Review of gridded climate products and their use in hydrological analyses reveals overlaps, gaps, and the need for a more objective approach to selecting model forcing datasets

Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded climate dataset options and justify their selection for use in a particular hydrologic model or analysis. This study aims to provide a comprehensi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Hydrology and earth system sciences Ročník 29; číslo 1; s. 85 - 108
Hlavní autori: Mankin, Kyle R., Mehan, Sushant, Green, Timothy R., Barnard, David M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Katlenburg-Lindau Copernicus GmbH 10.01.2025
Copernicus Publications
Predmet:
ISSN:1607-7938, 1027-5606, 1607-7938
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded climate dataset options and justify their selection for use in a particular hydrologic model or analysis. This study aims to provide a comprehensive compilation and overview of gridded datasets (precipitation, air temperature, humidity, wind speed, solar radiation) and considerations for historical climate product selection criteria for hydrologic modeling and analyses based on a review and synthesis of previous studies conducting dataset intercomparisons. All datasets summarized here span at least the conterminous US (CONUS), and many are continental or global in extent. Gridded datasets built on ground-based observations (G; n= 20), satellite imagery (S; n= 20), and/or reanalysis products (R; n= 23) are compiled and described, with focus on the characteristics that hydrologic investigators may find useful in discerning acceptable datasets (variables, coverage, resolution, accessibility, and latency). We provide best-available-science recommendations for dataset selection based on a thorough review, interpretation, and synthesis of 29 recent studies (past 10 years) that compared the performance of various gridded climate datasets for hydrologic analyses. No single best source of gridded climate data exists, but we identified several common themes that may help guide dataset selection in future studies: Gridded daily temperature datasets improved when derived over regions with greater station density. Similarly, gridded daily precipitation data were more accurate when derived over regions with higher-density station data, when used in spatially less-complex terrain, and when corrected using ground-based data. In mountainous regions and humid regions, R precipitation datasets generally performed better than G when underlying data had a low station density, but there was no difference for higher station densities. G datasets were generally more accurate in representing precipitation and temperature data than S or R datasets, although this did not always translate into better streamflow modeling. We conclude that hydrologic analyses would benefit from guided dataset selection by investigators, including justification for selecting a specific dataset, and improved gridded datasets that retain dependencies among climate variables and better represent small-scale spatial variability in climate variables in complex topography. Based on this study, the authors' overall recommendations to hydrologic modelers are to select the gridded dataset (from Tables 1, 2, and 3) (a) with spatial and temporal resolutions that match modeling scales, (b) that are primarily (G) or secondarily (SG and RG) derived from ground-based observations, (c) with sufficient spatial and temporal coverage for the analysis, (d) with adequate latency for analysis objectives, and (e) that includes all climate variables of interest (so as to better represent interdependencies).
AbstractList Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded climate dataset options and justify their selection for use in a particular hydrologic model or analysis. This study aims to provide a comprehensive compilation and overview of gridded datasets (precipitation, air temperature, humidity, wind speed, solar radiation) and considerations for historical climate product selection criteria for hydrologic modeling and analyses based on a review and synthesis of previous studies conducting dataset intercomparisons. All datasets summarized here span at least the conterminous US (CONUS), and many are continental or global in extent. Gridded datasets built on ground-based observations (G; n= 20), satellite imagery (S; n= 20), and/or reanalysis products (R; n= 23) are compiled and described, with focus on the characteristics that hydrologic investigators may find useful in discerning acceptable datasets (variables, coverage, resolution, accessibility, and latency). We provide best-available-science recommendations for dataset selection based on a thorough review, interpretation, and synthesis of 29 recent studies (past 10 years) that compared the performance of various gridded climate datasets for hydrologic analyses. No single best source of gridded climate data exists, but we identified several common themes that may help guide dataset selection in future studies: 1) Gridded daily temperature datasets improved when derived over regions with greater station density. 2) Similarly, gridded daily precipitation data were more accurate when derived over regions with higher-density station data, when used in spatially less-complex terrain, and when corrected using ground-based data. 3) In mountainous regions and humid regions, R precipitation datasets generally performed better than G when underlying data had a low station density, but there was no difference for higher station densities. 4) G datasets were generally more accurate in representing precipitation and temperature data than S or R datasets, although this did not always translate into better streamflow modeling. We conclude that hydrologic analyses would benefit from guided dataset selection by investigators, including justification for selecting a specific dataset, and improved gridded datasets that retain dependencies among climate variables and better represent small-scale spatial variability in climate variables in complex topography. Based on this study, the authors' overall recommendations to hydrologic modelers are to select the gridded dataset (from Tables 1, 2, and 3) (a) with spatial and temporal resolutions that match modeling scales, (b) that are primarily (G) or secondarily (SG and RG) derived from ground-based observations, (c) with sufficient spatial and temporal coverage for the analysis, (d) with adequate latency for analysis objectives, and (e) that includes all climate variables of interest (so as to better represent interdependencies).
Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded climate dataset options and justify their selection for use in a particular hydrologic model or analysis. This study aims to provide a comprehensive compilation and overview of gridded datasets (precipitation, air temperature, humidity, wind speed, solar radiation) and considerations for historical climate product selection criteria for hydrologic modeling and analyses based on a review and synthesis of previous studies conducting dataset intercomparisons. All datasets summarized here span at least the conterminous US (CONUS), and many are continental or global in extent. Gridded datasets built on ground-based observations (G; n=  20), satellite imagery (S; n=  20), and/or reanalysis products (R; n=  23) are compiled and described, with focus on the characteristics that hydrologic investigators may find useful in discerning acceptable datasets (variables, coverage, resolution, accessibility, and latency). We provide best-available-science recommendations for dataset selection based on a thorough review, interpretation, and synthesis of 29 recent studies (past 10 years) that compared the performance of various gridded climate datasets for hydrologic analyses. No single best source of gridded climate data exists, but we identified several common themes that may help guide dataset selection in future studies: Gridded daily temperature datasets improved when derived over regions with greater station density. Similarly, gridded daily precipitation data were more accurate when derived over regions with higher-density station data, when used in spatially less-complex terrain, and when corrected using ground-based data. In mountainous regions and humid regions, R precipitation datasets generally performed better than G when underlying data had a low station density, but there was no difference for higher station densities. G datasets were generally more accurate in representing precipitation and temperature data than S or R datasets, although this did not always translate into better streamflow modeling. We conclude that hydrologic analyses would benefit from guided dataset selection by investigators, including justification for selecting a specific dataset, and improved gridded datasets that retain dependencies among climate variables and better represent small-scale spatial variability in climate variables in complex topography. Based on this study, the authors' overall recommendations to hydrologic modelers are to select the gridded dataset (from Tables 1, 2, and 3) (a) with spatial and temporal resolutions that match modeling scales, (b) that are primarily (G) or secondarily (SG and RG) derived from ground-based observations, (c) with sufficient spatial and temporal coverage for the analysis, (d) with adequate latency for analysis objectives, and (e) that includes all climate variables of interest (so as to better represent interdependencies).
Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded climate dataset options and justify their selection for use in a particular hydrologic model or analysis. This study aims to provide a comprehensive compilation and overview of gridded datasets (precipitation, air temperature, humidity, wind speed, solar radiation) and considerations for historical climate product selection criteria for hydrologic modeling and analyses based on a review and synthesis of previous studies conducting dataset intercomparisons. All datasets summarized here span at least the conterminous US (CONUS), and many are continental or global in extent. Gridded datasets built on ground-based observations (G; n= 20), satellite imagery (S; n= 20), and/or reanalysis products (R; n= 23) are compiled and described, with focus on the characteristics that hydrologic investigators may find useful in discerning acceptable datasets (variables, coverage, resolution, accessibility, and latency). We provide best-available-science recommendations for dataset selection based on a thorough review, interpretation, and synthesis of 29 recent studies (past 10 years) that compared the performance of various gridded climate datasets for hydrologic analyses. No single best source of gridded climate data exists, but we identified several common themes that may help guide dataset selection in future studies: Gridded daily temperature datasets improved when derived over regions with greater station density. Similarly, gridded daily precipitation data were more accurate when derived over regions with higher-density station data, when used in spatially less-complex terrain, and when corrected using ground-based data. In mountainous regions and humid regions, R precipitation datasets generally performed better than G when underlying data had a low station density, but there was no difference for higher station densities. G datasets were generally more accurate in representing precipitation and temperature data than S or R datasets, although this did not always translate into better streamflow modeling. We conclude that hydrologic analyses would benefit from guided dataset selection by investigators, including justification for selecting a specific dataset, and improved gridded datasets that retain dependencies among climate variables and better represent small-scale spatial variability in climate variables in complex topography. Based on this study, the authors' overall recommendations to hydrologic modelers are to select the gridded dataset (from Tables 1, 2, and 3) (a) with spatial and temporal resolutions that match modeling scales, (b) that are primarily (G) or secondarily (SG and RG) derived from ground-based observations, (c) with sufficient spatial and temporal coverage for the analysis, (d) with adequate latency for analysis objectives, and (e) that includes all climate variables of interest (so as to better represent interdependencies).
Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded climate dataset options and justify their selection for use in a particular hydrologic model or analysis. This study aims to provide a comprehensive compilation and overview of gridded datasets (precipitation, air temperature, humidity, wind speed, solar radiation) and considerations for historical climate product selection criteria for hydrologic modeling and analyses based on a review and synthesis of previous studies conducting dataset intercomparisons. All datasets summarized here span at least the conterminous US (CONUS), and many are continental or global in extent. Gridded datasets built on ground-based observations (G; n= 20), satellite imagery (S; n= 20), and/or reanalysis products (R; n= 23) are compiled and described, with focus on the characteristics that hydrologic investigators may find useful in discerning acceptable datasets (variables, coverage, resolution, accessibility, and latency). We provide best-available-science recommendations for dataset selection based on a thorough review, interpretation, and synthesis of 29 recent studies (past 10 years) that compared the performance of various gridded climate datasets for hydrologic analyses. No single best source of gridded climate data exists, but we identified several common themes that may help guide dataset selection in future studies: Gridded daily temperature datasets improved when derived over regions with greater station density.Similarly, gridded daily precipitation data were more accurate when derived over regions with higher-density station data, when used in spatially less-complex terrain, and when corrected using ground-based data.In mountainous regions and humid regions, R precipitation datasets generally performed better than G when underlying data had a low station density, but there was no difference for higher station densities.G datasets were generally more accurate in representing precipitation and temperature data than S or R datasets, although this did not always translate into better streamflow modeling. We conclude that hydrologic analyses would benefit from guided dataset selection by investigators, including justification for selecting a specific dataset, and improved gridded datasets that retain dependencies among climate variables and better represent small-scale spatial variability in climate variables in complex topography. Based on this study, the authors' overall recommendations to hydrologic modelers are to select the gridded dataset (from Tables 1, 2, and 3) (a) with spatial and temporal resolutions that match modeling scales, (b) that are primarily (G) or secondarily (SG and RG) derived from ground-based observations, (c) with sufficient spatial and temporal coverage for the analysis, (d) with adequate latency for analysis objectives, and (e) that includes all climate variables of interest (so as to better represent interdependencies).
Author Mankin, Kyle R.
Green, Timothy R.
Mehan, Sushant
Barnard, David M.
Author_xml – sequence: 1
  givenname: Kyle R.
  surname: Mankin
  fullname: Mankin, Kyle R.
– sequence: 2
  givenname: Sushant
  orcidid: 0000-0002-1565-9591
  surname: Mehan
  fullname: Mehan, Sushant
– sequence: 3
  givenname: Timothy R.
  surname: Green
  fullname: Green, Timothy R.
– sequence: 4
  givenname: David M.
  surname: Barnard
  fullname: Barnard, David M.
BookMark eNp1Uk1r3DAQNSWF5uucq6CXHupGliVZPpbQj0CgUNKzGEtjrxattZXkLfuv-hMrZ0MpgV400ui9N5rRu6jO5jBjVd009INoen67wZRq1tdK1Iwy8ao6byTt6q5v1dk_-zfVRUpbSplSkp1Xv7_jweEvEkYyRWctWmK820FGso_BLiYnArMleYMukiUhcTPZHG0MPkzOgC-34I8JE4l4QPCJhANGD_v0nkxP6zOdzFjExxAJkF2ISMKwRZPdAQnsSy0wG5IDSejX7DwVkEW_Esx6spAhYU5X1euxVMHr53hZ_fj86fHua_3w7cv93ceHGnjLcs2t5XZE1Skz8I5ZhkoCHyxtbdsZMzSjtGzkrOk6wxW2VIBElJJL0w3W0Payuj_p2gBbvY9lJvGoAzj9lAhx0hCzMx61ZAobxc3QU8V7SaEfQfBGiUF0XMq-aL07aZU2fy6Yst65ZNB7mDEsSbds_Q8mhCzQty-g27DEMuKCakTLqRRiFbw9oUwMKUUc_z6woXp1g17doFmvldCrGwpDvGAYlyG7MOcIzv-X9wf6278m
CitedBy_id crossref_primary_10_3390_atmos16020229
crossref_primary_10_3390_app15126785
crossref_primary_10_1007_s10346_025_02599_4
crossref_primary_10_3390_su17177901
crossref_primary_10_1016_j_ejrh_2025_102562
Cites_doi 10.3390/atmos8030052
10.1002/qj.828
10.2151/jmsj.2016-015
10.1016/j.jhydrol.2017.03.008
10.1002/qj.3803
10.1175/2010BAMS3001.1
10.1016/j.ejrh.2022.101135
10.1175/JCLI-D-16-0720.1
10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
10.1017/CBO9780511535772
10.1016/j.jhydrol.2013.11.049
10.1002/15-1061
10.1002/joc.1688
10.1175/JHM-D-17-0018.1
10.1175/JHM-D-15-0190.1
10.1016/j.eja.2016.10.013
10.1016/j.rser.2018.03.003
10.1175/JCLI-D-16-0758.1
10.1175/JAM2173.1
10.1016/j.jhydrol.2016.02.054
10.1175/JHM-D-16-0168.1
10.1002/qj.776
10.1007/978-3-030-24568-9_19
10.1175/JHM-D-14-0015.1
10.1002/ecs2.3451
10.3390/atmos13010143
10.1002/2017JD026613
10.1175/JCLI-D-12-00823.1
10.1002/2014JD021489
10.3390/w12102751
10.1002/2013JD020130
10.3390/atmos11111252
10.1175/BAMS-84-2-195
10.1175/JCLI3790.1
10.1016/j.jhydrol.2016.03.063
10.5194/hess-21-589-2017
10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2
10.1016/j.solener.2022.01.004
10.1175/JHM560.1
10.1029/2007JD009132
10.1175/2011JHM1369.1
10.1002/joc.3413
10.5194/hess-24-5379-2020
10.1371/journal.pone.0112725
10.1038/s41597-021-00973-0
10.1016/j.agwat.2020.106376
10.5194/hess-21-4347-2017
10.1175/JCLI-D-11-00015.1
10.1175/JCLI-D-23-0123.1
10.1007/s13143-019-00161-6
10.5194/piahs-374-29-2016
10.1175/JTECH-D-22-0024.1
10.5194/essd-13-1531-2021
10.2151/jmsj.87A.137
10.3390/hydrology4040053
10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
10.1016/j.envsoft.2016.06.014
10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2
10.1175/JHM583.1
10.1016/j.agrformet.2016.11.008
10.5194/hess-26-2245-2022
10.1109/TGRS.2007.895337
10.5194/essd-12-3469-2020
10.1175/JHM-D-19-0113.1
10.5194/essd-6-49-2014
10.23919/URSIAP-RASC.2019.8738594
10.1073/pnas.1312330110
10.1175/BAMS-D-13-00068.1
10.1002/2017RG000574
10.1002/2014WR015638
10.1002/hyp.5806
10.1038/sdata.2015.66
10.1175/JHM-D-15-0138.1
10.1002/joc.4127
10.2151/jmsj.2015-001
10.3389/fenvs.2022.905774
10.5194/hess-22-989-2018
10.1016/j.atmosres.2018.02.022
10.5194/hess-21-6201-2017
10.1175/BAMS-88-1-47
10.1029/2018MS001273
10.5194/essd-13-3337-2021
10.1175/JCLI-D-12-00508.1
10.1175/BAMS-D-17-0138.1
10.1175/BAMS-D-21-0326.1
10.1175/JTECH-D-19-0114.1
10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
10.1029/2010GM000974
10.5194/hess-20-1069-2016
10.1111/1752-1688.12484
10.1038/s41597-020-0453-3
10.1175/JHM-D-16-0088.1
10.1007/978-3-030-24568-9_20
10.1175/BAMS-85-3-381
10.1016/j.rse.2017.07.021
10.1016/j.ejrh.2023.101409
10.1002/2017WR021633
10.1029/2011JD016051
10.1007/s00382-016-3327-9
10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
10.1111/1752-1688.12819
10.1007/978-3-540-75997-3_532
10.1175/JCLI-D-11-00004.1
10.1175/JCLI-D-15-0556.1
10.3390/rs14163860
10.5194/hess-24-2527-2020
10.1080/02757259409532268
10.1175/BAMS-87-3-343
10.1016/j.jhydrol.2020.124673
10.1029/2011JD016048
10.1016/j.jhydrol.2019.124076
10.1175/WAF-D-10-05037.1
10.1175/BAMS-D-13-00164.1
ContentType Journal Article
Copyright 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QH
7TG
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
KL.
KR7
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
7S9
L.6
DOA
DOI 10.5194/hess-29-85-2025
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Database
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1607-7938
EndPage 108
ExternalDocumentID oai_doaj_org_article_628e184cb9084960a9fa54185b574669
10_5194_hess_29_85_2025
GroupedDBID 29I
2WC
5GY
5VS
7XC
8CJ
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABJCF
ABUWG
ACGFO
ACIWK
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BANNL
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1J
D1K
E3Z
EBS
ECGQY
EDH
EJD
GROUPED_DOAJ
GX1
H13
HCIFZ
IAO
IEA
IEP
IGS
ISR
ITC
K6-
KQ8
L6V
L8X
LK5
M7R
M7S
OK1
OVT
P2P
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
RKB
RNS
TR2
XSB
~02
~KM
7QH
7TG
7UA
8FD
AZQEC
C1K
DWQXO
F1W
FR3
GNUQQ
H96
KL.
KR7
L.G
PKEHL
PQEST
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-a432t-4dd4dfe878cb472d2e86a4bd03d37ccb1f6d2f42177c48e305a6ee6646c7bdc03
IEDL.DBID M7S
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001393155700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1607-7938
1027-5606
IngestDate Fri Oct 03 12:32:56 EDT 2025
Fri Sep 05 17:16:30 EDT 2025
Fri Jul 25 12:24:43 EDT 2025
Sat Nov 29 05:02:00 EST 2025
Tue Nov 18 22:29:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a432t-4dd4dfe878cb472d2e86a4bd03d37ccb1f6d2f42177c48e305a6ee6646c7bdc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1565-9591
OpenAccessLink https://www.proquest.com/docview/3153406559?pq-origsite=%requestingapplication%
PQID 3153406559
PQPubID 105724
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_628e184cb9084960a9fa54185b574669
proquest_miscellaneous_3200282556
proquest_journals_3153406559
crossref_primary_10_5194_hess_29_85_2025
crossref_citationtrail_10_5194_hess_29_85_2025
PublicationCentury 2000
PublicationDate 2025-01-10
PublicationDateYYYYMMDD 2025-01-10
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-10
  day: 10
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Hydrology and earth system sciences
PublicationYear 2025
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref66
ref113
ref65
ref114
ref60
ref62
ref120
ref61
References_xml – ident: ref92
  doi: 10.3390/atmos8030052
– ident: ref21
  doi: 10.1002/qj.828
– ident: ref37
  doi: 10.2151/jmsj.2016-015
– ident: ref39
  doi: 10.1016/j.jhydrol.2017.03.008
– ident: ref41
  doi: 10.1002/qj.3803
– ident: ref88
  doi: 10.1175/2010BAMS3001.1
– ident: ref3
  doi: 10.1016/j.ejrh.2022.101135
– ident: ref84
  doi: 10.1175/JCLI-D-16-0720.1
– ident: ref53
  doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
– ident: ref99
  doi: 10.1017/CBO9780511535772
– ident: ref71
  doi: 10.1016/j.jhydrol.2013.11.049
– ident: ref10
  doi: 10.1002/15-1061
– ident: ref19
  doi: 10.1002/joc.1688
– ident: ref13
– ident: ref81
  doi: 10.1175/JHM-D-17-0018.1
– ident: ref65
– ident: ref62
  doi: 10.1175/JHM-D-15-0190.1
– ident: ref73
  doi: 10.1016/j.eja.2016.10.013
– ident: ref93
  doi: 10.1016/j.rser.2018.03.003
– ident: ref33
  doi: 10.1175/JCLI-D-16-0758.1
– ident: ref43
  doi: 10.1175/JAM2173.1
– ident: ref101
  doi: 10.1016/j.jhydrol.2016.02.054
– ident: ref117
  doi: 10.1175/JHM-D-16-0168.1
– ident: ref18
  doi: 10.1002/qj.776
– ident: ref47
  doi: 10.1007/978-3-030-24568-9_19
– ident: ref68
  doi: 10.1175/JHM-D-14-0015.1
– ident: ref105
  doi: 10.1002/ecs2.3451
– ident: ref36
  doi: 10.3390/atmos13010143
– ident: ref52
  doi: 10.1002/2017JD026613
– ident: ref89
  doi: 10.1175/JCLI-D-12-00823.1
– ident: ref15
  doi: 10.1002/2014JD021489
– ident: ref78
  doi: 10.3390/w12102751
– ident: ref51
  doi: 10.1002/2013JD020130
– ident: ref94
  doi: 10.3390/atmos11111252
– ident: ref34
  doi: 10.1175/BAMS-84-2-195
– ident: ref95
  doi: 10.1175/JCLI3790.1
– ident: ref26
  doi: 10.1016/j.jhydrol.2016.03.063
– ident: ref7
  doi: 10.5194/hess-21-589-2017
– ident: ref66
  doi: 10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2
– ident: ref16
  doi: 10.1016/j.solener.2022.01.004
– ident: ref46
  doi: 10.1175/JHM560.1
– ident: ref17
  doi: 10.1029/2007JD009132
– ident: ref110
  doi: 10.1175/2011JHM1369.1
– ident: ref1
  doi: 10.1002/joc.3413
– ident: ref22
  doi: 10.5194/hess-24-5379-2020
– ident: ref118
  doi: 10.1371/journal.pone.0112725
– ident: ref106
  doi: 10.1038/s41597-021-00973-0
– ident: ref14
  doi: 10.1016/j.agwat.2020.106376
– ident: ref63
  doi: 10.5194/hess-21-4347-2017
– ident: ref85
  doi: 10.1175/JCLI-D-11-00015.1
– ident: ref49
  doi: 10.1175/JCLI-D-23-0123.1
– ident: ref77
  doi: 10.1007/s13143-019-00161-6
– ident: ref91
  doi: 10.5194/piahs-374-29-2016
– ident: ref24
  doi: 10.1175/JTECH-D-22-0024.1
– ident: ref11
  doi: 10.5194/essd-13-1531-2021
– ident: ref107
  doi: 10.2151/jmsj.87A.137
– ident: ref31
  doi: 10.3390/hydrology4040053
– ident: ref115
  doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
– ident: ref35
  doi: 10.1016/j.envsoft.2016.06.014
– ident: ref2
  doi: 10.1175/1520-0477(2001)082<1377:IOGPPT>2.3.CO;2
– ident: ref116
  doi: 10.1175/JHM583.1
– ident: ref112
– ident: ref5
  doi: 10.1016/j.agrformet.2016.11.008
– ident: ref96
  doi: 10.5194/hess-26-2245-2022
– ident: ref56
  doi: 10.1109/TGRS.2007.895337
– ident: ref87
  doi: 10.5194/essd-12-3469-2020
– ident: ref64
  doi: 10.1175/JHM-D-19-0113.1
– ident: ref90
  doi: 10.5194/essd-6-49-2014
– ident: ref108
  doi: 10.23919/URSIAP-RASC.2019.8738594
– ident: ref109
  doi: 10.1073/pnas.1312330110
– ident: ref4
  doi: 10.1175/BAMS-D-13-00068.1
– ident: ref100
  doi: 10.1002/2017RG000574
– ident: ref111
  doi: 10.1002/2014WR015638
– ident: ref29
  doi: 10.1002/hyp.5806
– ident: ref30
  doi: 10.1038/sdata.2015.66
– ident: ref27
  doi: 10.1175/JHM-D-15-0138.1
– ident: ref76
  doi: 10.1002/joc.4127
– ident: ref40
– ident: ref54
  doi: 10.2151/jmsj.2015-001
– ident: ref69
  doi: 10.3389/fenvs.2022.905774
– ident: ref75
– ident: ref12
  doi: 10.5194/hess-22-989-2018
– ident: ref120
  doi: 10.1016/j.atmosres.2018.02.022
– ident: ref8
  doi: 10.5194/hess-21-6201-2017
– ident: ref25
  doi: 10.1175/BAMS-88-1-47
– ident: ref59
  doi: 10.1029/2018MS001273
– ident: ref103
  doi: 10.5194/essd-13-3337-2021
– ident: ref61
  doi: 10.1175/JCLI-D-12-00508.1
– ident: ref9
  doi: 10.1175/BAMS-D-17-0138.1
– ident: ref82
  doi: 10.1175/BAMS-D-21-0326.1
– ident: ref102
  doi: 10.1175/JTECH-D-19-0114.1
– ident: ref50
  doi: 10.2151/jmsj.87A.137
– ident: ref98
  doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
– ident: ref32
  doi: 10.1029/2010GM000974
– ident: ref70
  doi: 10.5194/hess-20-1069-2016
– ident: ref80
  doi: 10.1111/1752-1688.12484
– ident: ref38
  doi: 10.1038/s41597-020-0453-3
– ident: ref28
  doi: 10.1175/JHM-D-16-0088.1
– ident: ref57
  doi: 10.1007/978-3-030-24568-9_20
– ident: ref86
  doi: 10.1175/BAMS-85-3-381
– ident: ref42
  doi: 10.1016/j.rse.2017.07.021
– ident: ref55
  doi: 10.1016/j.ejrh.2023.101409
– ident: ref58
  doi: 10.1002/2017WR021633
– ident: ref48
– ident: ref114
  doi: 10.1029/2011JD016051
– ident: ref60
  doi: 10.1007/s00382-016-3327-9
– ident: ref45
  doi: 10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
– ident: ref74
  doi: 10.1111/1752-1688.12819
– ident: ref119
  doi: 10.1007/978-3-540-75997-3_532
– ident: ref20
  doi: 10.1175/JCLI-D-11-00004.1
– ident: ref79
  doi: 10.1175/JCLI-D-15-0556.1
– ident: ref83
  doi: 10.3390/rs14163860
– ident: ref104
  doi: 10.5194/hess-24-2527-2020
– ident: ref6
  doi: 10.1080/02757259409532268
– ident: ref72
  doi: 10.1175/BAMS-87-3-343
– ident: ref97
  doi: 10.1016/j.jhydrol.2020.124673
– ident: ref113
  doi: 10.1029/2011JD016048
– ident: ref67
  doi: 10.1016/j.jhydrol.2019.124076
– ident: ref23
  doi: 10.1175/WAF-D-10-05037.1
– ident: ref44
  doi: 10.1175/BAMS-D-13-00164.1
SSID ssj0028862
Score 2.468555
SecondaryResourceType review_article
Snippet Climate forcing data accuracy drives performance of hydrologic models and analyses, yet each investigator needs to select from among the numerous gridded...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 85
SubjectTerms Air temperature
atmospheric precipitation
climate
Climate change
Climate models
Climate variability
Climatic analysis
Climatic data
Complex variables
Daily precipitation
Daily temperatures
Data analysis
data quality
Datasets
Density
Earth system science
Ground-based observation
Humidity
Hydrologic analysis
Hydrologic data
Hydrologic models
Hydrology
landscapes
Latency
meteorological data
Modelling
Mountain regions
Mountainous areas
mountains
Precipitation
Precipitation data
Radiative forcing
remote sensing
Satellite imagery
Satellite observation
Solar radiation
Spatial variability
Spatial variations
Stream discharge
Stream flow
Synthesis
Temperature data
topography
Variables
Wind speed
SummonAdditionalLinks – databaseName: Copernicus Publications
  dbid: RKB
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yCHrxW5x1lSd48GDcmTRN0qOKiwdZRBT2VvLxujMytMO0I-x_5Z_oe01nWBDxoJdCmzxo-5L3kbz8fkK8NNoilkUlF2iV1D5WMqAtpPEF8jq_982Irv_Jnp-7i4vq8zWqL64Jy_DA-cedGuWQspAYqrnTFG77qvElI66E0mpj-OgeDUPmLvjCHG5TquWcyfucykry6SaD-lC0ok-XZEGkqqQraYQwQ_Y1fzTC9v9mlUdXc3b3H17ynrgzxZfwNovcFzewfSBuTVTny6uH4mfeDYCugcst44ckiOsVxa0Im4z-2oNvE4w7CLDrEVYtLK_Sdm8lqZVxTLAHRn-i0QtcBbr2m_41XI7XSRxa8oxAQTF44HJe6ML3bF5hj2QOQwf9yMRDHhRGVh4WiHzHtas9Dv0j8e3sw9f3H-VE2yC9LtQgdUo6Neisi0FblRQ643VI8yIVNsawaExSjaZcyEbtkAyON4jGaBNtSHFePBZHbdfiEwHJOU8ZoQpORR0ihmh04hCFpAKaaibe7JVXxwnTnKk11jXlNqztmrVdq6p2Zc3anolXB4FNhvP4c9d3rOdDN8bhHh-Q4utJ8fXfFD8TJ_uxVE_Goa8L8jIUR1EuNxMvDs00rXmvxrfY7aiPyseKS3P8P97jqbjN38RrR4v5iTgatjt8Jm7GH8Oq3z4f584v-CQcZg
  priority: 102
  providerName: Copernicus Gesellschaft
– databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nq9QwEA_yEPQifuLqU0bw4MH4dtM0SY8qPjzIw4PCu5V8TN-uLO2y7Qrvv_JPdCZtlwciXrwU2iTQdiYzv0kmvxHitdEWsSwquUKrpPaxkgFtIY0vkNf5vW8yu_4Xe3HhLi-rrzdKfXFO2EgPPP64M6McUhQSQ7V0muC2rxpfMuNKKK02Jh_dI9QzB1NTqOWcGfc5lZXk081I6kNoRZ-tyYJIVUlXkoZwhewb_ijT9v9hlbOrOb8v7k0YEd6P7_ZA3ML2obgzlStfXz8Sv8YVfegauNozB0iCuN0Q9kTYjQyuPfg2Qd4FgEOPsGlhfZ32s6WjVuYiwR6YwYk0EDiTc-t3_Vu4ytdpOLTk3YCALXjglFzowo_RRMLMRg5DB32upkNeEHJlHR4Q-Y7zT3sc-sfi-_mnbx8_y6n0gvS6UIPUKenUoLMuBm1VUuiM1yEti1TYGMOqMUk1muIZG7VDMhreIBqjTbQhxWXxRJy0XYtPBSTnPEV1KjgVdYgYotGJYQaNCmiqhXg3C6COEy85l8fY1hSfsMRqllitqtqVNUtsId4cB-xGSo6_d_3AEj12Yy7t_IA0rJ40rP6Xhi3E6awP9TTB-7ogT0FYiOKxhXh1bKapyfstvsXuQH3UeDS4NM_-x3s8F3f5m3j9Z7U8FSfD_oAvxO34c9j0-5dZ_38D5VwLAA
  priority: 102
  providerName: Directory of Open Access Journals
Title Review of gridded climate products and their use in hydrological analyses reveals overlaps, gaps, and the need for a more objective approach to selecting model forcing datasets
URI https://www.proquest.com/docview/3153406559
https://www.proquest.com/docview/3200282556
https://doaj.org/article/628e184cb9084960a9fa54185b574669
Volume 29
WOSCitedRecordID wos001393155700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAGF
  databaseName: Copernicus Publications
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: RKB
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://publications.copernicus.org/open-access_journals/open_access_journals_a_z.html
  providerName: Copernicus Gesellschaft
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: DOA
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: BFMQW
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: PCBAR
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: M7S
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database (subscripiton)
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: PATMY
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: BENPR
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1607-7938
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0028862
  issn: 1607-7938
  databaseCode: PIMPY
  dateStart: 20090601
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RFgkuvCsCJRokDhwwTdbr3fUJNagVCBpFpUjlZO3LSVBkhzhB6r_iJzKzdgISggsXr7wPa6Wdnbe_YeyFFCqELM2TYVA8EcbliQ0qTaRJA_n5jSkjuv5HNR7rq6t80jncmi6tcssTI6P2tSMf-XGKVxOFDyrAb5bfEqoaRdHVroTGHjsglAQeU_c-7QwurWUb7eQqQckuW2gf1FnE8Qz5SMLzRGdIJ1Qn-zepFMH7_-DNUeCc3f3frd5jdzpVE05a2rjPboTqAbvVVT2fXT9kP9rAANQlTFcEJeLBLeaowgZYtkCwDZjKQwwmwKYJMK9gdu1XW4aJowRpEhogICgkZKCE0IVZNq9gGp_dcqhQSALqx2CAMnuhtl9bTgtbUHNY19DEojwoTCEW6KEFjt4ojbUJ6-YR-3x2evn2XdJVcEiMSPk6Ed4LXwattLNCcc-DlkZYP0h9qpyzw1J6Xgo0i5QTOiDvMTIEKYV0yno3SA_ZflVX4TEDr7VB45BbzZ2wLlgnhSdtBVfZIPMee709wcJ18OZUZWNRoJlDR17QkRc8L3RW0JH32MvdgmWL7PH3qSMiid00guSOHfVqWnQ3vJBcBzSXnc0HWqBdaPLSZAQNZDMlJG3waEstRccnmuIXqfTY890w3nAK25gq1Bucw9s_jDP55N-feMpu027JQTQcHLH99WoTnrGb7vt63qz67GB0Op5c9KPXoR8vCvZNTi7Pv1D7_nyC7d7Fh9FPmqEhog
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF6VFKlceCNSCgwSIA6YJuv1en3gQIGoVdMIpCJ6c_flJFVkhzgB5U8hfiIzfgQkBLceuFiKvWtZzrcz3-yMv2HsqRSx91GYBH0f80BomwTGx2Egdehpn1_rrFLXH8ajkTo7Sz5sse_ttzBUVtnaxMpQu8LSHvl-iEsTnQ8S4KaC8tivv2F8Vr4-eod_5jPOB-9P3x4GTQuBQIuQLwPhnHCZV7GyRsTcca-kFsb1QhfG1pp-Jh3PBPLy2ArlEfxaei-lkDY2zvZCvO_z-ZeAulRRNrdp2XGFbSuZhKLDtg8GJx8_b0I8pWSdX-VxgFxC1mJCyJLE_gQtV8CTQEWITOrM_ZsfrNoF_OENKhc3uPG_vZyb7HpDpuFNjf5bbMvnt9lO09d9sr7DftSpDygyGC9ILMWBnU2RpHuY11K3JejcQZUugVXpYZrDZO0WrUvAqyTa4ksgqStcqkAlrzM9L1_CuDo20yFHGgAYAYAGql2GwlzUvgRa2XZYFlBWbYeQLkDVgogmWPpFhbqlX5Z32adLeYf3WCcvcn-fgVNKY_jLjeJWGOuNlcIRH8NZxsuky161iEltI-BOfURmKQZyBLGUIJbyJFVRShDrshebCfNau-TvQw8IgpthJDpenSgW47SxYankyveVsCbpKYGRr04yHZH4kYliIekB91p0po0lLNNf0OyyJ5vLaMMoMaVzX6xwDK-_oY7k7r9v8ZjtHJ6eDNPh0ej4AbtGT07bYf3eHussFyv_kF21X5fTcvGoWZjAzi97BfwE4GV67A
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bi9NAFB7Wrqgv3mWrqx5BwQdj28lkMnkQ2YvFZZdSRGHf4tzSVkrSbVql_8pnf53n5FIF0bd98CWQZCYMyXduc06-w9hzKWLvozAJBj7mgdA2CYyPw0Dq0NM-v9ZZxa5_Fo9G6vw8Ge-wH-2_MFRW2erESlG7wtIeeS9E0UTjgw5wL2vKIsbHw7eLi4A6SFGmtW2nUUPk1G--YfhWvjk5xm_9gvPhu49H74Omw0CgRchXgXBOuMyrWFkjYu64V1IL4_qhC2NrzSCTjmcC3fbYCuVRNrT0XkohbWyc7Yf43CtsV0mUmw7bHR8dHnzYhntKyTrXyuMA_QpZEwuhxyR6U9RiAU8CFSFKqUv3bzaxah3wh2WozN3w1v_8om6zm42TDQe1VNxhOz6_y643_d6nm3vse50SgSKDyZJIVBzY-Qyddw-LmgK3BJ07qNIosC49zHKYbtyyNRV4l8hcfAlEgYUiDFQKO9eL8hVMqmMzHXJ0DwAjA9BANc1QmC-1jYGWzh1WBZRVOyJ0I6BqTUQTLJ1RAW_pV-V99ulSXtgD1smL3O8xcEppDIu5UdwKY72xUjjy03CW8TLpstctelLbELtTf5F5igEewS0luKU8SVWUEty67OV2wqLmNPn70EOC43YYkZFXF4rlJG10Wyq58gMlrEn6SmBErJNMR0SKZKJYSFrgfovUtNGQZfoLpl32bHsbdRslrHTuizWO4fW_1ZF8-O9HPGXXEOPp2cno9BG7QQunXbJBf591Vsu1f8yu2q-rWbl80sgosM-XjfafvomDeg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+of+gridded+climate+products+and+their+use+in+hydrological+analyses+reveals+overlaps%2C+gaps%2C+and+the+need+for+a+more+objective+approach+to+selecting+model+forcing+datasets&rft.jtitle=Hydrology+and+earth+system+sciences&rft.au=Mankin%2C+Kyle+R&rft.au=Mehan%2C+Sushant&rft.au=Green%2C+Timothy+R&rft.au=Barnard%2C+David+M&rft.date=2025-01-10&rft.pub=Copernicus+GmbH&rft.issn=1027-5606&rft.eissn=1607-7938&rft.volume=29&rft.issue=1&rft.spage=85&rft.epage=108&rft_id=info:doi/10.5194%2Fhess-29-85-2025&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1607-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1607-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1607-7938&client=summon