Toward Understanding Polar Heat Transport Enhancement in Subglacial Oceans on Icy Moons

The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the equator. Rotating Rayleigh‐Bénard convection (RRBC) in planar configuration can show an enhanced heat transport compared to the non‐rotating case...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Geophysical research letters Ročník 51; číslo 3
Hlavní autoři: Hartmann, Robert, Stevens, Richard J. A. M., Lohse, Detlef, Verzicco, Roberto
Médium: Journal Article
Jazyk:angličtina
Vydáno: Washington John Wiley & Sons, Inc 16.02.2024
Wiley
Témata:
ISSN:0094-8276, 1944-8007
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the equator. Rotating Rayleigh‐Bénard convection (RRBC) in planar configuration can show an enhanced heat transport compared to the non‐rotating case within this “rotation‐affected” regime. We investigate the potential for such a (polar) heat transport enhancement in these subglacial oceans by direct numerical simulations of RRBC in spherical geometry for Ra = 106 and 0.7 ≤ Pr ≤ 4.38. We find an enhancement up to 28% in the “polar tangent cylinder,” which is globally compensated by a reduced heat transport at low latitudes. As a result, the polar heat transport can exceed the equatorial by up to 50%. The enhancement is mostly insensitive to different radial gravity profiles, but decreases for thinner shells. In general, polar heat transport and its enhancement in spherical RRBC follow the same principles as in planar RRBC. Plain Language Summary The icy moons of Jupiter and Saturn like for example, Europa, Titan, or Enceladus are believed to have a water ocean beneath their ice crust. Several of them show phenomena in their polar regions like active geysers or a thinner crust than at the equator, all of which might be related to a larger heat transport around the poles from the underlying ocean. We simulate the flow dynamics and currents in these subglacial ocean by high‐fidelity simulations, though still at less extreme parameters than in reality, to study the heat transport and provide a possible explanation of such a “polar heat transport enhancement.” We find that the heat transport around the poles can be up to 50% larger than around the equator, and that the believed properties of the icy moons and their oceans would allow polar heat transport enhancement. Therefore, our results may help to improve the understanding of ocean currents and latitudinal variations in the oceanic heat transport and crustal thickness on icy moons. Key Points The polar heat transport in spherical rotating Rayleigh‐Bénard convection experiences an enhancement by rotation The influence of rotation differs at low latitudes: the heat flux is reduced and compensates the polar enhancement on the global average In combination, this strengthens the latitudinal variation between polar and equatorial heat flux for Prandtl numbers larger than unity
AbstractList The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the equator. Rotating Rayleigh‐Bénard convection (RRBC) in planar configuration can show an enhanced heat transport compared to the non‐rotating case within this “rotation‐affected” regime. We investigate the potential for such a (polar) heat transport enhancement in these subglacial oceans by direct numerical simulations of RRBC in spherical geometry for Ra  = 10 6 and 0.7 ≤  Pr  ≤ 4.38. We find an enhancement up to 28% in the “polar tangent cylinder,” which is globally compensated by a reduced heat transport at low latitudes. As a result, the polar heat transport can exceed the equatorial by up to 50%. The enhancement is mostly insensitive to different radial gravity profiles, but decreases for thinner shells. In general, polar heat transport and its enhancement in spherical RRBC follow the same principles as in planar RRBC. The icy moons of Jupiter and Saturn like for example, Europa, Titan, or Enceladus are believed to have a water ocean beneath their ice crust. Several of them show phenomena in their polar regions like active geysers or a thinner crust than at the equator, all of which might be related to a larger heat transport around the poles from the underlying ocean. We simulate the flow dynamics and currents in these subglacial ocean by high‐fidelity simulations, though still at less extreme parameters than in reality, to study the heat transport and provide a possible explanation of such a “polar heat transport enhancement.” We find that the heat transport around the poles can be up to 50% larger than around the equator, and that the believed properties of the icy moons and their oceans would allow polar heat transport enhancement. Therefore, our results may help to improve the understanding of ocean currents and latitudinal variations in the oceanic heat transport and crustal thickness on icy moons. The polar heat transport in spherical rotating Rayleigh‐Bénard convection experiences an enhancement by rotation The influence of rotation differs at low latitudes: the heat flux is reduced and compensates the polar enhancement on the global average In combination, this strengthens the latitudinal variation between polar and equatorial heat flux for Prandtl numbers larger than unity
Abstract The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the equator. Rotating Rayleigh‐Bénard convection (RRBC) in planar configuration can show an enhanced heat transport compared to the non‐rotating case within this “rotation‐affected” regime. We investigate the potential for such a (polar) heat transport enhancement in these subglacial oceans by direct numerical simulations of RRBC in spherical geometry for Ra = 106 and 0.7 ≤ Pr ≤ 4.38. We find an enhancement up to 28% in the “polar tangent cylinder,” which is globally compensated by a reduced heat transport at low latitudes. As a result, the polar heat transport can exceed the equatorial by up to 50%. The enhancement is mostly insensitive to different radial gravity profiles, but decreases for thinner shells. In general, polar heat transport and its enhancement in spherical RRBC follow the same principles as in planar RRBC.
The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the equator. Rotating Rayleigh‐Bénard convection (RRBC) in planar configuration can show an enhanced heat transport compared to the non‐rotating case within this “rotation‐affected” regime. We investigate the potential for such a (polar) heat transport enhancement in these subglacial oceans by direct numerical simulations of RRBC in spherical geometry for Ra = 106 and 0.7 ≤ Pr ≤ 4.38. We find an enhancement up to 28% in the “polar tangent cylinder,” which is globally compensated by a reduced heat transport at low latitudes. As a result, the polar heat transport can exceed the equatorial by up to 50%. The enhancement is mostly insensitive to different radial gravity profiles, but decreases for thinner shells. In general, polar heat transport and its enhancement in spherical RRBC follow the same principles as in planar RRBC. Plain Language Summary The icy moons of Jupiter and Saturn like for example, Europa, Titan, or Enceladus are believed to have a water ocean beneath their ice crust. Several of them show phenomena in their polar regions like active geysers or a thinner crust than at the equator, all of which might be related to a larger heat transport around the poles from the underlying ocean. We simulate the flow dynamics and currents in these subglacial ocean by high‐fidelity simulations, though still at less extreme parameters than in reality, to study the heat transport and provide a possible explanation of such a “polar heat transport enhancement.” We find that the heat transport around the poles can be up to 50% larger than around the equator, and that the believed properties of the icy moons and their oceans would allow polar heat transport enhancement. Therefore, our results may help to improve the understanding of ocean currents and latitudinal variations in the oceanic heat transport and crustal thickness on icy moons. Key Points The polar heat transport in spherical rotating Rayleigh‐Bénard convection experiences an enhancement by rotation The influence of rotation differs at low latitudes: the heat flux is reduced and compensates the polar enhancement on the global average In combination, this strengthens the latitudinal variation between polar and equatorial heat flux for Prandtl numbers larger than unity
The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the equator. Rotating Rayleigh‐Bénard convection (RRBC) in planar configuration can show an enhanced heat transport compared to the non‐rotating case within this “rotation‐affected” regime. We investigate the potential for such a (polar) heat transport enhancement in these subglacial oceans by direct numerical simulations of RRBC in spherical geometry for Ra = 106 and 0.7 ≤ Pr ≤ 4.38. We find an enhancement up to 28% in the “polar tangent cylinder,” which is globally compensated by a reduced heat transport at low latitudes. As a result, the polar heat transport can exceed the equatorial by up to 50%. The enhancement is mostly insensitive to different radial gravity profiles, but decreases for thinner shells. In general, polar heat transport and its enhancement in spherical RRBC follow the same principles as in planar RRBC.
Author Stevens, Richard J. A. M.
Lohse, Detlef
Verzicco, Roberto
Hartmann, Robert
Author_xml – sequence: 1
  givenname: Robert
  orcidid: 0000-0002-4860-0449
  surname: Hartmann
  fullname: Hartmann, Robert
  email: r.hartmann@utwente.nl
  organization: University of Twente
– sequence: 2
  givenname: Richard J. A. M.
  orcidid: 0000-0001-6976-5704
  surname: Stevens
  fullname: Stevens, Richard J. A. M.
  organization: University of Twente
– sequence: 3
  givenname: Detlef
  orcidid: 0000-0003-4138-2255
  surname: Lohse
  fullname: Lohse, Detlef
  organization: Max Planck Institute for Dynamics and Self‐Organisation
– sequence: 4
  givenname: Roberto
  orcidid: 0000-0002-2690-9998
  surname: Verzicco
  fullname: Verzicco, Roberto
  email: verzicco@uniroma2.it
  organization: Gran Sasso Science Institute
BookMark eNqFkU-LFDEQxYOs4OzqzQ8Q8Opo5U-nO0dZ1tmBkRWdxWOopCtjht5kTPewzLe3dUTEg56qKH713oN3yS5yycTYSwFvBEj7VoJUq42ARoN4whbCar3sANoLtgCw8y5b84xdjuMeABQosWBftuURa8_vc091nDD3Ke_4xzJg5beEE99WzOOh1Inf5K-YAz1QnnjK_PPR7wYMCQd-F2iGeMl8HU78Qyl5fM6eRhxGevFrXrH79zfb69vl5m61vn63WaJWqllqCLLpLSnjfQdeoASSEMhG3djOkBAhyhh81_ZWklCKQuN9CMYYTcIGdcXWZ92-4N4danrAenIFk_t5KHXnsE4pDOR07IB8JE0edT8btlFrkq23GnUUZtZ6ddY61PLtSOPk9uVY8xzfSSuVEgY6OVOvz1SoZRwrxd-uAtyPGtyfNcy4_AsPacIplTxVTMN_nh7TQKd_GrjVp41pwTTqO9XMmkI
CitedBy_id crossref_primary_10_1016_j_icarus_2024_116441
crossref_primary_10_1016_j_icarus_2025_116807
crossref_primary_10_1007_s12217_025_10198_0
crossref_primary_10_1016_j_cpc_2025_109579
crossref_primary_10_1038_s43247_025_02036_3
Cites_doi 10.1080/03091928308221746
10.1029/2018gl081880
10.1098/rsta.1923.0008
10.1038/s41467‐021‐26710‐0
10.1103/physrevlett.113.254501
10.1103/physreve.74.056306
10.1029/2022ea002606
10.1029/2021gl095017
10.1146/annurev‐fluid‐120720‐020446
10.1103/physrevlett.105.224501
10.1017/jfm.2012.586
10.1080/14685248.2021.1876877
10.1103/physrevfluids.5.053501
10.1017/jfm.2015.401
10.1002/2016gl070650
10.1016/j.jcp.2020.109848
10.1016/j.pepi.2015.07.001
10.3847/1538‐4357/ac779c
10.1073/pnas.1217553110
10.1017/s0022112003007316
10.3847/psj/ac1114
10.3847/1538‐4357/ac7a32
10.1016/j.epsl.2012.03.038
10.1016/j.icarus.2019.113509
10.1103/physrevlett.109.254503
10.1103/physrevlett.102.044502
10.1017/jfm.2016.659
10.1029/2021je007025
10.1146/annurev.astro.43.051804.102202
10.1098/rsta.1968.0007
10.1017/jfm.2016.394
10.1080/03091929.2012.696109
10.1103/physrevfluids.3.041501
10.1103/physreve.93.043102
10.4121/f1fd2e8c‐8c1e‐43da‐bada‐8e73aae4c587
10.1103/physrevlett.125.214501
10.1080/03091920410001659281
10.1017/jfm.2022.1010
10.1017/jfm.2016.225
10.1016/j.icarus.2018.10.003
10.1029/2019ea000583
10.1088/1367‐2630/12/7/075005
10.1017/jfm.2011.493
10.1016/j.icarus.2021.114853
10.1098/rspa.1916.0026
10.1016/j.euromechflu.2013.01.004
10.1017/jfm.2013.488
10.1093/gji/ggu480
10.1017/jfm.2016.452
10.1017/s0022112005008499
10.1088/1367‐2630/12/7/075022
10.1002/2017je005341
10.1017/jfm.2011.383
10.1002/2016je005081
10.1126/sciadv.abm4665
10.1103/physrevfluids.8.083501
10.1017/s0022112096002789
10.1017/jfm.2022.360
10.1017/s0022112069001674
10.1103/physrevlett.113.114301
10.1016/j.icarus.2019.03.011
10.1103/revmodphys.81.503
10.1016/j.icarus.2022.115337
10.1103/physrevlett.103.024503
10.1017/s0022112070001921
ContentType Journal Article
Copyright 2024. The Authors.
2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. The Authors.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
DOA
DOI 10.1029/2023GL105401
DatabaseName Wiley Online Library Open Access
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef


Aerospace Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage n/a
ExternalDocumentID oai_doaj_org_article_4f80ebfe4eba4d6bb7f44e27b94a4f16
10_1029_2023GL105401
GRL67065
Genre article
GrantInformation_xml – fundername: European Research Council
  funderid: 804283
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
88I
8G5
8R4
8R5
AAESR
AAFWJ
AAIHA
AAMMB
AAXRX
AAZKR
ABCUV
ABJCF
ABPPZ
ABUWG
ACAHQ
ACCMX
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACTHY
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AENEX
AEUYN
AFBPY
AFGKR
AFKRA
AFRAH
AGXDD
AIDQK
AIDYY
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ARAPS
ATCPS
AVUZU
AZFZN
AZQEC
AZVAB
BENPR
BGLVJ
BHPHI
BKSAR
BMXJE
BRXPI
CCPQU
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
F5P
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M2O
M2P
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
PATMY
PCBAR
PHGZM
PHGZT
PTHSS
PYCSY
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIN
WXSBR
XSW
ZZTAW
~02
~OA
~~A
AAYXX
AFFHD
AFPKN
CITATION
PQGLB
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ID FETCH-LOGICAL-a4335-40c25d9e36bb80b1a20e20ce9f45986e11cf2fcb87d92e133ec5bbcc6664e19c3
IEDL.DBID DOA
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001155612400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0094-8276
IngestDate Fri Oct 03 12:50:55 EDT 2025
Fri Jul 25 12:18:30 EDT 2025
Tue Nov 18 21:26:53 EST 2025
Sat Nov 29 02:17:44 EST 2025
Sun Jul 06 04:46:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4335-40c25d9e36bb80b1a20e20ce9f45986e11cf2fcb87d92e133ec5bbcc6664e19c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2690-9998
0000-0003-4138-2255
0000-0002-4860-0449
0000-0001-6976-5704
OpenAccessLink https://doaj.org/article/4f80ebfe4eba4d6bb7f44e27b94a4f16
PQID 2923316082
PQPubID 54723
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_4f80ebfe4eba4d6bb7f44e27b94a4f16
proquest_journals_2923316082
crossref_primary_10_1029_2023GL105401
crossref_citationtrail_10_1029_2023GL105401
wiley_primary_10_1029_2023GL105401_GRL67065
PublicationCentury 2000
PublicationDate 16 February 2024
PublicationDateYYYYMMDD 2024-02-16
PublicationDate_xml – month: 02
  year: 2024
  text: 16 February 2024
  day: 16
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_11_1_29_1
e_1_2_11_1_25_1
e_1_2_11_1_48_1
e_1_2_11_1_27_1
e_1_2_11_1_46_1
e_1_2_11_1_21_1
e_1_2_11_1_44_1
e_1_2_11_1_67_1
e_1_2_11_1_23_1
e_1_2_11_1_42_1
e_1_2_11_1_65_1
e_1_2_11_1_40_1
e_1_2_11_1_63_1
e_1_2_11_1_61_1
e_1_2_11_1_4_1
e_1_2_11_1_17_1
e_1_2_11_1_2_1
e_1_2_11_1_19_1
e_1_2_11_1_8_1
e_1_2_11_1_13_1
e_1_2_11_1_38_1
e_1_2_11_1_59_1
e_1_2_11_1_6_1
e_1_2_11_1_15_1
e_1_2_11_1_36_1
e_1_2_11_1_34_1
e_1_2_11_1_55_1
Chandrasekhar S. (e_1_2_11_1_14_1) 1961
e_1_2_11_1_11_1
e_1_2_11_1_32_1
e_1_2_11_1_53_1
e_1_2_11_1_30_1
e_1_2_11_1_51_1
e_1_2_11_2_2_1
e_1_2_11_1_28_1
e_1_2_11_1_24_1
e_1_2_11_1_49_1
e_1_2_11_1_26_1
e_1_2_11_1_47_1
e_1_2_11_1_20_1
e_1_2_11_1_45_1
e_1_2_11_1_66_1
e_1_2_11_1_22_1
e_1_2_11_1_43_1
e_1_2_11_1_64_1
e_1_2_11_1_41_1
e_1_2_11_1_62_1
e_1_2_11_1_60_1
Taylor G. I. (e_1_2_11_1_57_1) 1917; 93
e_1_2_11_1_18_1
e_1_2_11_1_5_1
e_1_2_11_1_39_1
e_1_2_11_1_3_1
e_1_2_11_1_37_1
e_1_2_11_1_9_1
e_1_2_11_1_16_1
e_1_2_11_1_35_1
e_1_2_11_1_58_1
e_1_2_11_1_7_1
e_1_2_11_1_10_1
e_1_2_11_1_33_1
e_1_2_11_1_56_1
e_1_2_11_1_12_1
e_1_2_11_1_31_1
e_1_2_11_1_54_1
e_1_2_11_1_52_1
e_1_2_11_1_50_1
References_xml – ident: e_1_2_11_1_12_1
  doi: 10.1080/03091928308221746
– ident: e_1_2_11_1_49_1
  doi: 10.1029/2018gl081880
– ident: e_1_2_11_1_58_1
  doi: 10.1098/rsta.1923.0008
– ident: e_1_2_11_1_6_1
  doi: 10.1038/s41467‐021‐26710‐0
– ident: e_1_2_11_1_52_1
  doi: 10.1103/physrevlett.113.254501
– ident: e_1_2_11_1_38_1
  doi: 10.1103/physreve.74.056306
– ident: e_1_2_11_1_8_1
  doi: 10.1029/2022ea002606
– ident: e_1_2_11_1_61_1
  doi: 10.1029/2021gl095017
– ident: e_1_2_11_1_19_1
  doi: 10.1146/annurev‐fluid‐120720‐020446
– ident: e_1_2_11_1_63_1
  doi: 10.1103/physrevlett.105.224501
– ident: e_1_2_11_1_36_1
  doi: 10.1017/jfm.2012.586
– ident: e_1_2_11_1_37_1
  doi: 10.1080/14685248.2021.1876877
– ident: e_1_2_11_1_65_1
  doi: 10.1103/physrevfluids.5.053501
– ident: e_1_2_11_1_22_1
  doi: 10.1017/jfm.2015.401
– ident: e_1_2_11_1_9_1
  doi: 10.1002/2016gl070650
– ident: e_1_2_11_1_47_1
  doi: 10.1016/j.jcp.2020.109848
– ident: e_1_2_11_1_7_1
  doi: 10.1016/j.pepi.2015.07.001
– ident: e_1_2_11_1_30_1
  doi: 10.3847/1538‐4357/ac779c
– ident: e_1_2_11_1_34_1
  doi: 10.1073/pnas.1217553110
– ident: e_1_2_11_1_17_1
  doi: 10.1017/s0022112003007316
– ident: e_1_2_11_1_66_1
  doi: 10.3847/psj/ac1114
– ident: e_1_2_11_1_31_1
  doi: 10.3847/1538‐4357/ac7a32
– ident: e_1_2_11_1_50_1
  doi: 10.1016/j.epsl.2012.03.038
– ident: e_1_2_11_1_5_1
  doi: 10.1016/j.icarus.2019.113509
– ident: e_1_2_11_1_27_1
  doi: 10.1103/physrevlett.109.254503
– ident: e_1_2_11_1_67_1
  doi: 10.1103/physrevlett.102.044502
– ident: e_1_2_11_1_21_1
  doi: 10.1017/jfm.2016.659
– ident: e_1_2_11_1_10_1
  doi: 10.1029/2021je007025
– ident: e_1_2_11_1_16_1
  doi: 10.1146/annurev.astro.43.051804.102202
– ident: e_1_2_11_1_45_1
  doi: 10.1098/rsta.1968.0007
– ident: e_1_2_11_2_2_1
  doi: 10.1017/jfm.2016.394
– ident: e_1_2_11_1_29_1
  doi: 10.1080/03091929.2012.696109
– ident: e_1_2_11_1_53_1
  doi: 10.1103/physrevfluids.3.041501
– ident: e_1_2_11_1_64_1
  doi: 10.1103/physreve.93.043102
– volume-title: Hydrodynamic and hydromagnetic stability
  year: 1961
  ident: e_1_2_11_1_14_1
– ident: e_1_2_11_1_23_1
  doi: 10.4121/f1fd2e8c‐8c1e‐43da‐bada‐8e73aae4c587
– ident: e_1_2_11_1_2_1
  doi: 10.1103/physrevlett.125.214501
– ident: e_1_2_11_1_4_1
  doi: 10.1080/03091920410001659281
– ident: e_1_2_11_1_20_1
  doi: 10.1017/jfm.2022.1010
– ident: e_1_2_11_1_26_1
  doi: 10.1017/jfm.2016.225
– ident: e_1_2_11_1_13_1
  doi: 10.1016/j.icarus.2018.10.003
– ident: e_1_2_11_1_42_1
  doi: 10.1029/2019ea000583
– ident: e_1_2_11_1_54_1
  doi: 10.1088/1367‐2630/12/7/075005
– ident: e_1_2_11_1_35_1
  doi: 10.1017/jfm.2011.493
– ident: e_1_2_11_1_40_1
  doi: 10.1016/j.icarus.2021.114853
– ident: e_1_2_11_1_44_1
  doi: 10.1098/rspa.1916.0026
– ident: e_1_2_11_1_55_1
  doi: 10.1016/j.euromechflu.2013.01.004
– ident: e_1_2_11_1_59_1
  doi: 10.1017/jfm.2013.488
– ident: e_1_2_11_1_15_1
  doi: 10.1093/gji/ggu480
– ident: e_1_2_11_1_43_1
  doi: 10.1017/jfm.2016.452
– volume: 93
  start-page: 99
  issue: 648
  year: 1917
  ident: e_1_2_11_1_57_1
  article-title: Motion of solids in fluids when the flow is not irrotational
  publication-title: Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences
– ident: e_1_2_11_1_51_1
  doi: 10.1017/s0022112005008499
– ident: e_1_2_11_1_48_1
  doi: 10.1088/1367‐2630/12/7/075022
– ident: e_1_2_11_1_60_1
  doi: 10.1002/2017je005341
– ident: e_1_2_11_1_39_1
  doi: 10.1017/jfm.2011.383
– ident: e_1_2_11_1_41_1
  doi: 10.1002/2016je005081
– ident: e_1_2_11_1_32_1
  doi: 10.1126/sciadv.abm4665
– ident: e_1_2_11_1_24_1
  doi: 10.1103/physrevfluids.8.083501
– ident: e_1_2_11_1_28_1
  doi: 10.1017/s0022112096002789
– ident: e_1_2_11_1_62_1
  doi: 10.1017/jfm.2022.360
– ident: e_1_2_11_1_46_1
  doi: 10.1017/s0022112069001674
– ident: e_1_2_11_1_18_1
  doi: 10.1103/physrevlett.113.114301
– ident: e_1_2_11_1_25_1
  doi: 10.1016/j.icarus.2019.03.011
– ident: e_1_2_11_1_3_1
  doi: 10.1103/revmodphys.81.503
– ident: e_1_2_11_1_33_1
  doi: 10.1016/j.icarus.2022.115337
– ident: e_1_2_11_1_56_1
  doi: 10.1103/physrevlett.103.024503
– ident: e_1_2_11_1_11_1
  doi: 10.1017/s0022112070001921
SSID ssj0003031
Score 2.4931755
Snippet The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at the...
Abstract The interior oceans of several icy moons are considered as affected by rotation. Observations suggest a larger heat transport around the poles than at...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Convection
Crustal thickness
Direct numerical simulation
direct numerical simulations
Enceladus
Equator
Europa
Flow simulation
Geysers
Gravity
Heat
heat transfer
Heat transport
Hot springs
Icy satellites
Jovian
Jupiter
Jupiter satellites
Latitudinal variations
Numerical simulations
Ocean currents
Oceanic crust
Oceans
Polar environments
Polar regions
rotating flows
Rotation
Saturn
Saturn satellites
Saturnian satellites
thermal convection
Titan
Turbulence
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEA6lVvBFrT_wtEoe9KksbrKz2c2jSnsV2nqUFvu2bGYnbaHsyV0V-t87k9su1wcF8W0JE8gmk5lvJsk3Sr0PyD6CPUeGAVwGhTOZp1BmvsDSdKFDT3UqNlEdH9fn5342JNzkLcyKH2JMuMnOSPZaNngblgPZgHBkSt3v6aERyMHRzwNjilpKN1iYjZaYzfOqYp6HrLaVGy6-c_-P673vuaTE3H8Pbq6D1uR19p_873ifqscD3tSfVgqyrTaof6YeTlM931v-SjdAcflcfT9NF2j12fprFz2TyFcfsMHWIw263usvRVckr6ives22hzG4pN71NyQW0vNef8VbfTRnlX6hzvb3Tr8cZEPVhayFoig5oERbdp4KF0KdB9PanGyO5CMIlzsZg9FGDHXVeUsc4hKWISByHARkPBYv1WY_7-mV0nX0jAYRytghVCyW511uWoZQtm29w4navZv4BgdKcqmMcd2ko3Hrm_VJm6gPo_SPFRXHH-Q-yxqOMkKgnRrmi4tm2I8NxDqnEAkotNDxr1YRgGwVPLQQjZuonTsNaIZdvWwso-HCOEZNPPK01n8dSDM9OXRyjPz6n6TfqEfcDnI13LgdtXmz-Elv1Rb-urlaLt4lDf8NydL3VQ
  priority: 102
  providerName: Wiley-Blackwell
Title Toward Understanding Polar Heat Transport Enhancement in Subglacial Oceans on Icy Moons
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023GL105401
https://www.proquest.com/docview/2923316082
https://doaj.org/article/4f80ebfe4eba4d6bb7f44e27b94a4f16
Volume 51
WOSCitedRecordID wos001155612400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DOA
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: PCBAR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: PATMY
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: M2O
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: M2P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1944-8007
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003031
  issn: 0094-8276
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9NADLfGNiReEBsgCqO6B3iaInKXy8c9Mmi7SV0XlVWbeIlyjk9MQilaB9L-e3yXtOoegBdeTklkRZbt2D_fOTbAO4scIzhyRGh1Fukkk5Ehm0YmwVQ2tkFDRRg2kc9mxfW1KbdGffmasK49cCe4D9oVMVlHmmytm8za3GlNKrdG19rJ0GybUc86mep9MDvmblae0VGh8qwveY-V8dl-MplKD1Xkg2AUevY_AJrbcDXEm_EzeNoDRfGxY_AAdqg9hMeTMIj3nq9C6SaunsPVZah8FYvt31RE6VNWccqeVmz6l4tR-80r2W8IiptWsNNg8Oz3zMUFEhOJZSvO8F6cL9kWX8BiPLr8dBr14xKiWidJypkgqrQxlLCQitjKWsWkYiTjtG_CTlKiUw5tkTdGEeemhKm1iJzAaJIGk5ew2y5begWicIZhHOrUNahzJovjJpY1Yx9V1ybDARyv5VZh30vcj7T4XoUzbWWqbSkP4P2G-kfXQ-MPdCdeBRsa3_k6PGB7qHp7qP5lDwM4Wiuw6j_HVaUYxiYyY7jDnAel_pWRajKfZv789_X_4OgNPOGXa1_qLbMj2L27_UlvYR9_3d2sbofwSOlyCHsno1k5HwYr5rvP8_Fiynfn6iKspV_zL7yW6dffi2b1YQ
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQC4IL74qFAj7ACUXEzsSJjzy6uxXpUlW7ojcrnthQCWXRblup_56x1422B5AQtyiaRI4zM_5mPP6GsTcWaY2glSNDCyqDQolMO1tmusBSdLZD7erYbKKazerTU32c-pyGszAbfogh4RYsI_rrYOAhIZ3YBgJJZmj8PWlEwBwU_uwCaRKp-O7nk_GiGZwxeehN0zwNWS0rlWrf6Q3vt5-_sSpF8v4biHMbt8aFZ_zgv4f8kN1PmJN_2CjJI3bL9Y_ZnUns6XtFV7EKFNdP2Ld5LKLli-0TL_w4RL98Sk6bD1To_KD_EfQl5Bb5Wc_J_xAOD-l3_hUdCfFlzw_xih8tSa2fssX4YP5pmqXOC1kLRVFSUImy7LQrlLV1bkUrcydzdNpD4HN3QqCXHm1ddVo6CnMdltYiUiwETmgs9thOv-zdM8ZrrwkRIpS-Q6hILM-7XLQEo2TbaoUj9u565g0mWvLQHeOnidvjUpvtSRuxt4P0rw0dxx_kPoafOMgEEu14Y7n6bpJNGvB17qx34GwLHX1q5QGcrKyGFrxQI7Z_rQImWfbaSELEhVCEnGjk8Wf_dSBmctKosJX8_J-kX7O70_lRY5rD2ZcX7B7JQCgVF2qf7ZyvLtxLdhsvz8_Wq1dJ4X8DShP82w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQB2gvjE-tsIEf4AlFxI7jxI-wrd1EKdW0ir1Z8eUMk1A6tQNp_z1n14u6hyEh3qLoEjnOffzOPv-OsbcOKEZQ5MjAKZ2pQovMoCszU0ApWteCwTo2m6im0_r83MxSn9NwFmbND9EvuAXLiP46GDhetj6xDQSSzND4ezwRAXNQ-rOlQh-ZAds6PB3NJ70zJg-9bppnVFbLSqfad3rDh83nb0WlSN5_C3Fu4tYYeEY7_z3kx-xRwpz841pJnrB72D1lD8axp-81XcUqUFg9Y9_OYhEtn2-eeOGzkP3yY3LavKdC50fdj6AvYW2RX3Sc_A_h8LD8zr8CkhBfdPwErvmXBan1czYfHZ0dHGep80LWqKIoKakEWbYGC-1cnTvRyBxlDmi8CnzuKAR46cHVVWskUpqLUDoHQLmQQmGgeMEG3aLDXcZrbwgRgip9C6oisTxvc9EQjJJNYzQM2fubmbeQaMlDd4yfNm6PS2M3J23I3vXSl2s6jjvkPoWf2MsEEu14Y7H8bpNNWuXrHJ1Hha5RLX1q5ZVCWTmjGuWFHrK9GxWwybJXVhIiLoQm5EQjjz_7rwOx49OJDlvJL_9J-g17ODsc2cnJ9PMrtk0iKlSKC73HBlfLX7jP7sPvq4vV8nXS9z_W6vxW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+Understanding+Polar+Heat+Transport+Enhancement+in+Subglacial+Oceans+on+Icy+Moons&rft.jtitle=Geophysical+research+letters&rft.au=Robert+Hartmann&rft.au=Richard+J.+A.+M.+Stevens&rft.au=Detlef+Lohse&rft.au=Roberto+Verzicco&rft.date=2024-02-16&rft.pub=Wiley&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=51&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2023GL105401&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4f80ebfe4eba4d6bb7f44e27b94a4f16
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon