Kernel smoothing principles, methods and applications

Comprehensive theoretical overview of kernel smoothing methods with motivating examples Kernel smoothing is a flexible nonparametric curve estimation method that is applicable when parametric descriptions of the data are not sufficiently adequate. This book explores theory and methods of kernel smoo...

Full description

Saved in:
Bibliographic Details
Main Author: Ghosh, Sucharita
Format: eBook Book
Language:English
Published: Hoboken N.J Wiley 2018
John Wiley & Sons
John Wiley & Sons, Incorporated
Wiley-Blackwell
Edition:1st ed.
Subjects:
ISBN:9781118456057, 1118890507, 111845605X, 9781118890509
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro -- Kernel Smoothing -- Contents -- Preface -- 1 Density Estimation -- 1.1 Introduction -- 1.1.1 Orthogonal polynomials -- 1.2 Histograms -- 1.2.1 Properties of the histogram -- 1.2.2 Frequency polygons -- 1.2.3 Histogram bin widths -- 1.2.4 Average shifted histogram -- 1.3 Kernel density estimation -- 1.3.1 Naive density estimator -- 1.3.2 Parzen-Rosenblatt kernel density estimator -- 1.3.3 Bandwidth selection -- 1.4 Multivariate density estimation -- 2 Nonparametric Regression -- 2.1 Introduction -- 2.1.1 Method of least squares -- 2.1.2 Influential observations -- 2.1.3 Nonparametric regression estimators -- 2.2 Priestley-Chao regression estimator -- 2.2.1 Weak consistency -- 2.3 Local polynomials -- 2.3.1 Equivalent kernels -- 2.4 Nadaraya-Watson regression estimator -- 2.5 Bandwidth selection -- 2.6 Further remarks -- 2.6.1 Gasser-Müller estimator -- 2.6.2 Smoothing splines -- 2.6.3 Kernel efficiency -- 3 Trend Estimation -- 3.1 Time series replicates -- 3.1.1 Model -- 3.1.2 Estimation of common trend function -- 3.1.3 Asymptotic properties -- 3.2 Irregularly spaced observations -- 3.2.1 Model -- 3.2.2 Derivatives, distribution function, and quantiles -- 3.2.3 Asymptotic properties -- 3.2.4 Bandwidth selection -- 3.3 Rapid change points -- 3.3.1 Model and definition of rapid change -- 3.3.2 Estimation and asymptotics -- 3.4 Nonparametric M-estimation of a trend function -- 3.4.1 Kernel-based M-estimation -- 3.4.2 Local polynomial M-estimation -- 4 Semiparametric Regression -- 4.1 Partial linear models with constant slope -- 4.2 Partial linear models with time-varying slope -- 4.2.1 Estimation -- 4.2.2 Assumptions -- 4.2.3 Asymptotics -- 5 Surface Estimation -- 5.1 Introduction -- 5.2 Gaussian subordination -- 5.3 Spatial correlations -- 5.4 Estimation of the mean and consistency -- 5.4.1 Asymptotics -- 5.5 Variance estimation
  • 5.6 Distribution function and spatial Gini index -- 5.6.1 Asymptotics -- References -- Author Index -- Subject Index -- EULA