Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis

Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce the susceptibili...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Environmental science & technology Ročník 51; číslo 7; s. 4069 - 4080
Hlavní autoři: Luo, Gang, Li, Bing, Li, Li-Guan, Zhang, Tong, Angelidaki, Irini
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 04.04.2017
Témata:
ISSN:1520-5851
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce the susceptibility of disease-causing microorganisms to antibiotics in medical treatment. A high-throughput sequencing (HTS)-based metagenomic approach was used in the present study to investigate the variations of ARGs in full-scale biogas reactors and the correlations of ARGs with microbial communities and metal resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10 to 1.08 × 10 copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion for ARGs removal. ARGs in all the samples were composed of 175 ARG subtypes; however, only 7 ARG subtypes were shared by all the samples. Principal component analysis and canonical correspondence analysis clustered the samples into three groups (samples from manure-based mesophilic reactors, manure-based thermophilic reactors, and sludge-based mesophilic reactors), and substrate, temperature, and hydraulic retention time (HRT) as well as volatile fatty acids (VFAs) were identified as crucial environmental variables affecting the ARGs compositions. Procrustes analysis revealed microbial community composition was the determinant of ARGs composition in biogas reactors, and there was also a significant correlation between ARGs composition and MRGs composition. Network analysis further revealed the co-occurrence of ARGs with specific microorganisms and MRGs.
AbstractList Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce the susceptibility of disease-causing microorganisms to antibiotics in medical treatment. A high-throughput sequencing (HTS)-based metagenomic approach was used in the present study to investigate the variations of ARGs in full-scale biogas reactors and the correlations of ARGs with microbial communities and metal resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10 to 1.08 × 10 copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion for ARGs removal. ARGs in all the samples were composed of 175 ARG subtypes; however, only 7 ARG subtypes were shared by all the samples. Principal component analysis and canonical correspondence analysis clustered the samples into three groups (samples from manure-based mesophilic reactors, manure-based thermophilic reactors, and sludge-based mesophilic reactors), and substrate, temperature, and hydraulic retention time (HRT) as well as volatile fatty acids (VFAs) were identified as crucial environmental variables affecting the ARGs compositions. Procrustes analysis revealed microbial community composition was the determinant of ARGs composition in biogas reactors, and there was also a significant correlation between ARGs composition and MRGs composition. Network analysis further revealed the co-occurrence of ARGs with specific microorganisms and MRGs.
Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce the susceptibility of disease-causing microorganisms to antibiotics in medical treatment. A high-throughput sequencing (HTS)-based metagenomic approach was used in the present study to investigate the variations of ARGs in full-scale biogas reactors and the correlations of ARGs with microbial communities and metal resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10-3 to 1.08 × 10-1 copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion for ARGs removal. ARGs in all the samples were composed of 175 ARG subtypes; however, only 7 ARG subtypes were shared by all the samples. Principal component analysis and canonical correspondence analysis clustered the samples into three groups (samples from manure-based mesophilic reactors, manure-based thermophilic reactors, and sludge-based mesophilic reactors), and substrate, temperature, and hydraulic retention time (HRT) as well as volatile fatty acids (VFAs) were identified as crucial environmental variables affecting the ARGs compositions. Procrustes analysis revealed microbial community composition was the determinant of ARGs composition in biogas reactors, and there was also a significant correlation between ARGs composition and MRGs composition. Network analysis further revealed the co-occurrence of ARGs with specific microorganisms and MRGs.
Author Zhang, Tong
Luo, Gang
Li, Li-Guan
Angelidaki, Irini
Li, Bing
Author_xml – sequence: 1
  givenname: Gang
  orcidid: 0000-0002-9711-9619
  surname: Luo
  fullname: Luo, Gang
  organization: Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University , 200433, Shanghai, China
– sequence: 2
  givenname: Bing
  surname: Li
  fullname: Li, Bing
  organization: Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University , Shenzhen, Guangdong 518055, China
– sequence: 3
  givenname: Li-Guan
  surname: Li
  fullname: Li, Li-Guan
  organization: Environmental Biotechnology Laboratory, The University of Hong Kong , Hong Kong SAR, China
– sequence: 4
  givenname: Tong
  orcidid: 0000-0003-1148-4322
  surname: Zhang
  fullname: Zhang, Tong
  organization: Environmental Biotechnology Laboratory, The University of Hong Kong , Hong Kong SAR, China
– sequence: 5
  givenname: Irini
  surname: Angelidaki
  fullname: Angelidaki, Irini
  organization: Department of Environmental Engineering, Technical University of Denmark , DK-2800, Kongens Lyngby, Denmark
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28272884$$D View this record in MEDLINE/PubMed
BookMark eNplkMtOwzAQRS0Eog9Ys0NeskmxnbhxlqWiBakVEo915TiTYuTYJXZA-R2-FFPKitWM5h4dje4IHVtnAaELSiaUMHotlZ-AD5NpSTgl5AgNKWck4YLTARp5_0YIYSkRp2jABMuZENkQfc1s0KV2QSv8CF77IK0CvAQLHktb4blrWzAyaGc9_tThFa-1al2ppYlZ03RWh35PriHE2z-JtnjRGZM8KWkA32i3lT5SUgXXejz72T8gRhUu-71jC9Y18Z2ZlaaPsjN0Ukvj4fwwx-hlcfs8v0tWD8v7-WyVyCylIVFCCQG0ohlNq4xDUUNR5RnPWclrViohaZFnU8YlsLSq62nKaC04yIhDUSg2Rle_3l3r3rvY5KbRXoEx0oLr_IaKXNBcFDyL6OUB7coGqs2u1Y1s-81fr-wbKHJ9uQ
CitedBy_id crossref_primary_10_1007_s10653_021_01102_x
crossref_primary_10_1016_j_jes_2021_11_030
crossref_primary_10_1007_s11104_023_06247_5
crossref_primary_10_1016_j_ecoenv_2018_09_076
crossref_primary_10_1016_j_scitotenv_2024_175760
crossref_primary_10_1016_j_jhazmat_2020_124855
crossref_primary_10_3390_agronomy11081652
crossref_primary_10_1016_j_ibiod_2025_105998
crossref_primary_10_1016_j_biortech_2020_124118
crossref_primary_10_1016_j_scitotenv_2022_160704
crossref_primary_10_1016_j_wasman_2021_10_029
crossref_primary_10_1039_C8EN00370J
crossref_primary_10_3389_fmicb_2022_1018901
crossref_primary_10_1007_s11356_022_24257_1
crossref_primary_10_1016_j_biortech_2018_11_027
crossref_primary_10_1016_j_ecoenv_2021_111981
crossref_primary_10_1016_j_scitotenv_2020_143014
crossref_primary_10_1016_j_watres_2023_119614
crossref_primary_10_1016_j_scitotenv_2021_150737
crossref_primary_10_1128_aem_02317_24
crossref_primary_10_1016_j_envpol_2020_115265
crossref_primary_10_1016_j_biortech_2025_132037
crossref_primary_10_1016_j_envres_2022_113177
crossref_primary_10_1016_j_chemosphere_2019_01_139
crossref_primary_10_1186_s12866_023_03139_7
crossref_primary_10_7759_cureus_50318
crossref_primary_10_1016_j_biortech_2018_07_051
crossref_primary_10_1016_j_biortech_2017_07_153
crossref_primary_10_1016_j_biortech_2022_126929
crossref_primary_10_1016_j_jes_2020_04_015
crossref_primary_10_1016_j_scitotenv_2019_07_267
crossref_primary_10_1016_j_scitotenv_2023_162440
crossref_primary_10_1371_journal_pone_0219807
crossref_primary_10_1016_j_jhazmat_2017_10_031
crossref_primary_10_1016_j_envint_2019_105097
crossref_primary_10_1016_j_jhazmat_2023_131567
crossref_primary_10_1016_j_scitotenv_2020_139668
crossref_primary_10_1016_j_cej_2025_167188
crossref_primary_10_1007_s11356_022_22888_y
crossref_primary_10_3389_fenvc_2023_1052697
crossref_primary_10_1007_s10646_020_02342_w
crossref_primary_10_1016_j_envres_2022_114495
crossref_primary_10_1016_j_biortech_2024_131878
crossref_primary_10_1016_j_jhazmat_2020_124595
crossref_primary_10_1016_j_biortech_2023_129672
crossref_primary_10_1016_j_envpol_2022_119326
crossref_primary_10_1007_s00253_022_12129_0
crossref_primary_10_1016_j_jtice_2018_05_032
crossref_primary_10_1016_j_chemosphere_2019_02_167
crossref_primary_10_1016_j_jes_2025_04_024
crossref_primary_10_1016_j_jhazmat_2023_133319
crossref_primary_10_1016_j_envint_2019_03_062
crossref_primary_10_1016_j_ijbiomac_2019_05_165
crossref_primary_10_1016_j_jhazmat_2021_125484
crossref_primary_10_1016_j_jclepro_2021_125909
crossref_primary_10_3389_fbioe_2022_960476
crossref_primary_10_1016_j_jenvman_2024_120332
crossref_primary_10_1128_spectrum_00406_22
crossref_primary_10_3389_fenvs_2021_783676
crossref_primary_10_1016_j_jece_2024_115177
crossref_primary_10_1016_j_scitotenv_2020_144108
crossref_primary_10_1016_j_scitotenv_2022_157054
crossref_primary_10_1016_j_envpol_2018_09_096
crossref_primary_10_1016_j_envpol_2022_119859
crossref_primary_10_1016_j_envpol_2021_118062
crossref_primary_10_1016_j_envpol_2022_119174
crossref_primary_10_1016_j_envint_2019_105351
crossref_primary_10_1016_j_biortech_2024_131134
crossref_primary_10_1016_j_wasman_2021_03_011
crossref_primary_10_1016_j_jhazmat_2020_124010
crossref_primary_10_3390_membranes12070661
crossref_primary_10_1016_j_jclepro_2020_123504
crossref_primary_10_1016_j_jhazmat_2024_134581
crossref_primary_10_1016_j_aquaculture_2022_738247
crossref_primary_10_1016_j_scitotenv_2018_12_088
crossref_primary_10_1016_j_scitotenv_2021_146964
crossref_primary_10_1016_j_watres_2019_06_048
crossref_primary_10_1016_j_cej_2022_137564
crossref_primary_10_1016_j_envpol_2024_124851
crossref_primary_10_1051_e3sconf_202123301130
crossref_primary_10_1016_j_envint_2020_106158
crossref_primary_10_1016_j_envpol_2019_05_014
crossref_primary_10_1016_j_biortech_2021_125898
crossref_primary_10_1016_j_biortech_2020_123510
crossref_primary_10_1016_j_envint_2020_105458
crossref_primary_10_1016_j_jece_2023_110746
crossref_primary_10_3389_fmicb_2020_592592
crossref_primary_10_1016_j_ecoenv_2022_113844
crossref_primary_10_1016_j_scitotenv_2023_162772
crossref_primary_10_1016_j_envpol_2020_115589
crossref_primary_10_1016_j_envpol_2020_114651
crossref_primary_10_1016_j_watres_2018_01_073
crossref_primary_10_1016_j_envres_2024_120109
crossref_primary_10_1016_j_jenvman_2023_118037
crossref_primary_10_1016_j_biortech_2019_122654
crossref_primary_10_1016_j_biortech_2023_129983
crossref_primary_10_3390_fermentation9010062
crossref_primary_10_1007_s11356_022_24320_x
crossref_primary_10_1016_j_scitotenv_2022_153521
crossref_primary_10_1016_j_scitotenv_2022_153120
crossref_primary_10_1016_j_biortech_2021_126474
crossref_primary_10_1111_1758_2229_13217
crossref_primary_10_1016_j_biortech_2020_123577
crossref_primary_10_1016_j_watres_2018_12_053
crossref_primary_10_1016_j_jhazmat_2024_136118
crossref_primary_10_1016_j_jenvman_2025_124187
crossref_primary_10_3389_fmicb_2021_660225
crossref_primary_10_1021_envhealth_4c00216
crossref_primary_10_1021_acsenvironau_4c00071
crossref_primary_10_1016_j_rser_2018_10_021
crossref_primary_10_1016_j_mimet_2024_106953
crossref_primary_10_1093_femsec_fiaa006
crossref_primary_10_1016_j_envint_2023_108394
crossref_primary_10_1016_j_jece_2025_117565
crossref_primary_10_3389_fgene_2020_563975
crossref_primary_10_1016_j_envint_2021_106694
crossref_primary_10_1016_j_scitotenv_2020_140759
crossref_primary_10_1088_1748_9326_ab7131
crossref_primary_10_1002_advs_202410990
crossref_primary_10_1016_j_scitotenv_2020_140001
crossref_primary_10_1016_j_envpol_2021_118156
crossref_primary_10_1186_s40168_019_0663_0
crossref_primary_10_1016_j_watres_2019_04_019
crossref_primary_10_1016_j_jhazmat_2019_121025
crossref_primary_10_1016_j_jes_2019_04_004
crossref_primary_10_1016_j_biteb_2023_101377
crossref_primary_10_1016_j_ecoenv_2019_05_005
crossref_primary_10_1016_j_scitotenv_2022_154556
crossref_primary_10_1007_s00248_021_01699_7
crossref_primary_10_1016_j_scitotenv_2024_170780
crossref_primary_10_1016_j_envint_2019_105156
crossref_primary_10_1016_j_envpol_2017_10_006
crossref_primary_10_3389_fmicb_2023_1227006
crossref_primary_10_1016_j_jhazmat_2022_129535
crossref_primary_10_1016_j_chemosphere_2018_07_100
crossref_primary_10_1016_j_envint_2019_104906
crossref_primary_10_1016_j_scitotenv_2021_148259
crossref_primary_10_1007_s00128_021_03144_4
crossref_primary_10_1007_s11356_021_13784_y
crossref_primary_10_1016_j_geoderma_2020_114760
crossref_primary_10_1016_j_biortech_2021_124710
crossref_primary_10_1007_s11356_023_28823_z
crossref_primary_10_1016_j_envint_2020_105625
crossref_primary_10_3390_antibiotics12121697
crossref_primary_10_1016_j_jhazmat_2022_130110
crossref_primary_10_1016_j_jhazmat_2023_132951
crossref_primary_10_1016_j_scitotenv_2023_163278
crossref_primary_10_1016_j_envpol_2018_07_063
crossref_primary_10_1016_j_chemosphere_2017_09_040
crossref_primary_10_3389_fmicb_2023_1155956
crossref_primary_10_1016_j_envpol_2019_113276
crossref_primary_10_1016_j_scitotenv_2024_173927
crossref_primary_10_1016_j_scitotenv_2019_03_063
crossref_primary_10_3390_ijerph15040708
crossref_primary_10_1016_j_watres_2018_01_063
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7U8
7X8
C1K
JXQ
DOI 10.1021/acs.est.6b05100
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
TOXLINE
MEDLINE - Academic
Environmental Sciences and Pollution Management
Toxline
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
TOXLINE
MEDLINE - Academic
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE
TOXLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1520-5851
EndPage 4080
ExternalDocumentID 28272884
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
..I
.DC
.K2
3R3
4.4
4R4
53G
55A
5GY
5VS
6TJ
7~N
85S
AABXI
AAHBH
ABJNI
ABMVS
ABOGM
ABPPZ
ABQRX
ABUCX
ACGFS
ACGOD
ACIWK
ACJ
ACPRK
ACS
ADHLV
ADUKH
AEESW
AENEX
AFEFF
AFRAH
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
BKOMP
CGR
CS3
CUPRZ
CUY
CVF
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH9
JG~
LG6
MS~
MW2
NPM
PQQKQ
ROL
RXW
TN5
TWZ
U5U
UHB
UI2
UKR
UPT
VF5
VG9
VQA
W1F
WH7
XSW
XZL
YIN
YZZ
ZCA
7U8
7X8
ABBLG
ABLBI
C1K
JXQ
ID FETCH-LOGICAL-a431t-c8c88e1d1413d45e9fe9d74572b5f2bc8a1974625ae23dff6321f85ea13de99c2
IEDL.DBID 7X8
ISICitedReferencesCount 160
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398646500054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
IngestDate Wed Oct 01 14:18:18 EDT 2025
Wed Feb 19 02:43:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a431t-c8c88e1d1413d45e9fe9d74572b5f2bc8a1974625ae23dff6321f85ea13de99c2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1148-4322
0000-0002-9711-9619
PMID 28272884
PQID 1878178954
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1878178954
pubmed_primary_28272884
PublicationCentury 2000
PublicationDate 2017-04-04
PublicationDateYYYYMMDD 2017-04-04
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-04
  day: 04
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Environmental science & technology
PublicationTitleAlternate Environ Sci Technol
PublicationYear 2017
SSID ssj0002308
Score 2.584711
Snippet Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 4069
SubjectTerms Anti-Bacterial Agents
Biofuels
Drug Resistance, Microbial - genetics
Genes, Bacterial
Metagenome
Metals - pharmacology
Title Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis
URI https://www.ncbi.nlm.nih.gov/pubmed/28272884
https://www.proquest.com/docview/1878178954
Volume 51
WOSCitedRecordID wos000398646500054&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA6-DnrwXa0vIniNNtlHkpNUUTzYIj6gt5LXSg_uqluF_h1_qTPbrRVEELzsLuxkCORLZibJfEPIUYhMooyXzCc8ZWDxWkw7y5kMgmdRJpTKKnb9a9ntql5P39QbbmV9rXKyJlYLtS8c7pGfcCUVl0on8enzC8OqUXi6WpfQmCXzEbgyiGrZm7KFg3utvuh8-Ilx5TGqTS0isfW7T1nZlsuV__ZqlSzXXiVtj2GwRmZCvk6WvnENrpPGxTSlDUTrOV1ukI92jnkjBTSlt6FEfxJ-UOSjLqnJPT3HAh71lTmK-7a0M6jom0BNnV8yHFWSnYCqfygZ5BQjXXYHeAj0bFA8mhKkxpV-aBu_39Ff9dSOKh1IHPsE3ZkwpmySh8uL-_MrVlduYAYckiFzyikVuOdgIn2cBJ0F7WWcSGGTTFinDIc4BkIvE0TksyyNABkqCQbEg9ZONMhcXuRhm9CUGxvpVAYX27jlrLZWSeHhJbz3MmqSw8nI9GFm4HGHyUPxVvanY9MkW-Ph7T-PKTz6EGhKwGG884fWu2RRoC2vbuzskfkM1oWwTxbc-3BQvh5UkINn96bzCX4q55k
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antibiotic+Resistance+Genes+and+Correlations+with+Microbial+Community+and+Metal+Resistance+Genes+in+Full-Scale+Biogas+Reactors+As+Revealed+by+Metagenomic+Analysis&rft.jtitle=Environmental+science+%26+technology&rft.au=Luo%2C+Gang&rft.au=Li%2C+Bing&rft.au=Li%2C+Li-Guan&rft.au=Zhang%2C+Tong&rft.date=2017-04-04&rft.eissn=1520-5851&rft.volume=51&rft.issue=7&rft.spage=4069&rft.epage=4080&rft_id=info:doi/10.1021%2Facs.est.6b05100&rft.externalDBID=NO_FULL_TEXT