Toward Understanding Polar Heat Transport Enhancement in Subglacial Oceans on Icy Moons
The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the equator. Rotating Rayleigh‐Bénard convection (RRBC) in planar configuration can show an enhanced heat transport compared to the non‐rotating case...
Uložené v:
| Vydané v: | Geophysical research letters Ročník 51; číslo 3 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Washington
John Wiley & Sons, Inc
16.02.2024
Wiley |
| Predmet: | |
| ISSN: | 0094-8276, 1944-8007 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the equator. Rotating Rayleigh‐Bénard convection (RRBC) in planar configuration can show an enhanced heat transport compared to the non‐rotating case within this “rotation‐affected” regime. We investigate the potential for such a (polar) heat transport enhancement in these subglacial oceans by direct numerical simulations of RRBC in spherical geometry for Ra = 106 and 0.7 ≤ Pr ≤ 4.38. We find an enhancement up to 28% in the “polar tangent cylinder,” which is globally compensated by a reduced heat transport at low latitudes. As a result, the polar heat transport can exceed the equatorial by up to 50%. The enhancement is mostly insensitive to different radial gravity profiles, but decreases for thinner shells. In general, polar heat transport and its enhancement in spherical RRBC follow the same principles as in planar RRBC.
Plain Language Summary
The icy moons of Jupiter and Saturn like for example, Europa, Titan, or Enceladus are believed to have a water ocean beneath their ice crust. Several of them show phenomena in their polar regions like active geysers or a thinner crust than at the equator, all of which might be related to a larger heat transport around the poles from the underlying ocean. We simulate the flow dynamics and currents in these subglacial ocean by high‐fidelity simulations, though still at less extreme parameters than in reality, to study the heat transport and provide a possible explanation of such a “polar heat transport enhancement.” We find that the heat transport around the poles can be up to 50% larger than around the equator, and that the believed properties of the icy moons and their oceans would allow polar heat transport enhancement. Therefore, our results may help to improve the understanding of ocean currents and latitudinal variations in the oceanic heat transport and crustal thickness on icy moons.
Key Points
The polar heat transport in spherical rotating Rayleigh‐Bénard convection experiences an enhancement by rotation
The influence of rotation differs at low latitudes: the heat flux is reduced and compensates the polar enhancement on the global average
In combination, this strengthens the latitudinal variation between polar and equatorial heat flux for Prandtl numbers larger than unity |
|---|---|
| AbstractList | The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the equator. Rotating Rayleigh‐Bénard convection (RRBC) in planar configuration can show an enhanced heat transport compared to the non‐rotating case within this “rotation‐affected” regime. We investigate the potential for such a (polar) heat transport enhancement in these subglacial oceans by direct numerical simulations of RRBC in spherical geometry for
Ra
= 10
6
and 0.7 ≤
Pr
≤ 4.38. We find an enhancement up to 28% in the “polar tangent cylinder,” which is globally compensated by a reduced heat transport at low latitudes. As a result, the polar heat transport can exceed the equatorial by up to 50%. The enhancement is mostly insensitive to different radial gravity profiles, but decreases for thinner shells. In general, polar heat transport and its enhancement in spherical RRBC follow the same principles as in planar RRBC.
The icy moons of Jupiter and Saturn like for example, Europa, Titan, or Enceladus are believed to have a water ocean beneath their ice crust. Several of them show phenomena in their polar regions like active geysers or a thinner crust than at the equator, all of which might be related to a larger heat transport around the poles from the underlying ocean. We simulate the flow dynamics and currents in these subglacial ocean by high‐fidelity simulations, though still at less extreme parameters than in reality, to study the heat transport and provide a possible explanation of such a “polar heat transport enhancement.” We find that the heat transport around the poles can be up to 50% larger than around the equator, and that the believed properties of the icy moons and their oceans would allow polar heat transport enhancement. Therefore, our results may help to improve the understanding of ocean currents and latitudinal variations in the oceanic heat transport and crustal thickness on icy moons.
The polar heat transport in spherical rotating Rayleigh‐Bénard convection experiences an enhancement by rotation
The influence of rotation differs at low latitudes: the heat flux is reduced and compensates the polar enhancement on the global average
In combination, this strengthens the latitudinal variation between polar and equatorial heat flux for Prandtl numbers larger than unity The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the equator. Rotating Rayleigh‐Bénard convection (RRBC) in planar configuration can show an enhanced heat transport compared to the non‐rotating case within this “rotation‐affected” regime. We investigate the potential for such a (polar) heat transport enhancement in these subglacial oceans by direct numerical simulations of RRBC in spherical geometry for Ra = 106 and 0.7 ≤ Pr ≤ 4.38. We find an enhancement up to 28% in the “polar tangent cylinder,” which is globally compensated by a reduced heat transport at low latitudes. As a result, the polar heat transport can exceed the equatorial by up to 50%. The enhancement is mostly insensitive to different radial gravity profiles, but decreases for thinner shells. In general, polar heat transport and its enhancement in spherical RRBC follow the same principles as in planar RRBC. Abstract The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the equator. Rotating Rayleigh‐Bénard convection (RRBC) in planar configuration can show an enhanced heat transport compared to the non‐rotating case within this “rotation‐affected” regime. We investigate the potential for such a (polar) heat transport enhancement in these subglacial oceans by direct numerical simulations of RRBC in spherical geometry for Ra = 106 and 0.7 ≤ Pr ≤ 4.38. We find an enhancement up to 28% in the “polar tangent cylinder,” which is globally compensated by a reduced heat transport at low latitudes. As a result, the polar heat transport can exceed the equatorial by up to 50%. The enhancement is mostly insensitive to different radial gravity profiles, but decreases for thinner shells. In general, polar heat transport and its enhancement in spherical RRBC follow the same principles as in planar RRBC. The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the equator. Rotating Rayleigh‐Bénard convection (RRBC) in planar configuration can show an enhanced heat transport compared to the non‐rotating case within this “rotation‐affected” regime. We investigate the potential for such a (polar) heat transport enhancement in these subglacial oceans by direct numerical simulations of RRBC in spherical geometry for Ra = 106 and 0.7 ≤ Pr ≤ 4.38. We find an enhancement up to 28% in the “polar tangent cylinder,” which is globally compensated by a reduced heat transport at low latitudes. As a result, the polar heat transport can exceed the equatorial by up to 50%. The enhancement is mostly insensitive to different radial gravity profiles, but decreases for thinner shells. In general, polar heat transport and its enhancement in spherical RRBC follow the same principles as in planar RRBC. Plain Language Summary The icy moons of Jupiter and Saturn like for example, Europa, Titan, or Enceladus are believed to have a water ocean beneath their ice crust. Several of them show phenomena in their polar regions like active geysers or a thinner crust than at the equator, all of which might be related to a larger heat transport around the poles from the underlying ocean. We simulate the flow dynamics and currents in these subglacial ocean by high‐fidelity simulations, though still at less extreme parameters than in reality, to study the heat transport and provide a possible explanation of such a “polar heat transport enhancement.” We find that the heat transport around the poles can be up to 50% larger than around the equator, and that the believed properties of the icy moons and their oceans would allow polar heat transport enhancement. Therefore, our results may help to improve the understanding of ocean currents and latitudinal variations in the oceanic heat transport and crustal thickness on icy moons. Key Points The polar heat transport in spherical rotating Rayleigh‐Bénard convection experiences an enhancement by rotation The influence of rotation differs at low latitudes: the heat flux is reduced and compensates the polar enhancement on the global average In combination, this strengthens the latitudinal variation between polar and equatorial heat flux for Prandtl numbers larger than unity |
| Author | Stevens, Richard J. A. M. Lohse, Detlef Verzicco, Roberto Hartmann, Robert |
| Author_xml | – sequence: 1 givenname: Robert orcidid: 0000-0002-4860-0449 surname: Hartmann fullname: Hartmann, Robert email: r.hartmann@utwente.nl organization: University of Twente – sequence: 2 givenname: Richard J. A. M. orcidid: 0000-0001-6976-5704 surname: Stevens fullname: Stevens, Richard J. A. M. organization: University of Twente – sequence: 3 givenname: Detlef orcidid: 0000-0003-4138-2255 surname: Lohse fullname: Lohse, Detlef organization: Max Planck Institute for Dynamics and Self‐Organisation – sequence: 4 givenname: Roberto orcidid: 0000-0002-2690-9998 surname: Verzicco fullname: Verzicco, Roberto email: verzicco@uniroma2.it organization: Gran Sasso Science Institute |
| BookMark | eNqFkU-LFDEQxYOs4OzqzQ8Q8Opo5U-nO0dZ1tmBkRWdxWOopCtjht5kTPewzLe3dUTEg56qKH713oN3yS5yycTYSwFvBEj7VoJUq42ARoN4whbCar3sANoLtgCw8y5b84xdjuMeABQosWBftuURa8_vc091nDD3Ke_4xzJg5beEE99WzOOh1Inf5K-YAz1QnnjK_PPR7wYMCQd-F2iGeMl8HU78Qyl5fM6eRhxGevFrXrH79zfb69vl5m61vn63WaJWqllqCLLpLSnjfQdeoASSEMhG3djOkBAhyhh81_ZWklCKQuN9CMYYTcIGdcXWZ92-4N4danrAenIFk_t5KHXnsE4pDOR07IB8JE0edT8btlFrkq23GnUUZtZ6ddY61PLtSOPk9uVY8xzfSSuVEgY6OVOvz1SoZRwrxd-uAtyPGtyfNcy4_AsPacIplTxVTMN_nh7TQKd_GrjVp41pwTTqO9XMmkI |
| CitedBy_id | crossref_primary_10_1016_j_icarus_2024_116441 crossref_primary_10_1016_j_icarus_2025_116807 crossref_primary_10_1007_s12217_025_10198_0 crossref_primary_10_1016_j_cpc_2025_109579 crossref_primary_10_1038_s43247_025_02036_3 |
| Cites_doi | 10.1080/03091928308221746 10.1029/2018gl081880 10.1098/rsta.1923.0008 10.1038/s41467‐021‐26710‐0 10.1103/physrevlett.113.254501 10.1103/physreve.74.056306 10.1029/2022ea002606 10.1029/2021gl095017 10.1146/annurev‐fluid‐120720‐020446 10.1103/physrevlett.105.224501 10.1017/jfm.2012.586 10.1080/14685248.2021.1876877 10.1103/physrevfluids.5.053501 10.1017/jfm.2015.401 10.1002/2016gl070650 10.1016/j.jcp.2020.109848 10.1016/j.pepi.2015.07.001 10.3847/1538‐4357/ac779c 10.1073/pnas.1217553110 10.1017/s0022112003007316 10.3847/psj/ac1114 10.3847/1538‐4357/ac7a32 10.1016/j.epsl.2012.03.038 10.1016/j.icarus.2019.113509 10.1103/physrevlett.109.254503 10.1103/physrevlett.102.044502 10.1017/jfm.2016.659 10.1029/2021je007025 10.1146/annurev.astro.43.051804.102202 10.1098/rsta.1968.0007 10.1017/jfm.2016.394 10.1080/03091929.2012.696109 10.1103/physrevfluids.3.041501 10.1103/physreve.93.043102 10.4121/f1fd2e8c‐8c1e‐43da‐bada‐8e73aae4c587 10.1103/physrevlett.125.214501 10.1080/03091920410001659281 10.1017/jfm.2022.1010 10.1017/jfm.2016.225 10.1016/j.icarus.2018.10.003 10.1029/2019ea000583 10.1088/1367‐2630/12/7/075005 10.1017/jfm.2011.493 10.1016/j.icarus.2021.114853 10.1098/rspa.1916.0026 10.1016/j.euromechflu.2013.01.004 10.1017/jfm.2013.488 10.1093/gji/ggu480 10.1017/jfm.2016.452 10.1017/s0022112005008499 10.1088/1367‐2630/12/7/075022 10.1002/2017je005341 10.1017/jfm.2011.383 10.1002/2016je005081 10.1126/sciadv.abm4665 10.1103/physrevfluids.8.083501 10.1017/s0022112096002789 10.1017/jfm.2022.360 10.1017/s0022112069001674 10.1103/physrevlett.113.114301 10.1016/j.icarus.2019.03.011 10.1103/revmodphys.81.503 10.1016/j.icarus.2022.115337 10.1103/physrevlett.103.024503 10.1017/s0022112070001921 |
| ContentType | Journal Article |
| Copyright | 2024. The Authors. 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. The Authors. – notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M DOA |
| DOI | 10.1029/2023GL105401 |
| DatabaseName | Wiley Online Library Open Access CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
| DatabaseTitleList | CrossRef Aerospace Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_4f80ebfe4eba4d6bb7f44e27b94a4f16 10_1029_2023GL105401 GRL67065 |
| Genre | article |
| GrantInformation_xml | – fundername: European Research Council funderid: 804283 |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 88I 8G5 8R4 8R5 AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABJCF ABPPZ ABUWG ACAHQ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AEUYN AFBPY AFGKR AFKRA AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ARAPS ATCPS AVUZU AZFZN AZQEC AZVAB BENPR BGLVJ BHPHI BKSAR BMXJE BRXPI CCPQU CS3 DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS F5P G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES M2O M2P M7S MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W PATMY PCBAR PHGZM PHGZT PTHSS PYCSY Q2X R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAYXX AFFHD AFPKN CITATION PQGLB 7TG 7TN 8FD F1W FR3 H8D H96 KL. KR7 L.G L7M |
| ID | FETCH-LOGICAL-a4335-40c25d9e36bb80b1a20e20ce9f45986e11cf2fcb87d92e133ec5bbcc6664e19c3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001155612400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Fri Oct 03 12:50:55 EDT 2025 Fri Jul 25 12:18:30 EDT 2025 Tue Nov 18 21:26:53 EST 2025 Sat Nov 29 02:17:44 EST 2025 Sun Jul 06 04:46:13 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Attribution |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4335-40c25d9e36bb80b1a20e20ce9f45986e11cf2fcb87d92e133ec5bbcc6664e19c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2690-9998 0000-0003-4138-2255 0000-0002-4860-0449 0000-0001-6976-5704 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL105401 |
| PQID | 2923316082 |
| PQPubID | 54723 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4f80ebfe4eba4d6bb7f44e27b94a4f16 proquest_journals_2923316082 crossref_primary_10_1029_2023GL105401 crossref_citationtrail_10_1029_2023GL105401 wiley_primary_10_1029_2023GL105401_GRL67065 |
| PublicationCentury | 2000 |
| PublicationDate | 16 February 2024 |
| PublicationDateYYYYMMDD | 2024-02-16 |
| PublicationDate_xml | – month: 02 year: 2024 text: 16 February 2024 day: 16 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | e_1_2_11_1_29_1 e_1_2_11_1_25_1 e_1_2_11_1_48_1 e_1_2_11_1_27_1 e_1_2_11_1_46_1 e_1_2_11_1_21_1 e_1_2_11_1_44_1 e_1_2_11_1_67_1 e_1_2_11_1_23_1 e_1_2_11_1_42_1 e_1_2_11_1_65_1 e_1_2_11_1_40_1 e_1_2_11_1_63_1 e_1_2_11_1_61_1 e_1_2_11_1_4_1 e_1_2_11_1_17_1 e_1_2_11_1_2_1 e_1_2_11_1_19_1 e_1_2_11_1_8_1 e_1_2_11_1_13_1 e_1_2_11_1_38_1 e_1_2_11_1_59_1 e_1_2_11_1_6_1 e_1_2_11_1_15_1 e_1_2_11_1_36_1 e_1_2_11_1_34_1 e_1_2_11_1_55_1 Chandrasekhar S. (e_1_2_11_1_14_1) 1961 e_1_2_11_1_11_1 e_1_2_11_1_32_1 e_1_2_11_1_53_1 e_1_2_11_1_30_1 e_1_2_11_1_51_1 e_1_2_11_2_2_1 e_1_2_11_1_28_1 e_1_2_11_1_24_1 e_1_2_11_1_49_1 e_1_2_11_1_26_1 e_1_2_11_1_47_1 e_1_2_11_1_20_1 e_1_2_11_1_45_1 e_1_2_11_1_66_1 e_1_2_11_1_22_1 e_1_2_11_1_43_1 e_1_2_11_1_64_1 e_1_2_11_1_41_1 e_1_2_11_1_62_1 e_1_2_11_1_60_1 Taylor G. I. (e_1_2_11_1_57_1) 1917; 93 e_1_2_11_1_18_1 e_1_2_11_1_5_1 e_1_2_11_1_39_1 e_1_2_11_1_3_1 e_1_2_11_1_37_1 e_1_2_11_1_9_1 e_1_2_11_1_16_1 e_1_2_11_1_35_1 e_1_2_11_1_58_1 e_1_2_11_1_7_1 e_1_2_11_1_10_1 e_1_2_11_1_33_1 e_1_2_11_1_56_1 e_1_2_11_1_12_1 e_1_2_11_1_31_1 e_1_2_11_1_54_1 e_1_2_11_1_52_1 e_1_2_11_1_50_1 |
| References_xml | – ident: e_1_2_11_1_12_1 doi: 10.1080/03091928308221746 – ident: e_1_2_11_1_49_1 doi: 10.1029/2018gl081880 – ident: e_1_2_11_1_58_1 doi: 10.1098/rsta.1923.0008 – ident: e_1_2_11_1_6_1 doi: 10.1038/s41467‐021‐26710‐0 – ident: e_1_2_11_1_52_1 doi: 10.1103/physrevlett.113.254501 – ident: e_1_2_11_1_38_1 doi: 10.1103/physreve.74.056306 – ident: e_1_2_11_1_8_1 doi: 10.1029/2022ea002606 – ident: e_1_2_11_1_61_1 doi: 10.1029/2021gl095017 – ident: e_1_2_11_1_19_1 doi: 10.1146/annurev‐fluid‐120720‐020446 – ident: e_1_2_11_1_63_1 doi: 10.1103/physrevlett.105.224501 – ident: e_1_2_11_1_36_1 doi: 10.1017/jfm.2012.586 – ident: e_1_2_11_1_37_1 doi: 10.1080/14685248.2021.1876877 – ident: e_1_2_11_1_65_1 doi: 10.1103/physrevfluids.5.053501 – ident: e_1_2_11_1_22_1 doi: 10.1017/jfm.2015.401 – ident: e_1_2_11_1_9_1 doi: 10.1002/2016gl070650 – ident: e_1_2_11_1_47_1 doi: 10.1016/j.jcp.2020.109848 – ident: e_1_2_11_1_7_1 doi: 10.1016/j.pepi.2015.07.001 – ident: e_1_2_11_1_30_1 doi: 10.3847/1538‐4357/ac779c – ident: e_1_2_11_1_34_1 doi: 10.1073/pnas.1217553110 – ident: e_1_2_11_1_17_1 doi: 10.1017/s0022112003007316 – ident: e_1_2_11_1_66_1 doi: 10.3847/psj/ac1114 – ident: e_1_2_11_1_31_1 doi: 10.3847/1538‐4357/ac7a32 – ident: e_1_2_11_1_50_1 doi: 10.1016/j.epsl.2012.03.038 – ident: e_1_2_11_1_5_1 doi: 10.1016/j.icarus.2019.113509 – ident: e_1_2_11_1_27_1 doi: 10.1103/physrevlett.109.254503 – ident: e_1_2_11_1_67_1 doi: 10.1103/physrevlett.102.044502 – ident: e_1_2_11_1_21_1 doi: 10.1017/jfm.2016.659 – ident: e_1_2_11_1_10_1 doi: 10.1029/2021je007025 – ident: e_1_2_11_1_16_1 doi: 10.1146/annurev.astro.43.051804.102202 – ident: e_1_2_11_1_45_1 doi: 10.1098/rsta.1968.0007 – ident: e_1_2_11_2_2_1 doi: 10.1017/jfm.2016.394 – ident: e_1_2_11_1_29_1 doi: 10.1080/03091929.2012.696109 – ident: e_1_2_11_1_53_1 doi: 10.1103/physrevfluids.3.041501 – ident: e_1_2_11_1_64_1 doi: 10.1103/physreve.93.043102 – volume-title: Hydrodynamic and hydromagnetic stability year: 1961 ident: e_1_2_11_1_14_1 – ident: e_1_2_11_1_23_1 doi: 10.4121/f1fd2e8c‐8c1e‐43da‐bada‐8e73aae4c587 – ident: e_1_2_11_1_2_1 doi: 10.1103/physrevlett.125.214501 – ident: e_1_2_11_1_4_1 doi: 10.1080/03091920410001659281 – ident: e_1_2_11_1_20_1 doi: 10.1017/jfm.2022.1010 – ident: e_1_2_11_1_26_1 doi: 10.1017/jfm.2016.225 – ident: e_1_2_11_1_13_1 doi: 10.1016/j.icarus.2018.10.003 – ident: e_1_2_11_1_42_1 doi: 10.1029/2019ea000583 – ident: e_1_2_11_1_54_1 doi: 10.1088/1367‐2630/12/7/075005 – ident: e_1_2_11_1_35_1 doi: 10.1017/jfm.2011.493 – ident: e_1_2_11_1_40_1 doi: 10.1016/j.icarus.2021.114853 – ident: e_1_2_11_1_44_1 doi: 10.1098/rspa.1916.0026 – ident: e_1_2_11_1_55_1 doi: 10.1016/j.euromechflu.2013.01.004 – ident: e_1_2_11_1_59_1 doi: 10.1017/jfm.2013.488 – ident: e_1_2_11_1_15_1 doi: 10.1093/gji/ggu480 – ident: e_1_2_11_1_43_1 doi: 10.1017/jfm.2016.452 – volume: 93 start-page: 99 issue: 648 year: 1917 ident: e_1_2_11_1_57_1 article-title: Motion of solids in fluids when the flow is not irrotational publication-title: Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences – ident: e_1_2_11_1_51_1 doi: 10.1017/s0022112005008499 – ident: e_1_2_11_1_48_1 doi: 10.1088/1367‐2630/12/7/075022 – ident: e_1_2_11_1_60_1 doi: 10.1002/2017je005341 – ident: e_1_2_11_1_39_1 doi: 10.1017/jfm.2011.383 – ident: e_1_2_11_1_41_1 doi: 10.1002/2016je005081 – ident: e_1_2_11_1_32_1 doi: 10.1126/sciadv.abm4665 – ident: e_1_2_11_1_24_1 doi: 10.1103/physrevfluids.8.083501 – ident: e_1_2_11_1_28_1 doi: 10.1017/s0022112096002789 – ident: e_1_2_11_1_62_1 doi: 10.1017/jfm.2022.360 – ident: e_1_2_11_1_46_1 doi: 10.1017/s0022112069001674 – ident: e_1_2_11_1_18_1 doi: 10.1103/physrevlett.113.114301 – ident: e_1_2_11_1_25_1 doi: 10.1016/j.icarus.2019.03.011 – ident: e_1_2_11_1_3_1 doi: 10.1103/revmodphys.81.503 – ident: e_1_2_11_1_33_1 doi: 10.1016/j.icarus.2022.115337 – ident: e_1_2_11_1_56_1 doi: 10.1103/physrevlett.103.024503 – ident: e_1_2_11_1_11_1 doi: 10.1017/s0022112070001921 |
| SSID | ssj0003031 |
| Score | 2.4932802 |
| Snippet | The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the... Abstract The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at... |
| SourceID | doaj proquest crossref wiley |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Convection Crustal thickness Direct numerical simulation direct numerical simulations Enceladus Equator Europa Flow simulation Geysers Gravity Heat heat transfer Heat transport Hot springs Icy satellites Jovian Jupiter Jupiter satellites Latitudinal variations Numerical simulations Ocean currents Oceanic crust Oceans Polar environments Polar regions rotating flows Rotation Saturn Saturn satellites Saturnian satellites thermal convection Titan Turbulence |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8iCr6Inzidkgd9kmKTpm3yqLIPYc4hm-6tLOkVB9LJNoX9917SbnQP6otvJVzT4-56uV9yuSPkMuIjkfE09FLEV55IFXgy0sILlUEwZqSR7nr0SyfuduVwqHqVVl82J6woD1wI7kZk0gedgQA9EmmkdZwJATzWSuBXmCu2jVHPEkyVPhgdc9ErTwlP8jgqU959rizaD1odZkMVtrYYuZr9a4FmNVx1601zj-yWgSK9LRjcJxuQH5DtlmvEu8Anl7ppZofkte8yX-mgek2F9ixkpW30tHRVv5w28jerZLshSMc5RaeBwbPdM6dPBpCITnL6YBb0cYK2eEQGzUb_vu2V7RK8kQiCEJGg4SEKO0AhSV-zEfeB-wZUJmwRdmDMZDwzWsap4oDYFEyotTEIYAQwZYJjsplPcjghFN_0AUdSjWLONFgEHSC0AhaFGueokeul3BJT1hK3LS3eE3emzVVSlXKNXK2oP4oaGj_Q3VkVrGhs5Ws3gPaQlPaQ_GUPNVJfKjApf8dZwjGMDViE4Q5y7pT6KyNJ67kT2fPf0__g6Izs4OTCpnqzqE4259NPOCdb5ms-nk0vnN1-A8uN7XY priority: 102 providerName: Directory of Open Access Journals |
| Title | Toward Understanding Polar Heat Transport Enhancement in Subglacial Oceans on Icy Moons |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL105401 https://www.proquest.com/docview/2923316082 https://doaj.org/article/4f80ebfe4eba4d6bb7f44e27b94a4f16 |
| Volume | 51 |
| WOSCitedRecordID | wos001155612400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: PCBAR dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database (subscripiton) customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: PATMY dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: M2O dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (subscription) customDbUrl: eissn: 1944-8007 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: M2P dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swEBalP2Ava7tuNFsb9NA9DTNLlmXpcd2SdJCmJmu2shdjyeetMJyRdIP-971TXJM-dFD2ImxxMrJ1Ot93kr5j7ETLUtWySqMK8VWkKguR0U5FqfUIxrzxJhyP_jrOJhNzdWXzNuBGZ2FW_BBdwI1mRrDXNMFLt2zJBogjk_J-j8aCXA5EP1tCJIZSN0iVd5YYzfMqY55VkZGZbje-Y_v3660f_JICc_8Dd3PdaQ1_neHu__Z3jz1v_U3-YaUg-2wDmhdsZxTy-d7iVdgB6pcH7Ntl2EDLZ-unXXhOyJefocHmHQ06HzQ_SVcorsivG462B31wCr3zCw8oxOcN_-xv-fkcVfolmw0Hlx_PojbrQlSqJEkRUHqZ4pgl2jkTO1HKGGTswdaKuNxBCF_L2juTVVYCQlzwqXPeIw5SIKxPXrHNZt7AIePYMgasqZyzqnZAQDxBhAZCpw6f0WPv7j984VtKcsqM8asIS-PSFusfrcfedtK_V1Qcj8id0hh2MkSgHSrmix9FOx8LVZsYXA0KXKkqfNWsVgpkhh1F5RW6x47uNaBoZ_WykOgNJ0Kj14Q9D2P9z44Uo-lY0zLy6ydJv2HPsF7R1nChj9jmzeIPHLNt__fmernoBw3vs63TwSSf9kMIAe8-TYezMd6dy4tQ5lRmX7DM0-93jMb_WA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQBZVLC7SIbXn40J5Q1NhxnPhYEOwiwnZVLY-btXYmgISyaBeQ-Ped8YZoORQJcYuicTSxZ8bz-fENYz-0HKlKlmlUIr6KVGkgyrVTUWo8gjGf-zxcjz4vsn4_v7w0g6bOKd2FmfFDtAtu5BkhXpOD04J0wzZAJJlU-LtbCMo5EP58UDjRkKFLNWhDMcbnWck8o6JcZro5-Y7tf823fjEnBer-F_nmfNYapp2jz-9WeJV9ajJO_ntmImtsAep1ttwNFX2f8CmcAfXTL-xiGI7Q8rP5-y58QNiX9zBk85YInR_W12QttLLIb2qO0QezcFp85388oBAf1_zYP_HTMRr1V3Z2dDg86EVN3YVopJIkRUjpZYqjlmjn8tiJkYxBxh5MpYjNHYTwlay8y7PSSECQCz51zntEQgqE8ckGW6zHNWwyji1jwDelc0ZVDgiKJ4jRQOjU4Tc6bO-5561vSMmpNsatDZvj0tj5Tuuwn6303YyM4z9y-zSIrQxRaIcX48mVbTzSqiqPwVWgwI1Uib-aVUqBzFBRNF-hO2zr2QRs49dTKzEfToTGvAk1D4P9qiK2-7fQtJH87U3Su-xjb3ha2OK4f_KdraCMooPiQm-xxfvJA2yzJf94fzOd7ARz_wc0kvs9 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELZQB4gXxq-JwgZ-gCcUETuOEz8CW7uJUKpphb1ZtXOGSSid2oG0_54714u6ByahvUXW2XLs8_k--_wdY2-0nKsg2zJrEV9lqjWQ1dqprDQewZivfR2fR39rqsmkPj0105TnlN7CrPkh-gM3WhnRXtMCh_M2JLYBIsmkxN_jRpDPgfBnS1EemQHb2j8ezZreGKOFXifNMyqrZaVT7Du28H6z_rVdKZL3X_M4N_3WuPGMtm_d5UfsYfI5-Ye1kjxmd6B7wu6NY07fS_yKUaB-9ZR9P4lBtHy2-eKFTwn98kM02rynQucH3U_SFzpb5GcdR_uDfjgdv_OvHlCILzp-5C_5lwWq9TM2Gx2cfDrMUuaFbK6KokRQ6WWJ81Zo5-rcibnMQeYeTFDE5w5C-CCDd3XVGgkIc8GXznmPWEiBML7YYYNu0cFzxrFmDljSOmdUcEBgvECUBkKXDtsYsndXI299oiWn7Bi_bLwel8ZuDtqQve2lz9d0HP-Q-0iT2MsQiXYsWCx_2LQmrQp1Di6AAjdXLf5qFZQCWWFHUYGFHrLdKxWwaWWvrESPuBAaPSfseZzsGztix8eNpqvkF_8l_Zrdn-6PbHM0-fySPUARRZHiQu-ywcXyN-yxu_7Pxdlq-Srp-19qaPxT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Understanding+Polar+Heat+Transport+Enhancement+in+Subglacial+Oceans+on+Icy+Moons&rft.jtitle=Geophysical+research+letters&rft.au=Hartmann%2C+Robert&rft.au=Stevens%2C+Richard+J.+A.+M.&rft.au=Lohse%2C+Detlef&rft.au=Verzicco%2C+Roberto&rft.date=2024-02-16&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023GL105401&rft.externalDBID=10.1029%252F2023GL105401&rft.externalDocID=GRL67065 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |