Review of gridded climate products and their use in hydrological analyses reveals overlaps, gaps, and the need for a more objective approach to selecting model forcing datasets
Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded climate dataset options and justify their selection for use in a particular hydrologic model or analysis. This study aims to provide a comprehensi...
Uložené v:
| Vydané v: | Hydrology and earth system sciences Ročník 29; číslo 1; s. 85 - 108 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Katlenburg-Lindau
Copernicus GmbH
10.01.2025
Copernicus Publications |
| Predmet: | |
| ISSN: | 1607-7938, 1027-5606, 1607-7938 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded climate dataset options and justify their selection for use in a particular hydrologic model or analysis. This study aims to provide a comprehensive compilation and overview of gridded datasets (precipitation, air temperature, humidity, wind speed, solar radiation) and considerations for historical climate product selection criteria for hydrologic modeling and analyses based on a review and synthesis of previous studies conducting dataset intercomparisons. All datasets summarized here span at least the conterminous US (CONUS), and many are continental or global in extent. Gridded datasets built on ground-based observations (G; n= 20), satellite imagery (S; n= 20), and/or reanalysis products (R; n= 23) are compiled and described, with focus on the characteristics that hydrologic investigators may find useful in discerning acceptable datasets (variables, coverage, resolution, accessibility, and latency). We provide best-available-science recommendations for dataset selection based on a thorough review, interpretation, and synthesis of 29 recent studies (past 10 years) that compared the performance of various gridded climate datasets for hydrologic analyses. No single best source of gridded climate data exists, but we identified several common themes that may help guide dataset selection in future studies: Gridded daily temperature datasets improved when derived over regions with greater station density. Similarly, gridded daily precipitation data were more accurate when derived over regions with higher-density station data, when used in spatially less-complex terrain, and when corrected using ground-based data. In mountainous regions and humid regions, R precipitation datasets generally performed better than G when underlying data had a low station density, but there was no difference for higher station densities. G datasets were generally more accurate in representing precipitation and temperature data than S or R datasets, although this did not always translate into better streamflow modeling. We conclude that hydrologic analyses would benefit from guided dataset selection by investigators, including justification for selecting a specific dataset, and improved gridded datasets that retain dependencies among climate variables and better represent small-scale spatial variability in climate variables in complex topography. Based on this study, the authors' overall recommendations to hydrologic modelers are to select the gridded dataset (from Tables 1, 2, and 3) (a) with spatial and temporal resolutions that match modeling scales, (b) that are primarily (G) or secondarily (SG and RG) derived from ground-based observations, (c) with sufficient spatial and temporal coverage for the analysis, (d) with adequate latency for analysis objectives, and (e) that includes all climate variables of interest (so as to better represent interdependencies). |
|---|---|
| AbstractList | Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded climate dataset options and justify their selection for use in a particular hydrologic model or analysis. This study aims to provide a comprehensive compilation and overview of gridded datasets (precipitation, air temperature, humidity, wind speed, solar radiation) and considerations for historical climate product selection criteria for hydrologic modeling and analyses based on a review and synthesis of previous studies conducting dataset intercomparisons. All datasets summarized here span at least the conterminous US (CONUS), and many are continental or global in extent. Gridded datasets built on ground-based observations (G; n= 20), satellite imagery (S; n= 20), and/or reanalysis products (R; n= 23) are compiled and described, with focus on the characteristics that hydrologic investigators may find useful in discerning acceptable datasets (variables, coverage, resolution, accessibility, and latency). We provide best-available-science recommendations for dataset selection based on a thorough review, interpretation, and synthesis of 29 recent studies (past 10 years) that compared the performance of various gridded climate datasets for hydrologic analyses. No single best source of gridded climate data exists, but we identified several common themes that may help guide dataset selection in future studies: 1) Gridded daily temperature datasets improved when derived over regions with greater station density. 2) Similarly, gridded daily precipitation data were more accurate when derived over regions with higher-density station data, when used in spatially less-complex terrain, and when corrected using ground-based data. 3) In mountainous regions and humid regions, R precipitation datasets generally performed better than G when underlying data had a low station density, but there was no difference for higher station densities. 4) G datasets were generally more accurate in representing precipitation and temperature data than S or R datasets, although this did not always translate into better streamflow modeling. We conclude that hydrologic analyses would benefit from guided dataset selection by investigators, including justification for selecting a specific dataset, and improved gridded datasets that retain dependencies among climate variables and better represent small-scale spatial variability in climate variables in complex topography. Based on this study, the authors' overall recommendations to hydrologic modelers are to select the gridded dataset (from Tables 1, 2, and 3) (a) with spatial and temporal resolutions that match modeling scales, (b) that are primarily (G) or secondarily (SG and RG) derived from ground-based observations, (c) with sufficient spatial and temporal coverage for the analysis, (d) with adequate latency for analysis objectives, and (e) that includes all climate variables of interest (so as to better represent interdependencies). Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded climate dataset options and justify their selection for use in a particular hydrologic model or analysis. This study aims to provide a comprehensive compilation and overview of gridded datasets (precipitation, air temperature, humidity, wind speed, solar radiation) and considerations for historical climate product selection criteria for hydrologic modeling and analyses based on a review and synthesis of previous studies conducting dataset intercomparisons. All datasets summarized here span at least the conterminous US (CONUS), and many are continental or global in extent. Gridded datasets built on ground-based observations (G; n= 20), satellite imagery (S; n= 20), and/or reanalysis products (R; n= 23) are compiled and described, with focus on the characteristics that hydrologic investigators may find useful in discerning acceptable datasets (variables, coverage, resolution, accessibility, and latency). We provide best-available-science recommendations for dataset selection based on a thorough review, interpretation, and synthesis of 29 recent studies (past 10 years) that compared the performance of various gridded climate datasets for hydrologic analyses. No single best source of gridded climate data exists, but we identified several common themes that may help guide dataset selection in future studies: Gridded daily temperature datasets improved when derived over regions with greater station density. Similarly, gridded daily precipitation data were more accurate when derived over regions with higher-density station data, when used in spatially less-complex terrain, and when corrected using ground-based data. In mountainous regions and humid regions, R precipitation datasets generally performed better than G when underlying data had a low station density, but there was no difference for higher station densities. G datasets were generally more accurate in representing precipitation and temperature data than S or R datasets, although this did not always translate into better streamflow modeling. We conclude that hydrologic analyses would benefit from guided dataset selection by investigators, including justification for selecting a specific dataset, and improved gridded datasets that retain dependencies among climate variables and better represent small-scale spatial variability in climate variables in complex topography. Based on this study, the authors' overall recommendations to hydrologic modelers are to select the gridded dataset (from Tables 1, 2, and 3) (a) with spatial and temporal resolutions that match modeling scales, (b) that are primarily (G) or secondarily (SG and RG) derived from ground-based observations, (c) with sufficient spatial and temporal coverage for the analysis, (d) with adequate latency for analysis objectives, and (e) that includes all climate variables of interest (so as to better represent interdependencies). Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded climate dataset options and justify their selection for use in a particular hydrologic model or analysis. This study aims to provide a comprehensive compilation and overview of gridded datasets (precipitation, air temperature, humidity, wind speed, solar radiation) and considerations for historical climate product selection criteria for hydrologic modeling and analyses based on a review and synthesis of previous studies conducting dataset intercomparisons. All datasets summarized here span at least the conterminous US (CONUS), and many are continental or global in extent. Gridded datasets built on ground-based observations (G; n= 20), satellite imagery (S; n= 20), and/or reanalysis products (R; n= 23) are compiled and described, with focus on the characteristics that hydrologic investigators may find useful in discerning acceptable datasets (variables, coverage, resolution, accessibility, and latency). We provide best-available-science recommendations for dataset selection based on a thorough review, interpretation, and synthesis of 29 recent studies (past 10 years) that compared the performance of various gridded climate datasets for hydrologic analyses. No single best source of gridded climate data exists, but we identified several common themes that may help guide dataset selection in future studies: Gridded daily temperature datasets improved when derived over regions with greater station density. Similarly, gridded daily precipitation data were more accurate when derived over regions with higher-density station data, when used in spatially less-complex terrain, and when corrected using ground-based data. In mountainous regions and humid regions, R precipitation datasets generally performed better than G when underlying data had a low station density, but there was no difference for higher station densities. G datasets were generally more accurate in representing precipitation and temperature data than S or R datasets, although this did not always translate into better streamflow modeling. We conclude that hydrologic analyses would benefit from guided dataset selection by investigators, including justification for selecting a specific dataset, and improved gridded datasets that retain dependencies among climate variables and better represent small-scale spatial variability in climate variables in complex topography. Based on this study, the authors' overall recommendations to hydrologic modelers are to select the gridded dataset (from Tables 1, 2, and 3) (a) with spatial and temporal resolutions that match modeling scales, (b) that are primarily (G) or secondarily (SG and RG) derived from ground-based observations, (c) with sufficient spatial and temporal coverage for the analysis, (d) with adequate latency for analysis objectives, and (e) that includes all climate variables of interest (so as to better represent interdependencies). Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded climate dataset options and justify their selection for use in a particular hydrologic model or analysis. This study aims to provide a comprehensive compilation and overview of gridded datasets (precipitation, air temperature, humidity, wind speed, solar radiation) and considerations for historical climate product selection criteria for hydrologic modeling and analyses based on a review and synthesis of previous studies conducting dataset intercomparisons. All datasets summarized here span at least the conterminous US (CONUS), and many are continental or global in extent. Gridded datasets built on ground-based observations (G; n= 20), satellite imagery (S; n= 20), and/or reanalysis products (R; n= 23) are compiled and described, with focus on the characteristics that hydrologic investigators may find useful in discerning acceptable datasets (variables, coverage, resolution, accessibility, and latency). We provide best-available-science recommendations for dataset selection based on a thorough review, interpretation, and synthesis of 29 recent studies (past 10 years) that compared the performance of various gridded climate datasets for hydrologic analyses. No single best source of gridded climate data exists, but we identified several common themes that may help guide dataset selection in future studies: Gridded daily temperature datasets improved when derived over regions with greater station density.Similarly, gridded daily precipitation data were more accurate when derived over regions with higher-density station data, when used in spatially less-complex terrain, and when corrected using ground-based data.In mountainous regions and humid regions, R precipitation datasets generally performed better than G when underlying data had a low station density, but there was no difference for higher station densities.G datasets were generally more accurate in representing precipitation and temperature data than S or R datasets, although this did not always translate into better streamflow modeling. We conclude that hydrologic analyses would benefit from guided dataset selection by investigators, including justification for selecting a specific dataset, and improved gridded datasets that retain dependencies among climate variables and better represent small-scale spatial variability in climate variables in complex topography. Based on this study, the authors' overall recommendations to hydrologic modelers are to select the gridded dataset (from Tables 1, 2, and 3) (a) with spatial and temporal resolutions that match modeling scales, (b) that are primarily (G) or secondarily (SG and RG) derived from ground-based observations, (c) with sufficient spatial and temporal coverage for the analysis, (d) with adequate latency for analysis objectives, and (e) that includes all climate variables of interest (so as to better represent interdependencies). |
| Author | Mankin, Kyle R. Green, Timothy R. Mehan, Sushant Barnard, David M. |
| Author_xml | – sequence: 1 givenname: Kyle R. surname: Mankin fullname: Mankin, Kyle R. – sequence: 2 givenname: Sushant orcidid: 0000-0002-1565-9591 surname: Mehan fullname: Mehan, Sushant – sequence: 3 givenname: Timothy R. surname: Green fullname: Green, Timothy R. – sequence: 4 givenname: David M. surname: Barnard fullname: Barnard, David M. |
| BookMark | eNp1Uk1r3DAQNSWF5uucq6CXHupGliVZPpbQj0CgUNKzGEtjrxattZXkLfuv-hMrZ0MpgV400ui9N5rRu6jO5jBjVd009INoen67wZRq1tdK1Iwy8ao6byTt6q5v1dk_-zfVRUpbSplSkp1Xv7_jweEvEkYyRWctWmK820FGso_BLiYnArMleYMukiUhcTPZHG0MPkzOgC-34I8JE4l4QPCJhANGD_v0nkxP6zOdzFjExxAJkF2ISMKwRZPdAQnsSy0wG5IDSejX7DwVkEW_Esx6spAhYU5X1euxVMHr53hZ_fj86fHua_3w7cv93ceHGnjLcs2t5XZE1Skz8I5ZhkoCHyxtbdsZMzSjtGzkrOk6wxW2VIBElJJL0w3W0Payuj_p2gBbvY9lJvGoAzj9lAhx0hCzMx61ZAobxc3QU8V7SaEfQfBGiUF0XMq-aL07aZU2fy6Yst65ZNB7mDEsSbds_Q8mhCzQty-g27DEMuKCakTLqRRiFbw9oUwMKUUc_z6woXp1g17doFmvldCrGwpDvGAYlyG7MOcIzv-X9wf6278m |
| CitedBy_id | crossref_primary_10_3390_atmos16020229 crossref_primary_10_3390_app15126785 crossref_primary_10_1007_s10346_025_02599_4 crossref_primary_10_3390_su17177901 crossref_primary_10_1016_j_ejrh_2025_102562 |
| Cites_doi | 10.3390/atmos8030052 10.1002/qj.828 10.2151/jmsj.2016-015 10.1016/j.jhydrol.2017.03.008 10.1002/qj.3803 10.1175/2010BAMS3001.1 10.1016/j.ejrh.2022.101135 10.1175/JCLI-D-16-0720.1 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 10.1017/CBO9780511535772 10.1016/j.jhydrol.2013.11.049 10.1002/15-1061 10.1002/joc.1688 10.1175/JHM-D-17-0018.1 10.1175/JHM-D-15-0190.1 10.1016/j.eja.2016.10.013 10.1016/j.rser.2018.03.003 10.1175/JCLI-D-16-0758.1 10.1175/JAM2173.1 10.1016/j.jhydrol.2016.02.054 10.1175/JHM-D-16-0168.1 10.1002/qj.776 10.1007/978-3-030-24568-9_19 10.1175/JHM-D-14-0015.1 10.1002/ecs2.3451 10.3390/atmos13010143 10.1002/2017JD026613 10.1175/JCLI-D-12-00823.1 10.1002/2014JD021489 10.3390/w12102751 10.1002/2013JD020130 10.3390/atmos11111252 10.1175/BAMS-84-2-195 10.1175/JCLI3790.1 10.1016/j.jhydrol.2016.03.063 10.5194/hess-21-589-2017 10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2 10.1016/j.solener.2022.01.004 10.1175/JHM560.1 10.1029/2007JD009132 10.1175/2011JHM1369.1 10.1002/joc.3413 10.5194/hess-24-5379-2020 10.1371/journal.pone.0112725 10.1038/s41597-021-00973-0 10.1016/j.agwat.2020.106376 10.5194/hess-21-4347-2017 10.1175/JCLI-D-11-00015.1 10.1175/JCLI-D-23-0123.1 10.1007/s13143-019-00161-6 10.5194/piahs-374-29-2016 10.1175/JTECH-D-22-0024.1 10.5194/essd-13-1531-2021 10.2151/jmsj.87A.137 10.3390/hydrology4040053 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2 10.1016/j.envsoft.2016.06.014 10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2 10.1175/JHM583.1 10.1016/j.agrformet.2016.11.008 10.5194/hess-26-2245-2022 10.1109/TGRS.2007.895337 10.5194/essd-12-3469-2020 10.1175/JHM-D-19-0113.1 10.5194/essd-6-49-2014 10.23919/URSIAP-RASC.2019.8738594 10.1073/pnas.1312330110 10.1175/BAMS-D-13-00068.1 10.1002/2017RG000574 10.1002/2014WR015638 10.1002/hyp.5806 10.1038/sdata.2015.66 10.1175/JHM-D-15-0138.1 10.1002/joc.4127 10.2151/jmsj.2015-001 10.3389/fenvs.2022.905774 10.5194/hess-22-989-2018 10.1016/j.atmosres.2018.02.022 10.5194/hess-21-6201-2017 10.1175/BAMS-88-1-47 10.1029/2018MS001273 10.5194/essd-13-3337-2021 10.1175/JCLI-D-12-00508.1 10.1175/BAMS-D-17-0138.1 10.1175/BAMS-D-21-0326.1 10.1175/JTECH-D-19-0114.1 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2 10.1029/2010GM000974 10.5194/hess-20-1069-2016 10.1111/1752-1688.12484 10.1038/s41597-020-0453-3 10.1175/JHM-D-16-0088.1 10.1007/978-3-030-24568-9_20 10.1175/BAMS-85-3-381 10.1016/j.rse.2017.07.021 10.1016/j.ejrh.2023.101409 10.1002/2017WR021633 10.1029/2011JD016051 10.1007/s00382-016-3327-9 10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2 10.1111/1752-1688.12819 10.1007/978-3-540-75997-3_532 10.1175/JCLI-D-11-00004.1 10.1175/JCLI-D-15-0556.1 10.3390/rs14163860 10.5194/hess-24-2527-2020 10.1080/02757259409532268 10.1175/BAMS-87-3-343 10.1016/j.jhydrol.2020.124673 10.1029/2011JD016048 10.1016/j.jhydrol.2019.124076 10.1175/WAF-D-10-05037.1 10.1175/BAMS-D-13-00164.1 |
| ContentType | Journal Article |
| Copyright | 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QH 7TG 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ KL. KR7 L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY 7S9 L.6 DOA |
| DOI | 10.5194/hess-29-85-2025 |
| DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Database ProQuest Central Essentials ProQuest Central Continental Europe Database Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection AGRICOLA AGRICOLA - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1607-7938 |
| EndPage | 108 |
| ExternalDocumentID | oai_doaj_org_article_628e184cb9084960a9fa54185b574669 10_5194_hess_29_85_2025 |
| GroupedDBID | 29I 2WC 5GY 5VS 7XC 8CJ 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABJCF ABUWG ACGFO ACIWK ADBBV AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ATCPS BANNL BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1J D1K E3Z EBS ECGQY EDH EJD GROUPED_DOAJ GX1 H13 HCIFZ IAO IEA IEP IGS ISR ITC K6- KQ8 L6V L8X LK5 M7R M7S OK1 OVT P2P PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PYCSY Q2X RKB RNS TR2 XSB ~02 ~KM 7QH 7TG 7UA 8FD AZQEC C1K DWQXO F1W FR3 GNUQQ H96 KL. KR7 L.G PKEHL PQEST PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-a432t-4dd4dfe878cb472d2e86a4bd03d37ccb1f6d2f42177c48e305a6ee6646c7bdc03 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001393155700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1607-7938 1027-5606 |
| IngestDate | Fri Oct 03 12:32:56 EDT 2025 Fri Sep 05 17:16:30 EDT 2025 Fri Jul 25 12:24:43 EDT 2025 Sat Nov 29 05:02:00 EST 2025 Tue Nov 18 22:29:54 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a432t-4dd4dfe878cb472d2e86a4bd03d37ccb1f6d2f42177c48e305a6ee6646c7bdc03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1565-9591 |
| OpenAccessLink | https://www.proquest.com/docview/3153406559?pq-origsite=%requestingapplication% |
| PQID | 3153406559 |
| PQPubID | 105724 |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_628e184cb9084960a9fa54185b574669 proquest_miscellaneous_3200282556 proquest_journals_3153406559 crossref_primary_10_5194_hess_29_85_2025 crossref_citationtrail_10_5194_hess_29_85_2025 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-10 |
| PublicationDateYYYYMMDD | 2025-01-10 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Hydrology and earth system sciences |
| PublicationYear | 2025 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref112 ref73 ref72 ref110 ref68 ref119 ref67 ref117 ref69 ref118 ref64 ref115 ref63 ref116 ref66 ref113 ref65 ref114 ref60 ref62 ref120 ref61 |
| References_xml | – ident: ref92 doi: 10.3390/atmos8030052 – ident: ref21 doi: 10.1002/qj.828 – ident: ref37 doi: 10.2151/jmsj.2016-015 – ident: ref39 doi: 10.1016/j.jhydrol.2017.03.008 – ident: ref41 doi: 10.1002/qj.3803 – ident: ref88 doi: 10.1175/2010BAMS3001.1 – ident: ref3 doi: 10.1016/j.ejrh.2022.101135 – ident: ref84 doi: 10.1175/JCLI-D-16-0720.1 – ident: ref53 doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2 – ident: ref99 doi: 10.1017/CBO9780511535772 – ident: ref71 doi: 10.1016/j.jhydrol.2013.11.049 – ident: ref10 doi: 10.1002/15-1061 – ident: ref19 doi: 10.1002/joc.1688 – ident: ref13 – ident: ref81 doi: 10.1175/JHM-D-17-0018.1 – ident: ref65 – ident: ref62 doi: 10.1175/JHM-D-15-0190.1 – ident: ref73 doi: 10.1016/j.eja.2016.10.013 – ident: ref93 doi: 10.1016/j.rser.2018.03.003 – ident: ref33 doi: 10.1175/JCLI-D-16-0758.1 – ident: ref43 doi: 10.1175/JAM2173.1 – ident: ref101 doi: 10.1016/j.jhydrol.2016.02.054 – ident: ref117 doi: 10.1175/JHM-D-16-0168.1 – ident: ref18 doi: 10.1002/qj.776 – ident: ref47 doi: 10.1007/978-3-030-24568-9_19 – ident: ref68 doi: 10.1175/JHM-D-14-0015.1 – ident: ref105 doi: 10.1002/ecs2.3451 – ident: ref36 doi: 10.3390/atmos13010143 – ident: ref52 doi: 10.1002/2017JD026613 – ident: ref89 doi: 10.1175/JCLI-D-12-00823.1 – ident: ref15 doi: 10.1002/2014JD021489 – ident: ref78 doi: 10.3390/w12102751 – ident: ref51 doi: 10.1002/2013JD020130 – ident: ref94 doi: 10.3390/atmos11111252 – ident: ref34 doi: 10.1175/BAMS-84-2-195 – ident: ref95 doi: 10.1175/JCLI3790.1 – ident: ref26 doi: 10.1016/j.jhydrol.2016.03.063 – ident: ref7 doi: 10.5194/hess-21-589-2017 – ident: ref66 doi: 10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2 – ident: ref16 doi: 10.1016/j.solener.2022.01.004 – ident: ref46 doi: 10.1175/JHM560.1 – ident: ref17 doi: 10.1029/2007JD009132 – ident: ref110 doi: 10.1175/2011JHM1369.1 – ident: ref1 doi: 10.1002/joc.3413 – ident: ref22 doi: 10.5194/hess-24-5379-2020 – ident: ref118 doi: 10.1371/journal.pone.0112725 – ident: ref106 doi: 10.1038/s41597-021-00973-0 – ident: ref14 doi: 10.1016/j.agwat.2020.106376 – ident: ref63 doi: 10.5194/hess-21-4347-2017 – ident: ref85 doi: 10.1175/JCLI-D-11-00015.1 – ident: ref49 doi: 10.1175/JCLI-D-23-0123.1 – ident: ref77 doi: 10.1007/s13143-019-00161-6 – ident: ref91 doi: 10.5194/piahs-374-29-2016 – ident: ref24 doi: 10.1175/JTECH-D-22-0024.1 – ident: ref11 doi: 10.5194/essd-13-1531-2021 – ident: ref107 doi: 10.2151/jmsj.87A.137 – ident: ref31 doi: 10.3390/hydrology4040053 – ident: ref115 doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2 – ident: ref35 doi: 10.1016/j.envsoft.2016.06.014 – ident: ref2 doi: 10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2 – ident: ref116 doi: 10.1175/JHM583.1 – ident: ref112 – ident: ref5 doi: 10.1016/j.agrformet.2016.11.008 – ident: ref96 doi: 10.5194/hess-26-2245-2022 – ident: ref56 doi: 10.1109/TGRS.2007.895337 – ident: ref87 doi: 10.5194/essd-12-3469-2020 – ident: ref64 doi: 10.1175/JHM-D-19-0113.1 – ident: ref90 doi: 10.5194/essd-6-49-2014 – ident: ref108 doi: 10.23919/URSIAP-RASC.2019.8738594 – ident: ref109 doi: 10.1073/pnas.1312330110 – ident: ref4 doi: 10.1175/BAMS-D-13-00068.1 – ident: ref100 doi: 10.1002/2017RG000574 – ident: ref111 doi: 10.1002/2014WR015638 – ident: ref29 doi: 10.1002/hyp.5806 – ident: ref30 doi: 10.1038/sdata.2015.66 – ident: ref27 doi: 10.1175/JHM-D-15-0138.1 – ident: ref76 doi: 10.1002/joc.4127 – ident: ref40 – ident: ref54 doi: 10.2151/jmsj.2015-001 – ident: ref69 doi: 10.3389/fenvs.2022.905774 – ident: ref75 – ident: ref12 doi: 10.5194/hess-22-989-2018 – ident: ref120 doi: 10.1016/j.atmosres.2018.02.022 – ident: ref8 doi: 10.5194/hess-21-6201-2017 – ident: ref25 doi: 10.1175/BAMS-88-1-47 – ident: ref59 doi: 10.1029/2018MS001273 – ident: ref103 doi: 10.5194/essd-13-3337-2021 – ident: ref61 doi: 10.1175/JCLI-D-12-00508.1 – ident: ref9 doi: 10.1175/BAMS-D-17-0138.1 – ident: ref82 doi: 10.1175/BAMS-D-21-0326.1 – ident: ref102 doi: 10.1175/JTECH-D-19-0114.1 – ident: ref50 doi: 10.2151/jmsj.87A.137 – ident: ref98 doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2 – ident: ref32 doi: 10.1029/2010GM000974 – ident: ref70 doi: 10.5194/hess-20-1069-2016 – ident: ref80 doi: 10.1111/1752-1688.12484 – ident: ref38 doi: 10.1038/s41597-020-0453-3 – ident: ref28 doi: 10.1175/JHM-D-16-0088.1 – ident: ref57 doi: 10.1007/978-3-030-24568-9_20 – ident: ref86 doi: 10.1175/BAMS-85-3-381 – ident: ref42 doi: 10.1016/j.rse.2017.07.021 – ident: ref55 doi: 10.1016/j.ejrh.2023.101409 – ident: ref58 doi: 10.1002/2017WR021633 – ident: ref48 – ident: ref114 doi: 10.1029/2011JD016051 – ident: ref60 doi: 10.1007/s00382-016-3327-9 – ident: ref45 doi: 10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2 – ident: ref74 doi: 10.1111/1752-1688.12819 – ident: ref119 doi: 10.1007/978-3-540-75997-3_532 – ident: ref20 doi: 10.1175/JCLI-D-11-00004.1 – ident: ref79 doi: 10.1175/JCLI-D-15-0556.1 – ident: ref83 doi: 10.3390/rs14163860 – ident: ref104 doi: 10.5194/hess-24-2527-2020 – ident: ref6 doi: 10.1080/02757259409532268 – ident: ref72 doi: 10.1175/BAMS-87-3-343 – ident: ref97 doi: 10.1016/j.jhydrol.2020.124673 – ident: ref113 doi: 10.1029/2011JD016048 – ident: ref67 doi: 10.1016/j.jhydrol.2019.124076 – ident: ref23 doi: 10.1175/WAF-D-10-05037.1 – ident: ref44 doi: 10.1175/BAMS-D-13-00164.1 |
| SSID | ssj0028862 |
| Score | 2.468555 |
| SecondaryResourceType | review_article |
| Snippet | Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 85 |
| SubjectTerms | Air temperature atmospheric precipitation climate Climate change Climate models Climate variability Climatic analysis Climatic data Complex variables Daily precipitation Daily temperatures Data analysis data quality Datasets Density Earth system science Ground-based observation Humidity Hydrologic analysis Hydrologic data Hydrologic models Hydrology landscapes Latency meteorological data Modelling Mountain regions Mountainous areas mountains Precipitation Precipitation data Radiative forcing remote sensing Satellite imagery Satellite observation Solar radiation Spatial variability Spatial variations Stream discharge Stream flow Synthesis Temperature data topography Variables Wind speed |
| SummonAdditionalLinks | – databaseName: Copernicus Publications dbid: RKB link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yCHrxW5x1lSd48GDcmTRN0qOKiwdZRBT2VvLxujMytMO0I-x_5Z_oe01nWBDxoJdCmzxo-5L3kbz8fkK8NNoilkUlF2iV1D5WMqAtpPEF8jq_982Irv_Jnp-7i4vq8zWqL64Jy_DA-cedGuWQspAYqrnTFG77qvElI66E0mpj-OgeDUPmLvjCHG5TquWcyfucykry6SaD-lC0ok-XZEGkqqQraYQwQ_Y1fzTC9v9mlUdXc3b3H17ynrgzxZfwNovcFzewfSBuTVTny6uH4mfeDYCugcst44ckiOsVxa0Im4z-2oNvE4w7CLDrEVYtLK_Sdm8lqZVxTLAHRn-i0QtcBbr2m_41XI7XSRxa8oxAQTF44HJe6ML3bF5hj2QOQwf9yMRDHhRGVh4WiHzHtas9Dv0j8e3sw9f3H-VE2yC9LtQgdUo6Neisi0FblRQ643VI8yIVNsawaExSjaZcyEbtkAyON4jGaBNtSHFePBZHbdfiEwHJOU8ZoQpORR0ihmh04hCFpAKaaibe7JVXxwnTnKk11jXlNqztmrVdq6p2Zc3anolXB4FNhvP4c9d3rOdDN8bhHh-Q4utJ8fXfFD8TJ_uxVE_Goa8L8jIUR1EuNxMvDs00rXmvxrfY7aiPyseKS3P8P97jqbjN38RrR4v5iTgatjt8Jm7GH8Oq3z4f584v-CQcZg priority: 102 providerName: Copernicus Gesellschaft – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nq9QwEA_yEPQifuLqU0bw4MH4dtM0SY8qPjzIw4PCu5V8TN-uLO2y7Qrvv_JPdCZtlwciXrwU2iTQdiYzv0kmvxHitdEWsSwquUKrpPaxkgFtIY0vkNf5vW8yu_4Xe3HhLi-rrzdKfXFO2EgPPP64M6McUhQSQ7V0muC2rxpfMuNKKK02Jh_dI9QzB1NTqOWcGfc5lZXk081I6kNoRZ-tyYJIVUlXkoZwhewb_ijT9v9hlbOrOb8v7k0YEd6P7_ZA3ML2obgzlStfXz8Sv8YVfegauNozB0iCuN0Q9kTYjQyuPfg2Qd4FgEOPsGlhfZ32s6WjVuYiwR6YwYk0EDiTc-t3_Vu4ytdpOLTk3YCALXjglFzowo_RRMLMRg5DB32upkNeEHJlHR4Q-Y7zT3sc-sfi-_mnbx8_y6n0gvS6UIPUKenUoLMuBm1VUuiM1yEti1TYGMOqMUk1muIZG7VDMhreIBqjTbQhxWXxRJy0XYtPBSTnPEV1KjgVdYgYotGJYQaNCmiqhXg3C6COEy85l8fY1hSfsMRqllitqtqVNUtsId4cB-xGSo6_d_3AEj12Yy7t_IA0rJ40rP6Xhi3E6awP9TTB-7ogT0FYiOKxhXh1bKapyfstvsXuQH3UeDS4NM_-x3s8F3f5m3j9Z7U8FSfD_oAvxO34c9j0-5dZ_38D5VwLAA priority: 102 providerName: Directory of Open Access Journals |
| Title | Review of gridded climate products and their use in hydrological analyses reveals overlaps, gaps, and the need for a more objective approach to selecting model forcing datasets |
| URI | https://www.proquest.com/docview/3153406559 https://www.proquest.com/docview/3200282556 https://doaj.org/article/628e184cb9084960a9fa54185b574669 |
| Volume | 29 |
| WOSCitedRecordID | wos001393155700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAGF databaseName: Copernicus Publications customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: RKB dateStart: 19970101 isFulltext: true titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html providerName: Copernicus Gesellschaft – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: DOA dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: BFMQW dateStart: 20090601 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: PCBAR dateStart: 20090601 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: M7S dateStart: 20090601 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database (subscripiton) customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: PATMY dateStart: 20090601 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: BENPR dateStart: 20090601 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1607-7938 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028862 issn: 1607-7938 databaseCode: PIMPY dateStart: 20090601 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RFgkuvCsCJRokDhwwTdbr3fUJNagVCBpFpUjlZO3LSVBkhzhB6r_iJzKzdgISggsXr7wPa6Wdnbe_YeyFFCqELM2TYVA8EcbliQ0qTaRJA_n5jSkjuv5HNR7rq6t80jncmi6tcssTI6P2tSMf-XGKVxOFDyrAb5bfEqoaRdHVroTGHjsglAQeU_c-7QwurWUb7eQqQckuW2gf1FnE8Qz5SMLzRGdIJ1Qn-zepFMH7_-DNUeCc3f3frd5jdzpVE05a2rjPboTqAbvVVT2fXT9kP9rAANQlTFcEJeLBLeaowgZYtkCwDZjKQwwmwKYJMK9gdu1XW4aJowRpEhogICgkZKCE0IVZNq9gGp_dcqhQSALqx2CAMnuhtl9bTgtbUHNY19DEojwoTCEW6KEFjt4ojbUJ6-YR-3x2evn2XdJVcEiMSPk6Ed4LXwattLNCcc-DlkZYP0h9qpyzw1J6Xgo0i5QTOiDvMTIEKYV0yno3SA_ZflVX4TEDr7VB45BbzZ2wLlgnhSdtBVfZIPMee709wcJ18OZUZWNRoJlDR17QkRc8L3RW0JH32MvdgmWL7PH3qSMiid00guSOHfVqWnQ3vJBcBzSXnc0HWqBdaPLSZAQNZDMlJG3waEstRccnmuIXqfTY890w3nAK25gq1Bucw9s_jDP55N-feMpu027JQTQcHLH99WoTnrGb7vt63qz67GB0Op5c9KPXoR8vCvZNTi7Pv1D7_nyC7d7Fh9FPmqEhog |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFKlceCNSCgwSIA6YJuv1en3gQIGoVdMIpCJ6c_flJFVkhzgB5U8hfiIzfgQkBLceuFiKvWtZzrcz3-yMv2HsqRSx91GYBH0f80BomwTGx2Egdehpn1_rrFLXH8ajkTo7Sz5sse_ttzBUVtnaxMpQu8LSHvl-iEsTnQ8S4KaC8tivv2F8Vr4-eod_5jPOB-9P3x4GTQuBQIuQLwPhnHCZV7GyRsTcca-kFsb1QhfG1pp-Jh3PBPLy2ArlEfxaei-lkDY2zvZCvO_z-ZeAulRRNrdp2XGFbSuZhKLDtg8GJx8_b0I8pWSdX-VxgFxC1mJCyJLE_gQtV8CTQEWITOrM_ZsfrNoF_OENKhc3uPG_vZyb7HpDpuFNjf5bbMvnt9lO09d9sr7DftSpDygyGC9ILMWBnU2RpHuY11K3JejcQZUugVXpYZrDZO0WrUvAqyTa4ksgqStcqkAlrzM9L1_CuDo20yFHGgAYAYAGql2GwlzUvgRa2XZYFlBWbYeQLkDVgogmWPpFhbqlX5Z32adLeYf3WCcvcn-fgVNKY_jLjeJWGOuNlcIRH8NZxsuky161iEltI-BOfURmKQZyBLGUIJbyJFVRShDrshebCfNau-TvQw8IgpthJDpenSgW47SxYankyveVsCbpKYGRr04yHZH4kYliIekB91p0po0lLNNf0OyyJ5vLaMMoMaVzX6xwDK-_oY7k7r9v8ZjtHJ6eDNPh0ej4AbtGT07bYf3eHussFyv_kF21X5fTcvGoWZjAzi97BfwE4GV67A |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9NAFB7Wrqgv3mWrqx5BwQdj28lkMnkQ2YvFZZdSRGHf4tzSVkrSbVql_8pnf53n5FIF0bd98CWQZCYMyXduc06-w9hzKWLvozAJBj7mgdA2CYyPw0Dq0NM-v9ZZxa5_Fo9G6vw8Ge-wH-2_MFRW2erESlG7wtIeeS9E0UTjgw5wL2vKIsbHw7eLi4A6SFGmtW2nUUPk1G--YfhWvjk5xm_9gvPhu49H74Omw0CgRchXgXBOuMyrWFkjYu64V1IL4_qhC2NrzSCTjmcC3fbYCuVRNrT0XkohbWyc7Yf43CtsV0mUmw7bHR8dHnzYhntKyTrXyuMA_QpZEwuhxyR6U9RiAU8CFSFKqUv3bzaxah3wh2WozN3w1v_8om6zm42TDQe1VNxhOz6_y643_d6nm3vse50SgSKDyZJIVBzY-Qyddw-LmgK3BJ07qNIosC49zHKYbtyyNRV4l8hcfAlEgYUiDFQKO9eL8hVMqmMzHXJ0DwAjA9BANc1QmC-1jYGWzh1WBZRVOyJ0I6BqTUQTLJ1RAW_pV-V99ulSXtgD1smL3O8xcEppDIu5UdwKY72xUjjy03CW8TLpstctelLbELtTf5F5igEewS0luKU8SVWUEty67OV2wqLmNPn70EOC43YYkZFXF4rlJG10Wyq58gMlrEn6SmBErJNMR0SKZKJYSFrgfovUtNGQZfoLpl32bHsbdRslrHTuizWO4fW_1ZF8-O9HPGXXEOPp2cno9BG7QQunXbJBf591Vsu1f8yu2q-rWbl80sgosM-XjfafvomDeg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+gridded+climate+products+and+their+use+in+hydrological+analyses+reveals+overlaps%2C+gaps%2C+and+the+need+for+a+more+objective+approach+to+selecting+model+forcing+datasets&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Mankin%2C+Kyle+R&rft.au=Mehan%2C+Sushant&rft.au=Green%2C+Timothy+R&rft.au=Barnard%2C+David+M&rft.date=2025-01-10&rft.pub=Copernicus+GmbH&rft.issn=1027-5606&rft.eissn=1607-7938&rft.volume=29&rft.issue=1&rft.spage=85&rft.epage=108&rft_id=info:doi/10.5194%2Fhess-29-85-2025&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon |