d7c23
IEDL.DBID 24P
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001470719500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0017-467X
1745-6584
IngestDate Tue Nov 04 02:03:10 EST 2025
Fri Sep 05 17:29:40 EDT 2025
Sat Nov 08 20:08:19 EST 2025
Mon Jul 21 02:03:49 EDT 2025
Thu Nov 27 00:45:16 EST 2025
Fri Jul 18 09:20:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
2025 The Author(s). Groundwater published by Wiley Periodicals LLC on behalf of National Ground Water Association.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4337-ba9d9d2f5b04852e18c33c2e08b1ac332f3d904c4e60ee0ff8978b36bfe3d7c23
Notes Article impact statement
Six model types to predict groundwater levels are compared and combined to provide guidance to modelers for their selection and use.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Article impact statement: Six model types to predict groundwater levels are compared and combined to provide guidance to modelers for their selection and use.
ORCID 0000-0003-2963-0965
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgwat.13487
PMID 40256895
PQID 3231095750
PQPubID 48478
PageCount 20
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12272009
proquest_miscellaneous_3192356383
proquest_journals_3231095750
pubmed_primary_40256895
crossref_primary_10_1111_gwat_13487
wiley_primary_10_1111_gwat_13487_GWAT13487
PublicationCentury 2000
PublicationDate July/August 2025
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: July/August 2025
PublicationDecade 2020
PublicationPlace Malden, US
PublicationPlace_xml – name: Malden, US
– name: United States
– name: Dublin
PublicationTitle Ground water
PublicationTitleAlternate Ground Water
PublicationYear 2025
Publisher Blackwell Publishing Ltd
Ground Water Publishing Company
Publisher_xml – name: Blackwell Publishing Ltd
– name: Ground Water Publishing Company
References 2013; 69
1983; 19
2016b
2016a
2018; 567
2019; 11
2015; 73
2024; 625
2021; 600
2021; 602
2020; 15
2011; 57
2020; 12
2025
2020; 10
2024
2001; 45
2017; 552
1997; 9
2023; 82
2005; 69
2018; 8
2011; 409
2011; 407
2015; 531
2019; 23
2013; 53
2006; 26
2005; 75
2022; 608
2022; 606
2018; 32
2003; 41
2024; 28
2016; 47
2021; 81
2019; 9
2021; 783
2015; 51
2019; 32
1981; 24
1995
2012; 38
2021; 57
2018; 18
2006; 42
2010; 46
2020; 31
2017; 55
2022; 13
2008; 46
2008; 44
2022; 10
2012; 48
2019; 572
2009; 45
2021; 25
1987; 1
2013; 21
2019; 57
2019; 125
2011; 12
2020; 56
2014; 476–477
2020; 2
2019; 63
2023; 27
1999; 14
2024; 2024
2005; 309
2011; 26
2014; 50
2022; 489
2002; 38
2013; 49
2012
2011
2010
2005; 313
2008; 14
2009; 377
2005
2003
2020; 586
2020; 747
2021; 14
2024b; 912
2023
2024a; 252
2016; 537
2019
2013; 499
2016
2015
2014
2016; 137
2011; 47
2018; 56
2012; 434–435
2018; 54
2012; 436‐437
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_5_1
e_1_2_8_9_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_19_1
MCB (e_1_2_8_56_1) 1987
e_1_2_8_109_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_91_1
e_1_2_8_95_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_101_1
e_1_2_8_72_1
e_1_2_8_29_1
Basher L.R. (e_1_2_8_11_1) 1995
e_1_2_8_25_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_110_1
Doherty J.E. (e_1_2_8_30_1) 2016
e_1_2_8_6_1
e_1_2_8_21_1
e_1_2_8_67_1
Davidson P. (e_1_2_8_28_1) 2011
e_1_2_8_44_1
e_1_2_8_86_1
e_1_2_8_40_1
e_1_2_8_82_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_79_1
e_1_2_8_94_1
e_1_2_8_90_1
e_1_2_8_98_1
e_1_2_8_10_1
e_1_2_8_106_1
e_1_2_8_33_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_102_1
e_1_2_8_71_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_70_1
e_1_2_8_97_1
e_1_2_8_32_1
e_1_2_8_55_1
Murphy K.P. (e_1_2_8_61_1) 2012
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_103_1
e_1_2_8_93_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_69_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_23_1
e_1_2_8_65_1
Pedregosa F. (e_1_2_8_63_1) 2011; 12
e_1_2_8_84_1
e_1_2_8_112_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_58_1
Doherty J.E. (e_1_2_8_31_1) 2016
e_1_2_8_92_1
e_1_2_8_96_1
e_1_2_8_100_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_104_1
References_xml – year: 2011
– volume: 14
  start-page: 382
  issue: 4
  year: 1999
  end-page: 417
  article-title: Bayesian model averaging: A tutorial
  publication-title: Statistical Science
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– year: 2005
– volume: 50
  start-page: 9484
  issue: 12
  year: 2014
  end-page: 9513
  article-title: Model selection on solid ground: Rigorous comparison of nine ways to evaluate Bayesian model evidence
  publication-title: Water Resources Research
– volume: 434–435
  start-page: 78
  year: 2012
  end-page: 94
  article-title: Comparing methods for estimating flow duration curves at ungauged sites
  publication-title: Journal of Hydrology
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 81
  start-page: 203
  issue: 1
  year: 2021
  end-page: 231
  article-title: Surrogate optimization of deep neural networks for groundwater predictions
  publication-title: Journal of Global Optimization
– volume: 602
  issue: 11
  year: 2021
  article-title: Comparison of physical and data‐driven models to forecast groundwater level changes with the inclusion of GRACE – A case study over the state of Victoria, Australia
  publication-title: Journal of Hydrology
– volume: 57
  start-page: 826
  issue: 6
  year: 2019
  end-page: 833
  article-title: Solving groundwater flow problems with time series analysis: You may not even need another model
  publication-title: Groundwater
– volume: 309
  start-page: 229
  issue: 1
  year: 2005
  end-page: 240
  article-title: Groundwater level forecasting using artificial neural networks
  publication-title: Journal of Hydrology
– volume: 137
  start-page: 360
  year: 2016
  end-page: 372
  article-title: Application of GIS‐based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran
  publication-title: Catena
– volume: 15
  issue: 9
  year: 2020
  article-title: Groundwater sustainability: A review of the interactions between science and policy
  publication-title: Environmental Research Letters
– year: 2014
– volume: 2
  year: 2020
  article-title: Impact of input feature selection on groundwater level prediction from a multi‐layer perceptron neural network
  publication-title: Frontiers in Water
– volume: 252
  year: 2024a
  article-title: Groundwater level forecasting with machine learning models: A review
  publication-title: Water Research
– year: 2016a
– volume: 537
  start-page: 45
  year: 2016
  end-page: 60
  article-title: An overview of current applications, challenges, and future trends in distributed process‐based models in hydrology
  publication-title: Journal of Hydrology
– year: 2025
– volume: 31
  issue: 10
  year: 2020
  article-title: Detecting the cause of change using uncertain data: Natural and anthropogenic factors contributing to declining groundwater levels and flows of the Wairau Plain aquifer, New Zealand
  publication-title: Journal of Hydrology: Regional Studies
– volume: 47
  year: 2011
  article-title: Multiresponse multilayer vadose zone model calibration using Markov chain Monte Carlo simulation and field water retention data
  publication-title: Water Resources Research
– year: 2019
– volume: 747
  year: 2020
  article-title: Eigenmodels to forecast groundwater levels in unconfined river‐fed aquifers during flow recession
  publication-title: Science of the Total Environment
– volume: 49
  start-page: 6459
  issue: 10
  year: 2013
  end-page: 6473
  article-title: Bridging groundwater models and decision support with a Bayesian network
  publication-title: Water Resources Research
– volume: 377
  start-page: 80
  issue: 1–2
  year: 2009
  end-page: 91
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: Journal of Hydrology
– volume: 476–477
  start-page: 189
  year: 2014
  end-page: 206
  article-title: Predictive modeling of groundwater nitrate pollution using random Forest and multisource variables related to intrinsic and specific vulnerability: A case study in an agricultural setting (southern Spain)
  publication-title: Science of the Total Environment
– volume: 23
  start-page: 4323
  issue: 10
  year: 2019
  end-page: 4331
  article-title: Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores
  publication-title: Hydrology and Earth System Sciences
– volume: 572
  start-page: 336
  year: 2019
  end-page: 351
  article-title: A review of the artificial intelligence methods in groundwater level modeling
  publication-title: Journal of Hydrology
– volume: 436‐437
  start-page: 13
  year: 2012
  end-page: 34
  article-title: Three‐dimensional geological modelling and multivariate statistical analysis of water chemistry data to analyse and visualise aquifer structure and groundwater composition in the Wairau Plain, Marlborough District, New Zealand
  publication-title: Journal of Hydrology
– volume: 13
  start-page: 1221
  issue: 1
  year: 2022
  article-title: Deep learning shows declining groundwater levels in Germany until 2100 due to climate change
  publication-title: Nature Communications
– volume: 552
  start-page: 684
  year: 2017
  end-page: 703
  article-title: Predicting nitrate discharge dynamics in mesoscale catchments using the lumped StreamGEM model and Bayesian parameter inference
  publication-title: Journal of Hydrology
– volume: 313
  start-page: 166
  issue: 3
  year: 2005
  end-page: 181
  article-title: Modeling of stream‐aquifer interaction: The embedded multireservoir model
  publication-title: Journal of Hydrology
– volume: 47
  start-page: 69
  issue: S1
  year: 2016
  end-page: 83
  article-title: Comparison of random forests and other statistical methods for the prediction of lake water level: A case study of the Poyang lake in China
  publication-title: Hydrology Research
– volume: 783
  year: 2021
  article-title: Groundwater level modeling framework by combining the wavelet transform with a long short‐term memory data‐driven model
  publication-title: Science of the Total Environment
– volume: 38
  start-page: 23‐1
  issue: 12
  year: 2002
  end-page: 23‐12
  article-title: Transfer function‐noise modeling in continuous time using predefined impulse response functions
  publication-title: Water Resources Research
– volume: 46
  start-page: 30
  issue: 1
  year: 2008
  end-page: 40
  article-title: Modeling time series of ground water head fluctuations subjected to multiple stresses
  publication-title: Groundwater
– year: 2016
– volume: 69
  start-page: 12
  issue: 1
  year: 2005
  end-page: 20
  article-title: Realistic forecasting of groundwater level, based on the eigenstructure of aquifer dynamics
  publication-title: Mathematics and Computers in Simulation
– volume: 24
  start-page: 477
  year: 1981
  end-page: 490
  article-title: Late quaternary geology of the Wairau Plain, Marlborough, New Zealand
  publication-title: New Zealand Journal of Geology and Geophysics
– year: 2010
– volume: 27
  start-page: 2397
  issue: 13
  year: 2023
  end-page: 2411
  article-title: When best is the enemy of good – Critical evaluation of performance criteria in hydrological models
  publication-title: Hydrology and Earth System Sciences
– volume: 608
  year: 2022
  article-title: Data‐driven models for accurate groundwater level prediction and their practical significance in groundwater management
  publication-title: Journal of Hydrology
– volume: 32
  start-page: 5041
  issue: 15
  year: 2018
  end-page: 5052
  article-title: Multilayer feed forward models in groundwater level forecasting using meteorological data in public management
  publication-title: Water Resources Management
– volume: 44
  year: 2008
  article-title: Framework for understanding structural errors (FUSE): A modular framework to diagnose differences between hydrological models
  publication-title: Water Resources Research
– volume: 63
  start-page: 130
  issue: H3
  year: 2019
  end-page: 140
  article-title: Natürliche und anthropogene Einflussfaktoren auf das hydrologische Regime des Wairau Plain Aquifer in Neuseeland
  publication-title: Hydrologie und Wasserbewirtschaftung
– volume: 45
  year: 2009
  article-title: Calibration‐constrained Monte Carlo analysis of highly parameterized models using subspace techniques
  publication-title: Water Resources Research
– volume: 57
  start-page: 877
  issue: 6
  year: 2019
  end-page: 885
  article-title: Pastas: Open source software for the analysis of groundwater time series
  publication-title: Groundwater
– volume: 47
  issue: 11
  year: 2011
  article-title: Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development
  publication-title: Water Resources Research
– year: 1995
– volume: 75
  start-page: 629
  issue: 8
  year: 2005
  end-page: 643
  article-title: An empirical comparison of ensemble methods based on classification trees
  publication-title: Journal of Statistical Computation and Simulation
– volume: 625
  start-page: 715
  issue: 7996
  year: 2024
  end-page: 721
  article-title: Rapid groundwater decline and some cases of recovery in aquifers globally
  publication-title: Nature
– volume: 26
  start-page: 1435
  issue: 10
  year: 2011
  end-page: 1448
  article-title: A conceptual‐numerical model to simulate hydraulic head in aquifers that are hydraulically connected to surface water bodies
  publication-title: Hydrological Processes
– volume: 21
  start-page: 1865
  issue: 8
  year: 2013
  end-page: 1887
  article-title: Groundwater‐level prediction using multiple linear regression and artificial neural network techniques: A comparative assessment
  publication-title: Hydrogeology Journal
– year: 2016b
– volume: 57
  start-page: 167
  issue: 2
  year: 2011
  end-page: 184
  article-title: Forecasting groundwater level fluctuations for rainfall‐induced landslide
  publication-title: Natural Hazards
– volume: 1
  year: 1987
– volume: 586
  year: 2020
  article-title: Adaptive management in groundwater planning and development: A review of theory and applications
  publication-title: Journal of Hydrology
– volume: 18
  start-page: 63
  year: 2018
  end-page: 76
  article-title: Groundwater level fluctuations simulation and prediction by ANFIS‐ and hybrid Wavelet‐ANFIS/Fuzzy C‐Means (FCM) clustering models: Application to the Miandarband plain
  publication-title: Journal of Hydro‐Environment Research
– volume: 28
  start-page: 2167
  issue: 9
  year: 2024
  end-page: 2178
  article-title: Towards understanding the influence of seasons on low‐groundwater periods based on explainable machine learning
  publication-title: Hydrology and Earth System Sciences
– volume: 10
  start-page: 784
  issue: 3
  year: 2022
  end-page: 799
  article-title: Groundwater level forecasting using multiple linear regression and artificial neural network approaches
  publication-title: Civil Engineering and Architecture
– volume: 14
  start-page: 1269
  issue: 3
  year: 2021
  end-page: 1283
  article-title: Groundwater level as an input to monthly predicting of water level using various machine learning algorithms
  publication-title: Earth Science Informatics
– volume: 125
  start-page: 41
  year: 2019
  end-page: 56
  article-title: Simplification error analysis for groundwater predictions with reduced order models
  publication-title: Advances in Water Resources
– volume: 407
  start-page: 28
  issue: 1
  year: 2011
  end-page: 40
  article-title: A wavelet neural network conjunction model for groundwater level forecasting
  publication-title: Journal of Hydrology
– volume: 56
  start-page: 647
  issue: 4
  year: 2018
  end-page: 666
  article-title: Quantifying river‐groundwater interactions of New Zealand's gravel‐bed rivers: The Wairau Plain
  publication-title: Groundwater
– year: 2024
– volume: 56
  issue: 9
  year: 2020
  article-title: Automatic model structure identification for conceptual hydrologic models
  publication-title: Water Resources Research
– volume: 25
  start-page: 1671
  issue: 3
  year: 2021
  end-page: 1687
  article-title: Groundwater level forecasting with artificial neural networks: A comparison of long short‐term memory (LSTM), convolutional neural networks (CNNs), and non‐linear autoregressive networks with exogenous input (NARX)
  publication-title: Hydrology and Earth System Sciences
– volume: 8
  start-page: 125
  issue: 5
  year: 2018
  article-title: Short‐term prediction of groundwater level using improved random forest regression with a combination of random features
  publication-title: Applied Water Science
– volume: 499
  start-page: 324
  year: 2013
  end-page: 338
  article-title: Hydrological evaluation of satellite‐based rainfall estimates over the Volta and Baro‐Akobo Basin
  publication-title: Journal of Hydrology
– volume: 19
  start-page: 87
  issue: 1
  year: 1983
  end-page: 93
  article-title: An eigenvalue numerical technique for solving unsteady linear groundwater models continuously in time
  publication-title: Water Resources Research
– volume: 32
  start-page: 269
  issue: 3
  year: 2019
  end-page: 283
  article-title: Improvement over bayes prediction in small samples in the presence of model uncertainty
  publication-title: Canadian Journal of Statistics
– volume: 12
  issue: 1
  year: 2020
  article-title: Groundwater estimation from major physical hydrology components using artificial neural networks and deep learning
  publication-title: Water
– volume: 11
  issue: 5
  year: 2019
  article-title: Forecasting groundwater table in a flood prone Coastal City with long short‐term memory and recurrent neural networks
  publication-title: Water
– volume: 41
  start-page: 170
  issue: 2
  year: 2003
  end-page: 177
  article-title: Ground water model calibration using pilot points and regularization
  publication-title: Groundwater
– volume: 9
  start-page: 1735
  issue: 11
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Computation
– volume: 912
  year: 2024b
  article-title: Groundwater level forecasting using ensemble coactive neuro‐fuzzy inference system
  publication-title: Science of the Total Environment
– volume: 54
  start-page: 1688
  issue: 3
  year: 2018
  end-page: 1715
  article-title: A primer for model selection: The decisive role of model complexity
  publication-title: Water Resources Research
– volume: 57
  start-page: 834
  issue: 6
  year: 2019
  end-page: 843
  article-title: Automated time series modeling for piezometers in the national database of The Netherlands
  publication-title: Groundwater
– volume: 57
  issue: 12
  year: 2021
  article-title: Global groundwater modeling and monitoring: Opportunities and challenges
  publication-title: Water Resources Research
– volume: 23
  start-page: 3057
  issue: 7
  year: 2019
  end-page: 3080
  article-title: Assessing the performance of global hydrological models for capturing peak river flows in the Amazon basin
  publication-title: Hydrology and Earth System Sciences
– volume: 82
  start-page: 339
  issue: 13
  year: 2023
  article-title: A data‐driven approach for modelling Karst spring discharge using transfer function noise models
  publication-title: Environmental Earth Sciences
– year: 2015
– volume: 409
  start-page: 94
  issue: 1
  year: 2011
  end-page: 103
  article-title: Topographic controls on overland flow generation in a forest – An ensemble tree approach
  publication-title: Journal of Hydrology
– volume: 2024
  start-page: 1
  year: 2024
  end-page: 21
  article-title: Data‐driven modeling of hydraulic head time series: Results and lessons learned from the 2022 groundwater modeling challenge
  publication-title: Hydrology and Earth System Sciences Discussions
– volume: 73
  start-page: 3119
  issue: 7
  year: 2015
  end-page: 3136
  article-title: On the statistical forecasting of groundwater levels in unconfined aquifer systems
  publication-title: Environmental Earth Sciences
– volume: 606
  year: 2022
  article-title: Lumped geohydrological modelling for long‐term predictions of groundwater storage and depletion
  publication-title: Journal of Hydrology
– year: 2003
– volume: 10
  start-page: 3904
  issue: 1
  year: 2020
  article-title: A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China
  publication-title: Scientific Reports
– volume: 50
  start-page: 8330
  issue: 10
  year: 2014
  end-page: 8355
  article-title: Nonlinear time‐series modeling of unconfined groundwater head
  publication-title: Water Resources Research
– volume: 46
  year: 2010
  article-title: A formal likelihood function for parameter and predictive inference of hydrologic models with correlated, heteroscedastic and non‐Gaussian errors
  publication-title: Water Resorces Research
– volume: 26
  start-page: 2097
  issue: 14
  year: 2006
  end-page: 2115
  article-title: Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface
  publication-title: International Journal of Climatology
– volume: 42
  issue: 10
  year: 2006
  article-title: Effect of temporally correlated recharge on fluctuations of groundwater levels
  publication-title: Water Resources Research
– year: 2012
– volume: 14
  start-page: 975
  year: 2008
  end-page: 987
  article-title: Dynamic analysis of groundwater discharge and partial‐area contribution to Pukemanga stream, New Zealand
  publication-title: Hydrology and Earth System Sciences
– volume: 489
  start-page: 271
  year: 2022
  end-page: 308
  article-title: Groundwater level prediction using machine learning models: A comprehensive review
  publication-title: Neurocomputing
– volume: 69
  start-page: 453
  issue: 2
  year: 2013
  end-page: 468
  article-title: Evaluating multiple performance criteria to calibrate the distributed hydrological model of the Upper Neckar catchment
  publication-title: Environmental Earth Sciences
– volume: 53
  start-page: 109
  year: 2013
  end-page: 117
  article-title: A terrain‐following grid transform and preconditioner for parallel, large‐scale, integrated hydrologic modeling
  publication-title: Advances in Water Resources
– volume: 51
  start-page: 2825
  issue: 4
  year: 2015
  end-page: 2846
  article-title: Bayesian model averaging to explore the worth of data for soil‐plant model selection and prediction
  publication-title: Water Resources Research
– volume: 567
  start-page: 743
  issue: 12
  year: 2018
  end-page: 758
  article-title: Forecasting groundwater levels using nonlinear autoregressive networks with exogenous input (NARX)
  publication-title: Journal of Hydrology
– year: 2023
– volume: 600
  year: 2021
  article-title: Goodness‐of‐fit criteria for hydrological models: Model calibration and performance assessment
  publication-title: Journal of Hydrology
– volume: 531
  start-page: 96
  issue: 1
  year: 2015
  end-page: 110
  article-title: Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection
  publication-title: Journal of Hydrology
– volume: 572
  start-page: 96
  year: 2019
  end-page: 107
  article-title: The hydrologists guide to Bayesian model selection, averaging and combination
  publication-title: Journal of Hydrology
– volume: 48
  issue: 6
  year: 2012
  article-title: Reduced order parameter estimation using quasilinearization and quadratic programming
  publication-title: Water Resources Research
– volume: 55
  start-page: 646
  issue: 5
  year: 2017
  end-page: 650
  article-title: Defensible model complexity: A call for data‐based and goal‐oriented model choice
  publication-title: Groundwater
– volume: 38
  start-page: 178
  year: 2012
  end-page: 190
  article-title: Software for hydrogeologic time series analysis, interfacing data with physical insight
  publication-title: Environmental Modelling & Software
– volume: 9
  year: 2019
  article-title: Developing comparative mathematic models, BN and ANN for forecasting of groundwater levels
  publication-title: Groundwater for Sustainable Development
– ident: e_1_2_8_81_1
  doi: 10.1029/2011WR011471
– ident: e_1_2_8_96_1
  doi: 10.1016/j.scitotenv.2020.141220
– ident: e_1_2_8_4_1
  doi: 10.3390/w12010005
– ident: e_1_2_8_21_1
  doi: 10.1038/s41598‐020‐60698‐9
– volume-title: Water and Soil Resources of the Wairau: Water Resources
  year: 1987
  ident: e_1_2_8_56_1
– ident: e_1_2_8_43_1
  doi: 10.3133/tm6A16
– ident: e_1_2_8_111_1
  doi: 10.1016/j.jher.2017.11.004
– ident: e_1_2_8_99_1
  doi: 10.1002/2014WR016292
– ident: e_1_2_8_51_1
  doi: 10.5194/hess‐23‐4323‐2019
– ident: e_1_2_8_55_1
  doi: 10.1016/j.advwatres.2012.10.001
– ident: e_1_2_8_106_1
  doi: 10.1038/s41467‐022‐28770‐2
– ident: e_1_2_8_14_1
  doi: 10.1016/j.watres.2024.121249
– ident: e_1_2_8_25_1
  doi: 10.1111/gwat.12925
– ident: e_1_2_8_112_1
  doi: 10.1029/2005WR004828
– ident: e_1_2_8_86_1
– volume-title: PEST, Model‐Independent Parameter Estimation User Manual Part II: PEST Utility Support Software
  year: 2016
  ident: e_1_2_8_31_1
– ident: e_1_2_8_35_1
  doi: 10.1088/1748‐9326/ab8e8c
– ident: e_1_2_8_18_1
  doi: 10.1023/A:1010933404324
– volume-title: PEST, Model‐Independent Parameter Estimation, User Manual Part I
  year: 2016
  ident: e_1_2_8_30_1
– ident: e_1_2_8_6_1
  doi: 10.13189/cea.2022.100304
– ident: e_1_2_8_90_1
  doi: 10.5194/hess‐23‐3057‐2019
– ident: e_1_2_8_24_1
  doi: 10.5194/hess‐2024‐111
– volume-title: Geomorphology of the Wairau Plains Implications for Floodplain Management Planning
  year: 1995
  ident: e_1_2_8_11_1
– ident: e_1_2_8_76_1
  doi: 10.1007/s12145‐021‐00654‐x
– ident: e_1_2_8_79_1
  doi: 10.1029/2009WR008933
– ident: e_1_2_8_98_1
  doi: 10.1111/gwat.12625
– ident: e_1_2_8_103_1
  doi: 10.1016/j.jhydrol.2017.07.021
– ident: e_1_2_8_105_1
  doi: 10.5194/hess‐28‐2167‐2024
– ident: e_1_2_8_75_1
  doi: 10.1029/wr019i001p00087
– ident: e_1_2_8_77_1
  doi: 10.1016/j.jhydrol.2015.07.047
– ident: e_1_2_8_22_1
  doi: 10.5194/hess‐27‐2397‐2023
– ident: e_1_2_8_67_1
  doi: 10.1016/j.catena.2015.10.010
– ident: e_1_2_8_91_1
  doi: 10.1007/s13201‐018‐0742‐6
– ident: e_1_2_8_73_1
  doi: 10.1007/s10040‐013‐1029‐5
– ident: e_1_2_8_13_1
  doi: 10.5194/hess-12-975-2008
– ident: e_1_2_8_110_1
  doi: 10.1111/gwat.12819
– ident: e_1_2_8_8_1
  doi: 10.1111/j.1745‐6584.2007.00382.x
– ident: e_1_2_8_17_1
  doi: 10.3390/w11051098
– ident: e_1_2_8_83_1
  doi: 10.1016/j.jhydrol.2022.127630
– ident: e_1_2_8_82_1
  doi: 10.1029/2019WR027009
– ident: e_1_2_8_26_1
  doi: 10.1029/2020WR029500
– ident: e_1_2_8_52_1
  doi: 10.1007/s11269‐018‐2126‐y
– ident: e_1_2_8_19_1
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1745-6584.2003.tb02580.x
– ident: e_1_2_8_104_1
  doi: 10.1016/j.scitotenv.2021.146948
– ident: e_1_2_8_16_1
  doi: 10.1016/j.jhydrol.2012.02.031
– ident: e_1_2_8_57_1
  doi: 10.1016/j.gsd.2019.100237
– ident: e_1_2_8_72_1
  doi: 10.1007/s12665‐014‐3608‐8
– ident: e_1_2_8_69_1
  doi: 10.1016/j.jhydrol.2018.12.037
– ident: e_1_2_8_70_1
  doi: 10.1016/j.scitotenv.2014.01.001
– ident: e_1_2_8_40_1
  doi: 10.1016/j.jhydrol.2009.08.003
– ident: e_1_2_8_42_1
  doi: 10.1080/00949650410001729472
– ident: e_1_2_8_15_1
  doi: 10.1016/j.scitotenv.2023.168760
– ident: e_1_2_8_88_1
  doi: 10.1016/j.jhydrol.2020.124871
– ident: e_1_2_8_62_1
  doi: 10.3133/tm6A37
– ident: e_1_2_8_92_1
– ident: e_1_2_8_84_1
  doi: 10.1002/joc.1350
– ident: e_1_2_8_109_1
  doi: 10.1016/j.jhydrol.2021.126735
– ident: e_1_2_8_27_1
  doi: 10.1016/j.jhydrol.2004.12.001
– ident: e_1_2_8_59_1
– ident: e_1_2_8_37_1
  doi: 10.1029/2010wr010174
– ident: e_1_2_8_93_1
– ident: e_1_2_8_102_1
  doi: 10.2307/3315929
– ident: e_1_2_8_64_1
  doi: 10.1002/2013WR014800
– ident: e_1_2_8_34_1
  doi: 10.1016/j.jhydrol.2021.127347
– ident: e_1_2_8_5_1
  doi: 10.1016/j.jhydrol.2021.126674
– ident: e_1_2_8_20_1
  doi: 10.1080/00288306.1981.10422739
– ident: e_1_2_8_58_1
– ident: e_1_2_8_54_1
  doi: 10.1016/j.jhydrol.2011.08.002
– ident: e_1_2_8_10_1
  doi: 10.1111/gwat.12927
– ident: e_1_2_8_100_1
  doi: 10.1007/s12665‐013‐2306‐2
– ident: e_1_2_8_23_1
  doi: 10.1029/2007WR006735
– ident: e_1_2_8_94_1
– ident: e_1_2_8_12_1
  doi: 10.1016/j.matcom.2005.02.023
– ident: e_1_2_8_107_1
  doi: 10.5194/hess‐25‐1671‐2021
– ident: e_1_2_8_66_1
  doi: 10.1016/j.jhydrol.2005.02.026
– ident: e_1_2_8_87_1
  doi: 10.1016/j.jhydrol.2013.07.012
– ident: e_1_2_8_38_1
  doi: 10.1002/wrcr.20496
– ident: e_1_2_8_89_1
  doi: 10.1029/2007WR006678
– ident: e_1_2_8_36_1
  doi: 10.1016/j.jhydrol.2016.03.026
– volume-title: Machine Learning – A Probabilistic Perspective
  year: 2012
  ident: e_1_2_8_61_1
– ident: e_1_2_8_41_1
  doi: 10.1111/gwat.12554
– volume-title: Groundwaters of Marlborough
  year: 2011
  ident: e_1_2_8_28_1
– ident: e_1_2_8_101_1
  doi: 10.1029/2010WR009265
– ident: e_1_2_8_95_1
  doi: 10.5675/HyWa
– ident: e_1_2_8_9_1
  doi: 10.1029/2001WR001136
– ident: e_1_2_8_7_1
  doi: 10.1016/j.envsoft.2012.06.003
– ident: e_1_2_8_45_1
  doi: 10.1214/ss/1009212519
– ident: e_1_2_8_44_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_8_97_1
  doi: 10.1016/j.ejrh.2020.100715
– ident: e_1_2_8_68_1
  doi: 10.1016/j.jhydrol.2012.01.045
– ident: e_1_2_8_39_1
  doi: 10.1016/j.advwatres.2019.01.006
– ident: e_1_2_8_74_1
  doi: 10.3389/frwa.2020.573034
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_8_63_1
  article-title: Scikit‐learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_48_1
  doi: 10.1007/s11069‐010‐9603‐9
– ident: e_1_2_8_78_1
  doi: 10.1002/2014WR016062
– ident: e_1_2_8_60_1
  doi: 10.1007/s10898‐020‐00912‐0
– ident: e_1_2_8_85_1
  doi: 10.1016/j.neucom.2022.03.014
– ident: e_1_2_8_2_1
– ident: e_1_2_8_29_1
  doi: 10.1007/978-3-642-38739-5
– ident: e_1_2_8_65_1
  doi: 10.1002/hyp.8214
– ident: e_1_2_8_33_1
  doi: 10.3133/sir20105168
– ident: e_1_2_8_47_1
  doi: 10.1002/2017WR021902
– ident: e_1_2_8_53_1
  doi: 10.2166/nh.2016.264
– ident: e_1_2_8_108_1
  doi: 10.1016/j.jhydrol.2018.01.045
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jhydrol.2011.06.013
– ident: e_1_2_8_71_1
  doi: 10.1007/s12665‐023‐11012‐z
– ident: e_1_2_8_49_1
– ident: e_1_2_8_50_1
  doi: 10.1038/s41586‐023‐06879‐8
– ident: e_1_2_8_46_1
  doi: 10.1016/j.jhydrol.2019.01.072
– ident: e_1_2_8_80_1
  doi: 10.1002/9783527611515
SSID ssj0003909
Score 2.4405591
Snippet Groundwater level observations are used as decision variables for aquifer management, often in conjunction with models to provide predictions for operational...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 484
SubjectTerms Aquifer management
Aquifers
Bayesian analysis
Bayesian theory
Calibration
Decision trees
Environmental Monitoring - methods
Forecasting
Groundwater
Groundwater - analysis
Groundwater flow
Groundwater levels
Learning algorithms
Machine Learning
Mathematical models
Models, Theoretical
New Zealand
Physics
Predictions
Probability theory
Research Paper
Spoil
Three dimensional flow
Water Movements
Wells
Title Comparing Physics‐Based, Conceptual and Machine‐Learning Models to Predict Groundwater Levels by BMA
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fgwat.13487
https://www.ncbi.nlm.nih.gov/pubmed/40256895
https://www.proquest.com/docview/3231095750
https://www.proquest.com/docview/3192356383
https://pubmed.ncbi.nlm.nih.gov/PMC12272009
Volume 63
WOSCitedRecordID wos001470719500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1745-6584
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003909
  issn: 0017-467X
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VFoly4FEopJTKCE6IIMd2NrHEZbuwcGirFWrF3iLHdnYroSzaZEG98RP4jfySjp0Hu6qEhLhEluwklufhbzzjGYBXRcSSQnIdUmO0czOiSFlKw9gwHpuoKFKufLGJ5OwsnU7lZAvedXdhmvwQ_YGbkwyvr52Aq7xaE_LZD1W_jTgC7luwE0U8cTzNxKTXw2jNy04PozqYtslJXRzPn3c3t6MbGPNmqOQ6hPV70Pj-_83-AdxrsScZNszyELZsuQd31zIS7sGdtij6_OoRzEdNjcJyRnycqK5-__x1jLueeUNGzW3HFX5OlYac-pBMi_1tvtYZcUXWvlakXpDJ0jmDauKOuUqDM7JLcuJilSqSX5Hj0-FjuBh_OB99CtvCDKESnCdhrqSRhhVxjvIfMxulmnPNLE3zSGGTFdxIKrSwA2otRYKjrZrzQV5YbhLN-D5sl4vSPgVSCKEGTKuE5u5KsFBoMQkrc8RpUhgZBfCyo0_2rcm_kXV2i1vDzK9hAIcd6bJWBquMO-gqEY7SAF703Sg9ziWiSrtY4RgHcGPUQTyAJw2l-98IBwdTGQeQbvBAP8Bl5t7sKS_nPkN3xJx7m8oAXnsm-MvUs49fhue-dfAvg5_BLnOViH3g8CFs18uVfQ639ff6sloeeUHAZzJNj2Dn_efxxck1TYoRAw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED9Bh7TtgT-DscAAI3hCZHJsp4kfu0IZoq0m1Im-RU7stJOmFDUpaG98BD4jnwSfk4ZWk5AQb5bsJI7vj3_nO98BvM4DFuWSZz7VOkM3oxUpQ6kfasZDHeR5zJUrNhGNx_F0Ks-b2By8C1Pnh2gP3FAynL5GAccD6Q0pn31X1UnALeK-DTvC8lHYgZ13nwcXw1YVW4NerlWx1QjTJj8phvL8eXp7R7oBM29GS26iWLcNDe795w_ch7sN_iS9mmEewC1THMD-RlbCA9htCqPPrx_CvF_XKSxmxMWKZuWvHz9P7c6n35J-feNxZV-nCk1GLizT2P4mZ-uMYKG1q5JUC3K-RIdQRfCoq9B2RmZJhhivVJL0mpyOeo_gYvB-0j_zm-IMvhKcR36qpJaa5WFqdUDITBBnnGfM0DgNlG2ynGtJRSZMlxpDLdGtvZrybpobrqOM8UPoFIvCHAHJhVBdlqmIpngtWChrNQkjU4vVpNAy8ODVmkDJ1zoHR7K2XXANE7eGHhyvaZc0clgmHOGrtJCUevCy7bYShG4RVZjFyo5BkBta_uEePK5J3X5GICSMZehBvMUE7QDMzr3dU1zOXZbugKGLm0oP3jgu-MvUkw9fehPXevIvg1_A7tlkNEyGH8efnsIew8rELpD4GDrVcmWewZ3sW3VZLp83cvEbYXsT-A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwEB7Bglg48LP8BRYwgtOKIMd2mvjYLRQQu1UPi-gtcmKnXWmVrtoUtDcegWfkSZhx0tBqJSTELZKdxPJ4xt94xt8AvC4jkZRaFiG3tqAwI6qU4zyMrZCxjcoylcYXm0hGo3Qy0eM2N4fuwjT8EN2BG2mGt9ek4O7clhtaPv1u6reRRMR9Fa6pGI0sETurcWeI0Z3Xa0OM9mDSspNSIs-fd7f3o0sg83Ku5CaG9ZvQ8M5_Dv8u3G7RJ-s3y-UeXHHVHtza4CTcg922LPrs4j7MBk2VwmrKfKZosfz14-ch7nv2DRs09x1X-DlTWXbskzIdtreMrVNGZdbOlqyes_GCwkE1o4OuyuKI3IIdUbbSkuUX7PC4_wC-DN-fDD6GbWmG0CgpkzA32moryjhHCxALF6WFlIVwPM0jg4-ilFZzVSjX485xFDl6q7ns5aWTNimEfAg71bxyj4GVSpmeKEzCc7oUrAz6TMrpHJGaVlZHAbxaCyg7bxg4srXnQnOY-TkMYH8tu6zVwmUmCbxqBKQ8gJddM-oPBUVM5eYr7EMQN0YrJAN41Ii6-40iQJjqOIB0axF0HYibe7ulOp15ju5IUICb6wAO_Cr4y9CzD1_7J_7pyb90fgE3xu-G2dGn0eencFNQWWKfRbwPO_Vi5Z7B9eJbfbpcPPdK8Rv4MBHh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Physics%E2%80%90Based%2C+Conceptual+and+Machine%E2%80%90Learning+Models+to+Predict+Groundwater+Levels+by+BMA&rft.jtitle=Ground+water&rft.au=W%C3%B6hling%2C+Thomas&rft.au=Delgadillo%2C+Alvaro+Oliver+Crespo&rft.au=Kraft%2C+Moritz&rft.au=Guthke%2C+Anneli&rft.date=2025-07-01&rft.pub=Ground+Water+Publishing+Company&rft.issn=0017-467X&rft.eissn=1745-6584&rft.volume=63&rft.issue=4&rft.spage=484&rft.epage=505&rft_id=info:doi/10.1111%2Fgwat.13487&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-467X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-467X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-467X&client=summon