Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis
Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce the susceptibili...
Uloženo v:
| Vydáno v: | Environmental science & technology Ročník 51; číslo 7; s. 4069 - 4080 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
04.04.2017
|
| Témata: | |
| ISSN: | 1520-5851 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce the susceptibility of disease-causing microorganisms to antibiotics in medical treatment. A high-throughput sequencing (HTS)-based metagenomic approach was used in the present study to investigate the variations of ARGs in full-scale biogas reactors and the correlations of ARGs with microbial communities and metal resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10
to 1.08 × 10
copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion for ARGs removal. ARGs in all the samples were composed of 175 ARG subtypes; however, only 7 ARG subtypes were shared by all the samples. Principal component analysis and canonical correspondence analysis clustered the samples into three groups (samples from manure-based mesophilic reactors, manure-based thermophilic reactors, and sludge-based mesophilic reactors), and substrate, temperature, and hydraulic retention time (HRT) as well as volatile fatty acids (VFAs) were identified as crucial environmental variables affecting the ARGs compositions. Procrustes analysis revealed microbial community composition was the determinant of ARGs composition in biogas reactors, and there was also a significant correlation between ARGs composition and MRGs composition. Network analysis further revealed the co-occurrence of ARGs with specific microorganisms and MRGs. |
|---|---|
| AbstractList | Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce the susceptibility of disease-causing microorganisms to antibiotics in medical treatment. A high-throughput sequencing (HTS)-based metagenomic approach was used in the present study to investigate the variations of ARGs in full-scale biogas reactors and the correlations of ARGs with microbial communities and metal resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10
to 1.08 × 10
copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion for ARGs removal. ARGs in all the samples were composed of 175 ARG subtypes; however, only 7 ARG subtypes were shared by all the samples. Principal component analysis and canonical correspondence analysis clustered the samples into three groups (samples from manure-based mesophilic reactors, manure-based thermophilic reactors, and sludge-based mesophilic reactors), and substrate, temperature, and hydraulic retention time (HRT) as well as volatile fatty acids (VFAs) were identified as crucial environmental variables affecting the ARGs compositions. Procrustes analysis revealed microbial community composition was the determinant of ARGs composition in biogas reactors, and there was also a significant correlation between ARGs composition and MRGs composition. Network analysis further revealed the co-occurrence of ARGs with specific microorganisms and MRGs. Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce the susceptibility of disease-causing microorganisms to antibiotics in medical treatment. A high-throughput sequencing (HTS)-based metagenomic approach was used in the present study to investigate the variations of ARGs in full-scale biogas reactors and the correlations of ARGs with microbial communities and metal resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10-3 to 1.08 × 10-1 copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion for ARGs removal. ARGs in all the samples were composed of 175 ARG subtypes; however, only 7 ARG subtypes were shared by all the samples. Principal component analysis and canonical correspondence analysis clustered the samples into three groups (samples from manure-based mesophilic reactors, manure-based thermophilic reactors, and sludge-based mesophilic reactors), and substrate, temperature, and hydraulic retention time (HRT) as well as volatile fatty acids (VFAs) were identified as crucial environmental variables affecting the ARGs compositions. Procrustes analysis revealed microbial community composition was the determinant of ARGs composition in biogas reactors, and there was also a significant correlation between ARGs composition and MRGs composition. Network analysis further revealed the co-occurrence of ARGs with specific microorganisms and MRGs. |
| Author | Zhang, Tong Luo, Gang Li, Li-Guan Angelidaki, Irini Li, Bing |
| Author_xml | – sequence: 1 givenname: Gang orcidid: 0000-0002-9711-9619 surname: Luo fullname: Luo, Gang organization: Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University , 200433, Shanghai, China – sequence: 2 givenname: Bing surname: Li fullname: Li, Bing organization: Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University , Shenzhen, Guangdong 518055, China – sequence: 3 givenname: Li-Guan surname: Li fullname: Li, Li-Guan organization: Environmental Biotechnology Laboratory, The University of Hong Kong , Hong Kong SAR, China – sequence: 4 givenname: Tong orcidid: 0000-0003-1148-4322 surname: Zhang fullname: Zhang, Tong organization: Environmental Biotechnology Laboratory, The University of Hong Kong , Hong Kong SAR, China – sequence: 5 givenname: Irini surname: Angelidaki fullname: Angelidaki, Irini organization: Department of Environmental Engineering, Technical University of Denmark , DK-2800, Kongens Lyngby, Denmark |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28272884$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkMtOwzAQRS0Eog9Ys0NeskmxnbhxlqWiBakVEo915TiTYuTYJXZA-R2-FFPKitWM5h4dje4IHVtnAaELSiaUMHotlZ-AD5NpSTgl5AgNKWck4YLTARp5_0YIYSkRp2jABMuZENkQfc1s0KV2QSv8CF77IK0CvAQLHktb4blrWzAyaGc9_tThFa-1al2ppYlZ03RWh35PriHE2z-JtnjRGZM8KWkA32i3lT5SUgXXejz72T8gRhUu-71jC9Y18Z2ZlaaPsjN0Ukvj4fwwx-hlcfs8v0tWD8v7-WyVyCylIVFCCQG0ohlNq4xDUUNR5RnPWclrViohaZFnU8YlsLSq62nKaC04yIhDUSg2Rle_3l3r3rvY5KbRXoEx0oLr_IaKXNBcFDyL6OUB7coGqs2u1Y1s-81fr-wbKHJ9uQ |
| CitedBy_id | crossref_primary_10_1007_s10653_021_01102_x crossref_primary_10_1016_j_jes_2021_11_030 crossref_primary_10_1007_s11104_023_06247_5 crossref_primary_10_1016_j_ecoenv_2018_09_076 crossref_primary_10_1016_j_scitotenv_2024_175760 crossref_primary_10_1016_j_jhazmat_2020_124855 crossref_primary_10_3390_agronomy11081652 crossref_primary_10_1016_j_ibiod_2025_105998 crossref_primary_10_1016_j_biortech_2020_124118 crossref_primary_10_1016_j_scitotenv_2022_160704 crossref_primary_10_1016_j_wasman_2021_10_029 crossref_primary_10_1039_C8EN00370J crossref_primary_10_3389_fmicb_2022_1018901 crossref_primary_10_1007_s11356_022_24257_1 crossref_primary_10_1016_j_biortech_2018_11_027 crossref_primary_10_1016_j_ecoenv_2021_111981 crossref_primary_10_1016_j_scitotenv_2020_143014 crossref_primary_10_1016_j_watres_2023_119614 crossref_primary_10_1016_j_scitotenv_2021_150737 crossref_primary_10_1128_aem_02317_24 crossref_primary_10_1016_j_envpol_2020_115265 crossref_primary_10_1016_j_biortech_2025_132037 crossref_primary_10_1016_j_envres_2022_113177 crossref_primary_10_1016_j_chemosphere_2019_01_139 crossref_primary_10_1186_s12866_023_03139_7 crossref_primary_10_7759_cureus_50318 crossref_primary_10_1016_j_biortech_2018_07_051 crossref_primary_10_1016_j_biortech_2017_07_153 crossref_primary_10_1016_j_biortech_2022_126929 crossref_primary_10_1016_j_jes_2020_04_015 crossref_primary_10_1016_j_scitotenv_2019_07_267 crossref_primary_10_1016_j_scitotenv_2023_162440 crossref_primary_10_1371_journal_pone_0219807 crossref_primary_10_1016_j_jhazmat_2017_10_031 crossref_primary_10_1016_j_envint_2019_105097 crossref_primary_10_1016_j_jhazmat_2023_131567 crossref_primary_10_1016_j_scitotenv_2020_139668 crossref_primary_10_1016_j_cej_2025_167188 crossref_primary_10_1007_s11356_022_22888_y crossref_primary_10_3389_fenvc_2023_1052697 crossref_primary_10_1007_s10646_020_02342_w crossref_primary_10_1016_j_envres_2022_114495 crossref_primary_10_1016_j_biortech_2024_131878 crossref_primary_10_1016_j_jhazmat_2020_124595 crossref_primary_10_1016_j_biortech_2023_129672 crossref_primary_10_1016_j_envpol_2022_119326 crossref_primary_10_1007_s00253_022_12129_0 crossref_primary_10_1016_j_jtice_2018_05_032 crossref_primary_10_1016_j_chemosphere_2019_02_167 crossref_primary_10_1016_j_jes_2025_04_024 crossref_primary_10_1016_j_jhazmat_2023_133319 crossref_primary_10_1016_j_envint_2019_03_062 crossref_primary_10_1016_j_ijbiomac_2019_05_165 crossref_primary_10_1016_j_jhazmat_2021_125484 crossref_primary_10_1016_j_jclepro_2021_125909 crossref_primary_10_3389_fbioe_2022_960476 crossref_primary_10_1016_j_jenvman_2024_120332 crossref_primary_10_1128_spectrum_00406_22 crossref_primary_10_3389_fenvs_2021_783676 crossref_primary_10_1016_j_jece_2024_115177 crossref_primary_10_1016_j_scitotenv_2020_144108 crossref_primary_10_1016_j_scitotenv_2022_157054 crossref_primary_10_1016_j_envpol_2018_09_096 crossref_primary_10_1016_j_envpol_2022_119859 crossref_primary_10_1016_j_envpol_2021_118062 crossref_primary_10_1016_j_envpol_2022_119174 crossref_primary_10_1016_j_envint_2019_105351 crossref_primary_10_1016_j_biortech_2024_131134 crossref_primary_10_1016_j_wasman_2021_03_011 crossref_primary_10_1016_j_jhazmat_2020_124010 crossref_primary_10_3390_membranes12070661 crossref_primary_10_1016_j_jclepro_2020_123504 crossref_primary_10_1016_j_jhazmat_2024_134581 crossref_primary_10_1016_j_aquaculture_2022_738247 crossref_primary_10_1016_j_scitotenv_2018_12_088 crossref_primary_10_1016_j_scitotenv_2021_146964 crossref_primary_10_1016_j_watres_2019_06_048 crossref_primary_10_1016_j_cej_2022_137564 crossref_primary_10_1016_j_envpol_2024_124851 crossref_primary_10_1051_e3sconf_202123301130 crossref_primary_10_1016_j_envint_2020_106158 crossref_primary_10_1016_j_envpol_2019_05_014 crossref_primary_10_1016_j_biortech_2021_125898 crossref_primary_10_1016_j_biortech_2020_123510 crossref_primary_10_1016_j_envint_2020_105458 crossref_primary_10_1016_j_jece_2023_110746 crossref_primary_10_3389_fmicb_2020_592592 crossref_primary_10_1016_j_ecoenv_2022_113844 crossref_primary_10_1016_j_scitotenv_2023_162772 crossref_primary_10_1016_j_envpol_2020_115589 crossref_primary_10_1016_j_envpol_2020_114651 crossref_primary_10_1016_j_watres_2018_01_073 crossref_primary_10_1016_j_envres_2024_120109 crossref_primary_10_1016_j_jenvman_2023_118037 crossref_primary_10_1016_j_biortech_2019_122654 crossref_primary_10_1016_j_biortech_2023_129983 crossref_primary_10_3390_fermentation9010062 crossref_primary_10_1007_s11356_022_24320_x crossref_primary_10_1016_j_scitotenv_2022_153521 crossref_primary_10_1016_j_scitotenv_2022_153120 crossref_primary_10_1016_j_biortech_2021_126474 crossref_primary_10_1111_1758_2229_13217 crossref_primary_10_1016_j_biortech_2020_123577 crossref_primary_10_1016_j_watres_2018_12_053 crossref_primary_10_1016_j_jhazmat_2024_136118 crossref_primary_10_1016_j_jenvman_2025_124187 crossref_primary_10_3389_fmicb_2021_660225 crossref_primary_10_1021_envhealth_4c00216 crossref_primary_10_1021_acsenvironau_4c00071 crossref_primary_10_1016_j_rser_2018_10_021 crossref_primary_10_1016_j_mimet_2024_106953 crossref_primary_10_1093_femsec_fiaa006 crossref_primary_10_1016_j_envint_2023_108394 crossref_primary_10_1016_j_jece_2025_117565 crossref_primary_10_3389_fgene_2020_563975 crossref_primary_10_1016_j_envint_2021_106694 crossref_primary_10_1016_j_scitotenv_2020_140759 crossref_primary_10_1088_1748_9326_ab7131 crossref_primary_10_1002_advs_202410990 crossref_primary_10_1016_j_scitotenv_2020_140001 crossref_primary_10_1016_j_envpol_2021_118156 crossref_primary_10_1186_s40168_019_0663_0 crossref_primary_10_1016_j_watres_2019_04_019 crossref_primary_10_1016_j_jhazmat_2019_121025 crossref_primary_10_1016_j_jes_2019_04_004 crossref_primary_10_1016_j_biteb_2023_101377 crossref_primary_10_1016_j_ecoenv_2019_05_005 crossref_primary_10_1016_j_scitotenv_2022_154556 crossref_primary_10_1007_s00248_021_01699_7 crossref_primary_10_1016_j_scitotenv_2024_170780 crossref_primary_10_1016_j_envint_2019_105156 crossref_primary_10_1016_j_envpol_2017_10_006 crossref_primary_10_3389_fmicb_2023_1227006 crossref_primary_10_1016_j_jhazmat_2022_129535 crossref_primary_10_1016_j_chemosphere_2018_07_100 crossref_primary_10_1016_j_envint_2019_104906 crossref_primary_10_1016_j_scitotenv_2021_148259 crossref_primary_10_1007_s00128_021_03144_4 crossref_primary_10_1007_s11356_021_13784_y crossref_primary_10_1016_j_geoderma_2020_114760 crossref_primary_10_1016_j_biortech_2021_124710 crossref_primary_10_1007_s11356_023_28823_z crossref_primary_10_1016_j_envint_2020_105625 crossref_primary_10_3390_antibiotics12121697 crossref_primary_10_1016_j_jhazmat_2022_130110 crossref_primary_10_1016_j_jhazmat_2023_132951 crossref_primary_10_1016_j_scitotenv_2023_163278 crossref_primary_10_1016_j_envpol_2018_07_063 crossref_primary_10_1016_j_chemosphere_2017_09_040 crossref_primary_10_3389_fmicb_2023_1155956 crossref_primary_10_1016_j_envpol_2019_113276 crossref_primary_10_1016_j_scitotenv_2024_173927 crossref_primary_10_1016_j_scitotenv_2019_03_063 crossref_primary_10_3390_ijerph15040708 crossref_primary_10_1016_j_watres_2018_01_063 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7U8 7X8 C1K JXQ |
| DOI | 10.1021/acs.est.6b05100 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed TOXLINE MEDLINE - Academic Environmental Sciences and Pollution Management Toxline |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) TOXLINE MEDLINE - Academic Environmental Sciences and Pollution Management |
| DatabaseTitleList | MEDLINE TOXLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1520-5851 |
| EndPage | 4080 |
| ExternalDocumentID | 28272884 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X ..I .DC .K2 3R3 4.4 4R4 53G 55A 5GY 5VS 6TJ 7~N 85S AABXI AAHBH ABJNI ABMVS ABOGM ABPPZ ABQRX ABUCX ACGFS ACGOD ACIWK ACJ ACPRK ACS ADHLV ADUKH AEESW AENEX AFEFF AFRAH AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CGR CS3 CUPRZ CUY CVF EBS ECM ED~ EIF EJD F5P GGK GNL IH9 JG~ LG6 MS~ MW2 NPM PQQKQ ROL RXW TN5 TWZ U5U UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW XZL YIN YZZ ZCA 7U8 7X8 ABBLG ABLBI C1K JXQ |
| ID | FETCH-LOGICAL-a431t-c8c88e1d1413d45e9fe9d74572b5f2bc8a1974625ae23dff6321f85ea13de99c2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 160 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398646500054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Wed Oct 01 14:18:18 EDT 2025 Wed Feb 19 02:43:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a431t-c8c88e1d1413d45e9fe9d74572b5f2bc8a1974625ae23dff6321f85ea13de99c2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1148-4322 0000-0002-9711-9619 |
| PMID | 28272884 |
| PQID | 1878178954 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1878178954 pubmed_primary_28272884 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-04 |
| PublicationDateYYYYMMDD | 2017-04-04 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-04 day: 04 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Environmental science & technology |
| PublicationTitleAlternate | Environ Sci Technol |
| PublicationYear | 2017 |
| SSID | ssj0002308 |
| Score | 2.584711 |
| Snippet | Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4069 |
| SubjectTerms | Anti-Bacterial Agents Biofuels Drug Resistance, Microbial - genetics Genes, Bacterial Metagenome Metals - pharmacology |
| Title | Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28272884 https://www.proquest.com/docview/1878178954 |
| Volume | 51 |
| WOSCitedRecordID | wos000398646500054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6-DnrwXa0vIniNNtlHkpNUUTzYIj6gt5LXSg_uqluF_h1_qTPbrRVEELzsLuxkCORLZibJfEPIUYhMooyXzCc8ZWDxWkw7y5kMgmdRJpTKKnb9a9ntql5P39QbbmV9rXKyJlYLtS8c7pGfcCUVl0on8enzC8OqUXi6WpfQmCXzEbgyiGrZm7KFg3utvuh8-Ilx5TGqTS0isfW7T1nZlsuV__ZqlSzXXiVtj2GwRmZCvk6WvnENrpPGxTSlDUTrOV1ukI92jnkjBTSlt6FEfxJ-UOSjLqnJPT3HAh71lTmK-7a0M6jom0BNnV8yHFWSnYCqfygZ5BQjXXYHeAj0bFA8mhKkxpV-aBu_39Ff9dSOKh1IHPsE3ZkwpmySh8uL-_MrVlduYAYckiFzyikVuOdgIn2cBJ0F7WWcSGGTTFinDIc4BkIvE0TksyyNABkqCQbEg9ZONMhcXuRhm9CUGxvpVAYX27jlrLZWSeHhJbz3MmqSw8nI9GFm4HGHyUPxVvanY9MkW-Ph7T-PKTz6EGhKwGG884fWu2RRoC2vbuzskfkM1oWwTxbc-3BQvh5UkINn96bzCX4q55k |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibiotic+Resistance+Genes+and+Correlations+with+Microbial+Community+and+Metal+Resistance+Genes+in+Full-Scale+Biogas+Reactors+As+Revealed+by+Metagenomic+Analysis&rft.jtitle=Environmental+science+%26+technology&rft.au=Luo%2C+Gang&rft.au=Li%2C+Bing&rft.au=Li%2C+Li-Guan&rft.au=Zhang%2C+Tong&rft.date=2017-04-04&rft.eissn=1520-5851&rft.volume=51&rft.issue=7&rft.spage=4069&rft.epage=4080&rft_id=info:doi/10.1021%2Facs.est.6b05100&rft.externalDBID=NO_FULL_TEXT |