Quantifying dynamic sensitivity of optimization algorithm parameters to improve hydrological model calibration

•A framework for dynamically quantifying algorithm parameter impacts is developed.•Interactions among parameters have significant influence on algorithm performance.•Reflection parameter of SCE-UA can be more influential than complex number. It is widely recognized that optimization algorithm parame...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) Vol. 533; pp. 213 - 223
Main Authors: Qi, Wei, Zhang, Chi, Fu, Guangtao, Zhou, Huicheng
Format: Journal Article
Language:English
Published: Elsevier B.V 01.02.2016
Subjects:
ISSN:0022-1694, 1879-2707
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •A framework for dynamically quantifying algorithm parameter impacts is developed.•Interactions among parameters have significant influence on algorithm performance.•Reflection parameter of SCE-UA can be more influential than complex number. It is widely recognized that optimization algorithm parameters have significant impacts on algorithm performance, but quantifying the influence is very complex and difficult due to high computational demands and dynamic nature of search parameters. The overall aim of this paper is to develop a global sensitivity analysis based framework to dynamically quantify the individual and interactive influence of algorithm parameters on algorithm performance. A variance decomposition sensitivity analysis method, Analysis of Variance (ANOVA), is used for sensitivity quantification, because it is capable of handling small samples and more computationally efficient compared with other approaches. The Shuffled Complex Evolution method developed at the University of Arizona algorithm (SCE-UA) is selected as an optimization algorithm for investigation, and two criteria, i.e., convergence speed and success rate, are used to measure the performance of SCE-UA. Results show the proposed framework can effectively reveal the dynamic sensitivity of algorithm parameters in the search processes, including individual influences of parameters and their interactive impacts. Interactions between algorithm parameters have significant impacts on SCE-UA performance, which has not been reported in previous research. The proposed framework provides a means to understand the dynamics of algorithm parameter influence, and highlights the significance of considering interactive parameter influence to improve algorithm performance in the search processes.
AbstractList It is widely recognized that optimization algorithm parameters have significant impacts on algorithm performance, but quantifying the influence is very complex and difficult due to high computational demands and dynamic nature of search parameters. The overall aim of this paper is to develop a global sensitivity analysis based framework to dynamically quantify the individual and interactive influence of algorithm parameters on algorithm performance. A variance decomposition sensitivity analysis method, Analysis of Variance (ANOVA), is used for sensitivity quantification, because it is capable of handling small samples and more computationally efficient compared with other approaches. The Shuffled Complex Evolution method developed at the University of Arizona algorithm (SCE-UA) is selected as an optimization algorithm for investigation, and two criteria, i.e., convergence speed and success rate, are used to measure the performance of SCE-UA. Results show the proposed framework can effectively reveal the dynamic sensitivity of algorithm parameters in the search processes, including individual influences of parameters and their interactive impacts. Interactions between algorithm parameters have significant impacts on SCE-UA performance, which has not been reported in previous research. The proposed framework provides a means to understand the dynamics of algorithm parameter influence, and highlights the significance of considering interactive parameter influence to improve algorithm performance in the search processes.
•A framework for dynamically quantifying algorithm parameter impacts is developed.•Interactions among parameters have significant influence on algorithm performance.•Reflection parameter of SCE-UA can be more influential than complex number. It is widely recognized that optimization algorithm parameters have significant impacts on algorithm performance, but quantifying the influence is very complex and difficult due to high computational demands and dynamic nature of search parameters. The overall aim of this paper is to develop a global sensitivity analysis based framework to dynamically quantify the individual and interactive influence of algorithm parameters on algorithm performance. A variance decomposition sensitivity analysis method, Analysis of Variance (ANOVA), is used for sensitivity quantification, because it is capable of handling small samples and more computationally efficient compared with other approaches. The Shuffled Complex Evolution method developed at the University of Arizona algorithm (SCE-UA) is selected as an optimization algorithm for investigation, and two criteria, i.e., convergence speed and success rate, are used to measure the performance of SCE-UA. Results show the proposed framework can effectively reveal the dynamic sensitivity of algorithm parameters in the search processes, including individual influences of parameters and their interactive impacts. Interactions between algorithm parameters have significant impacts on SCE-UA performance, which has not been reported in previous research. The proposed framework provides a means to understand the dynamics of algorithm parameter influence, and highlights the significance of considering interactive parameter influence to improve algorithm performance in the search processes.
Author Zhang, Chi
Qi, Wei
Fu, Guangtao
Zhou, Huicheng
Author_xml – sequence: 1
  givenname: Wei
  surname: Qi
  fullname: Qi, Wei
  organization: School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 2
  givenname: Chi
  surname: Zhang
  fullname: Zhang, Chi
  email: czhang@dlut.edu.cn
  organization: School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
– sequence: 3
  givenname: Guangtao
  surname: Fu
  fullname: Fu, Guangtao
  organization: Centre for Water Systems, College of Engineering, Mathematics and Physical Sciences, University of Exeter, North Park Road, Harrison Building, Exeter EX4 4QF, UK
– sequence: 4
  givenname: Huicheng
  surname: Zhou
  fullname: Zhou, Huicheng
  organization: School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China
BookMark eNqNkUFr3DAQhUVJoZu0P6GgYy92NZItyfRQSmjaQKAU2rNQ5PFmFtvaStoF59fXyebUy3YuM4f3PYb3LtnFHGdk7D2IGgToj7t697D0KY61FNDWALVo5Su2AWu6ShphLthGCCkr0F3zhl3mvBPrKNVs2Pzz4OdCw0LzlvfL7CcKPOOcqdCRysLjwOO-0ESPvlCcuR-3MVF5mPjeJz9hwZR5iZymfYpH5KdP4paCH_kUexz5etF9esbfsteDHzO-e9lX7PfN11_X36u7H99ur7_cVb5RUCobBqMsNkF67QfTaq2hgR5EbwMY7yF0UljolLFiAIPYtBiMtvfCCjMoqa7Yh5Pv-tSfA-biJsoBx9HPGA_ZgZVtI1XbqfNSYzVorYz5D6mWSgsD7Sr9dJKGFHNOOLhA5TmCkjyNDoR76s7t3Et37qk7B-DW7la6_YfeJ5p8Ws5yn08crtkeCZPLgXAO2FPCUFwf6YzDX76tuwc
CitedBy_id crossref_primary_10_3390_w11091876
crossref_primary_10_1016_j_agwat_2025_109460
crossref_primary_10_1016_j_jhydrol_2018_01_026
crossref_primary_10_1007_s10462_019_09745_0
crossref_primary_10_1016_j_ejrh_2025_102207
crossref_primary_10_3390_w13162220
crossref_primary_10_1029_2018JD029116
crossref_primary_10_2166_hydro_2016_002
crossref_primary_10_1029_2020EA001576
crossref_primary_10_1029_2020JD033086
crossref_primary_10_1002_2015WR017663
crossref_primary_10_1007_s12517_016_2718_x
crossref_primary_10_1175_JHM_D_15_0212_1
crossref_primary_10_1007_s11356_021_14994_0
crossref_primary_10_1016_j_eti_2025_104230
crossref_primary_10_1007_s00477_020_01852_7
crossref_primary_10_1007_s42241_025_0002_9
crossref_primary_10_1111_jfr3_12488
crossref_primary_10_1007_s11431_016_0234_0
crossref_primary_10_1016_j_jhydrol_2019_124338
crossref_primary_10_1016_j_jhydrol_2019_01_015
crossref_primary_10_5194_hess_20_903_2016
crossref_primary_10_1016_j_jhydrol_2021_126433
crossref_primary_10_1016_j_jhydrol_2023_129103
crossref_primary_10_1029_2019EA000829
crossref_primary_10_3390_su10051660
crossref_primary_10_1007_s11269_020_02608_2
crossref_primary_10_2166_hydro_2020_016
crossref_primary_10_3390_pr12061157
crossref_primary_10_1080_02626667_2016_1234712
crossref_primary_10_5194_hess_24_4601_2020
crossref_primary_10_1007_s40808_025_02407_x
crossref_primary_10_1007_s11069_016_2687_0
crossref_primary_10_1016_j_jhydrol_2022_127546
crossref_primary_10_1029_2021JD035888
Cites_doi 10.1016/j.asoc.2008.07.001
10.1061/(ASCE)WR.1943-5452.0000171
10.1029/2007WR006429
10.1016/j.jhydrol.2015.07.011
10.5194/hess-10-289-2006
10.1016/j.swevo.2011.02.001
10.1007/BF00939049
10.1029/2010WR009946
10.5194/esd-6-267-2015
10.1109/TCYB.2013.2279211
10.1109/4235.996017
10.1080/02626667909491834
10.1016/S0022-1694(96)03238-6
10.1016/S0022-1694(99)00057-8
10.1029/91WR02985
10.1016/j.advwatres.2009.03.002
10.1016/j.advwatres.2005.07.010
10.1029/92WR02617
10.1175/2009JHM1163.1
10.1002/2014WR015549
10.1016/j.jhydrol.2008.05.007
10.1007/BF00939380
10.1007/s12293-011-0058-7
10.1016/j.cageo.2004.11.001
10.1007/s10898-004-9972-2
10.1093/comjnl/7.4.308
10.1002/hyp.3360060305
10.1016/S0022-1694(01)00421-8
10.1109/TCYB.2013.2282491
10.1162/EVCO_a_00148
10.1029/1998WR900058
10.1029/2010WR009947
10.1029/2005WR004723
10.1080/0305215X.2012.748046
10.1016/j.amc.2006.10.047
10.1109/TEVC.2014.2308294
10.1029/2008WR006862
10.1029/2011WR011533
10.5194/hess-17-619-2013
10.1016/j.pce.2008.03.003
10.1162/EVCO_a_00053
10.1002/hyp.7152
10.5194/hessd-12-1729-2015
10.1029/2008WR007673
10.1016/S0378-4754(00)00270-6
10.1002/wrcr.20124
10.1016/0022-1694(94)90057-4
10.1109/TNNLS.2014.2350957
10.1002/hyp.7543
10.5194/hess-17-2305-2013
10.1061/(ASCE)HE.1943-5584.0000938
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7QH
7TG
7UA
C1K
F1W
H96
KL.
L.G
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.jhydrol.2015.11.052
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
EndPage 223
ExternalDocumentID 10_1016_j_jhydrol_2015_11_052
S0022169415009403
GeographicLocations USA, Arizona
Arizona
GeographicLocations_xml – name: USA, Arizona
– name: Arizona
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QH
7TG
7UA
C1K
F1W
H96
KL.
L.G
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-a431t-8cf738e4c2a6af75666141d10d8c17aa1c9208193780f17ee45ec768b0807f323
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000370086200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Sep 28 09:38:17 EDT 2025
Sun Sep 28 12:21:26 EDT 2025
Tue Oct 07 09:28:40 EDT 2025
Sat Nov 29 04:33:37 EST 2025
Tue Nov 18 22:02:40 EST 2025
Fri Feb 23 02:27:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords TOPMODEL
Sensitivity
Variance decomposition
Algorithm
SCE-UA
Optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a431t-8cf738e4c2a6af75666141d10d8c17aa1c9208193780f17ee45ec768b0807f323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1762360715
PQPubID 23462
PageCount 11
ParticipantIDs proquest_miscellaneous_1825423593
proquest_miscellaneous_1786166377
proquest_miscellaneous_1762360715
crossref_citationtrail_10_1016_j_jhydrol_2015_11_052
crossref_primary_10_1016_j_jhydrol_2015_11_052
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2015_11_052
PublicationCentury 2000
PublicationDate February 2016
2016-02-00
20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: February 2016
PublicationDecade 2010
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Qi, Zhang, Chu, Zhou (b0200) 2013; 1
Hadka, Reed (b0155) 2011; 20
Bouilloud, Chancibault, Vincendon, Ducrocq, Habets, Saulnier, Anquetin, Martin, Noilhan (b0070) 2010; 11
Wu, Rozycki, Wilamowski (b0280) 2015; 26
Hossain, Anagnostou (b0170) 2005; 31
Giorgos, Mark, Eiben (b0140) 2015; 19
Beven, Freer (b0050) 2001; 249
van Werkhoven, Wagener, Reed, Tang (b0270) 2009; 32
Tang, Reed, Wagener (b0245) 2006; 10
Garambois, Roux, Larnier, Castaings, Dartus (b0135) 2013; 17
Duan, Sorooshian, Gupta (b0105) 1992; 28
Beven, Binley (b0045) 1992; 6
Herman, Reed, Wagener (b0160) 2013; 49
Sorooshian, Duan, Gupta (b0240) 1993; 29
Bosshard, Carambia, Goergen, Kotlarski, Krahe, Zappa, Schär (b0065) 2013; 49
Chao, Ru-bin, Qing-xiang (b0080) 2015; 2015
Pfannerstill, Guse, Reusser, Fohrer (b0190) 2015; 12
Reusser, Buytaert, Zehe (b0210) 2011; 47
Yu, Shen, Chen, Zhan, Gong, Lin, Liu, Zhang (b0285) 2014; 44
Addor, Rössler, Köplin, Huss, Weingartner, Seibert (b0005) 2014; 50
Beven, Kirkby (b0055) 1979; 24
Eiben, Smit (b0115) 2011; 1
Reusser, Zehe (b0215) 2011; 47
Ali, Khompatraporn, Zabinsky (b0010) 2005; 31
Bäck (b0025) 1996
Thyer, Kuczera, Bates (b0250) 1999; 35
Tolson, Asadzadeh, Maier, Zecchin (b0255) 2009; 45
Holland (b0165) 1975
Gao, Yen, Liu (b0130) 2014; 44
Rui, Maszatul, Robin, Peter (b0225) 2015
Kollat, Reed (b0175) 2006; 29
Arsenault, Poulin, Côté, Brissette (b0015) 2014; 19
Qi, Zhang, Fu, Zhou (b0205) 2015; 528
Tolson, Shoemaker (b0265) 2008; 44
Goldman, Punch (b0150) 2015; 23
Deep, Thakur (b0095) 2007; 188
Asadzadeh, Tolson (b0020) 2013; 45
Deb, Pratap, Agarwal, Meyarivan (b0090) 2002; 6
Duan, Gupta, Sorooshian (b0100) 1993; 73
Giuntoli, Vidal, Prudhomme, Hannah (b0145) 2015; 6
Behrangi, Khakbaz, Vrugt, Duan, Sorooshian (b0035) 2008; 44
Fu, Kapelan, Reed (b0120) 2012; 138
Nelder, Mead (b0185) 1965; 7
Wang, Yu, Yang (b0275) 2010; 24
Zhang, Srinivasan, Zhao, Liew (b0290) 2008; 23
Cameron, Beven, Tawn, Blazkova, Naden (b0075) 1999; 219
Köplin, Schädler, Viviroli, Weingartner (b0180) 2013; 17
Bastola, Ishidaira, Takeuchi (b0030) 2008; 357
Blazkova, Beven (b0060) 1997; 195
Chia, Goh, Tan, Shim (b0085) 2011; 3
Price (b0195) 1987; 55
Gallart, Latron, Llorens, Beven (b0125) 2008; 33
Sandip, Rajeev, Chakrabarti (b0230) 2009; 9
Duan, Sorooshian, Gupta (b0110) 1994; 158
Tolson, Shoemaker (b0260) 2007; 43
Behrangi, Khakbaz, Vrugt, Duan, Sorooshian (b0040) 2008; 44
Rolf (b0220) 1982
Sobol (b0235) 2001; 55
Price (10.1016/j.jhydrol.2015.11.052_b0195) 1987; 55
Tolson (10.1016/j.jhydrol.2015.11.052_b0260) 2007; 43
Giuntoli (10.1016/j.jhydrol.2015.11.052_b0145) 2015; 6
Zhang (10.1016/j.jhydrol.2015.11.052_b0290) 2008; 23
Wang (10.1016/j.jhydrol.2015.11.052_b0275) 2010; 24
Gallart (10.1016/j.jhydrol.2015.11.052_b0125) 2008; 33
Sorooshian (10.1016/j.jhydrol.2015.11.052_b0240) 1993; 29
Duan (10.1016/j.jhydrol.2015.11.052_b0100) 1993; 73
Bastola (10.1016/j.jhydrol.2015.11.052_b0030) 2008; 357
Beven (10.1016/j.jhydrol.2015.11.052_b0055) 1979; 24
Herman (10.1016/j.jhydrol.2015.11.052_b0160) 2013; 49
Hossain (10.1016/j.jhydrol.2015.11.052_b0170) 2005; 31
Behrangi (10.1016/j.jhydrol.2015.11.052_b0035) 2008; 44
Chao (10.1016/j.jhydrol.2015.11.052_b0080) 2015; 2015
Nelder (10.1016/j.jhydrol.2015.11.052_b0185) 1965; 7
Deep (10.1016/j.jhydrol.2015.11.052_b0095) 2007; 188
Sobol (10.1016/j.jhydrol.2015.11.052_b0235) 2001; 55
Beven (10.1016/j.jhydrol.2015.11.052_b0050) 2001; 249
Gao (10.1016/j.jhydrol.2015.11.052_b0130) 2014; 44
Cameron (10.1016/j.jhydrol.2015.11.052_b0075) 1999; 219
Blazkova (10.1016/j.jhydrol.2015.11.052_b0060) 1997; 195
Kollat (10.1016/j.jhydrol.2015.11.052_b0175) 2006; 29
Bouilloud (10.1016/j.jhydrol.2015.11.052_b0070) 2010; 11
Deb (10.1016/j.jhydrol.2015.11.052_b0090) 2002; 6
van Werkhoven (10.1016/j.jhydrol.2015.11.052_b0270) 2009; 32
Holland (10.1016/j.jhydrol.2015.11.052_b0165) 1975
Qi (10.1016/j.jhydrol.2015.11.052_b0205) 2015; 528
Thyer (10.1016/j.jhydrol.2015.11.052_b0250) 1999; 35
Yu (10.1016/j.jhydrol.2015.11.052_b0285) 2014; 44
Arsenault (10.1016/j.jhydrol.2015.11.052_b0015) 2014; 19
Wu (10.1016/j.jhydrol.2015.11.052_b0280) 2015; 26
Chia (10.1016/j.jhydrol.2015.11.052_b0085) 2011; 3
Duan (10.1016/j.jhydrol.2015.11.052_b0105) 1992; 28
Pfannerstill (10.1016/j.jhydrol.2015.11.052_b0190) 2015; 12
Tolson (10.1016/j.jhydrol.2015.11.052_b0255) 2009; 45
Tolson (10.1016/j.jhydrol.2015.11.052_b0265) 2008; 44
Garambois (10.1016/j.jhydrol.2015.11.052_b0135) 2013; 17
Reusser (10.1016/j.jhydrol.2015.11.052_b0215) 2011; 47
Eiben (10.1016/j.jhydrol.2015.11.052_b0115) 2011; 1
Rolf (10.1016/j.jhydrol.2015.11.052_b0220) 1982
Ali (10.1016/j.jhydrol.2015.11.052_b0010) 2005; 31
Rui (10.1016/j.jhydrol.2015.11.052_b0225) 2015
Asadzadeh (10.1016/j.jhydrol.2015.11.052_b0020) 2013; 45
Beven (10.1016/j.jhydrol.2015.11.052_b0045) 1992; 6
Fu (10.1016/j.jhydrol.2015.11.052_b0120) 2012; 138
Behrangi (10.1016/j.jhydrol.2015.11.052_b0040) 2008; 44
Bäck (10.1016/j.jhydrol.2015.11.052_b0025) 1996
Reusser (10.1016/j.jhydrol.2015.11.052_b0210) 2011; 47
Sandip (10.1016/j.jhydrol.2015.11.052_b0230) 2009; 9
Bosshard (10.1016/j.jhydrol.2015.11.052_b0065) 2013; 49
Qi (10.1016/j.jhydrol.2015.11.052_b0200) 2013; 1
Goldman (10.1016/j.jhydrol.2015.11.052_b0150) 2015; 23
Addor (10.1016/j.jhydrol.2015.11.052_b0005) 2014; 50
Duan (10.1016/j.jhydrol.2015.11.052_b0110) 1994; 158
Hadka (10.1016/j.jhydrol.2015.11.052_b0155) 2011; 20
Giorgos (10.1016/j.jhydrol.2015.11.052_b0140) 2015; 19
Köplin (10.1016/j.jhydrol.2015.11.052_b0180) 2013; 17
Tang (10.1016/j.jhydrol.2015.11.052_b0245) 2006; 10
References_xml – volume: 28
  start-page: 1015
  year: 1992
  end-page: 1031
  ident: b0105
  article-title: Effective and efficient global optimization for conceptual rainfall–runoff models
  publication-title: Water Resour. Res.
– volume: 17
  start-page: 2305
  year: 2013
  end-page: 2322
  ident: b0135
  article-title: Characterization of process-oriented hydrologic model behavior with temporal sensitivity analysis for flash floods in Mediterranean catchments
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 158
  start-page: 265
  year: 1994
  end-page: 284
  ident: b0110
  article-title: Optimal use of the SCE-UA global optimization method for calibrating watershed models
  publication-title: J. Hydrol.
– volume: 11
  start-page: 315
  year: 2010
  end-page: 333
  ident: b0070
  article-title: Coupling the ISBA land surface model and the TOPMODEL hydrological model for mediterranean flash-flood forecasting: description, calibration, and validation
  publication-title: J. Hydrometeorol.
– start-page: 513
  year: 1982
  end-page: 528
  ident: b0220
  article-title: Parameter adaptive control algorithms—a tutorial
  publication-title: Automatica
– volume: 1
  start-page: 1
  year: 2013
  end-page: 10
  ident: b0200
  article-title: Sobol’’s sensitivity analysis for TOPMODEL hydrological model: a case study for the Biliu river basin, China
  publication-title: J. Hydrol. Environ. Res.
– volume: 6
  start-page: 267
  year: 2015
  end-page: 285
  ident: b0145
  article-title: Future hydrological extremes: the uncertainty from multiple global climate and global hydrological models
  publication-title: Earth Syst. Dyn.
– volume: 12
  start-page: 1729
  year: 2015
  end-page: 1764
  ident: b0190
  article-title: Temporal parameter sensitivity guided verification of process dynamics
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 73
  year: 1993
  ident: b0100
  article-title: Shuffled complex evolution approach for effective and efficient global minimization
  publication-title: J. Optim. Theory Appl.
– volume: 24
  start-page: 43
  year: 1979
  end-page: 69
  ident: b0055
  article-title: A physically based, variable contributing area model of basin hydrology
  publication-title: Hydrol. Sci. Bull.
– volume: 19
  start-page: 1374
  year: 2014
  end-page: 1384
  ident: b0015
  article-title: Comparison of stochastic optimization algorithms in hydrological model calibration
  publication-title: J. Hydrol. Eng.
– volume: 32
  start-page: 1154
  year: 2009
  end-page: 1169
  ident: b0270
  article-title: Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models
  publication-title: Adv. Water Resour.
– volume: 9
  start-page: 527
  year: 2009
  end-page: 540
  ident: b0230
  article-title: Adaptive parameter control of evolutionary algorithms to improve quality-time trade-off
  publication-title: Appl. Soft Comput.
– volume: 43
  start-page: W01413
  year: 2007
  ident: b0260
  article-title: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration
  publication-title: Water Resour. Res.
– volume: 55
  year: 1987
  ident: b0195
  article-title: Global optimization algorithms for a CAD workstation
  publication-title: J. Optim. Theory Appl.
– volume: 219
  start-page: 169
  year: 1999
  end-page: 187
  ident: b0075
  article-title: Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty)
  publication-title: J. Hydrol.
– volume: 249
  start-page: 11
  year: 2001
  end-page: 29
  ident: b0050
  article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
  publication-title: J. Hydrol.
– volume: 49
  start-page: 1400
  year: 2013
  end-page: 1414
  ident: b0160
  article-title: Time-varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior
  publication-title: Water Resour. Res.
– volume: 357
  start-page: 188
  year: 2008
  end-page: 206
  ident: b0030
  article-title: Regionalisation of hydrological model parameters under parameter uncertainty: a case study involving TOPMODEL and basins across the globe
  publication-title: J. Hydrol.
– volume: 6
  year: 2002
  ident: b0090
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
– volume: 26
  start-page: 1659
  year: 2015
  end-page: 1668
  ident: b0280
  article-title: A hybrid constructive algorithm for single-layer feedforward networks learning
  publication-title: IEEE Trans. Neural Networks Learning Syst.
– volume: 3
  start-page: 73
  year: 2011
  end-page: 87
  ident: b0085
  article-title: Memetic informed evolutionary optimization via data mining
  publication-title: Memet. Comput.
– volume: 45
  start-page: W12416
  year: 2009
  ident: b0255
  article-title: Hybrid discrete dynamically dimensioned search (HD-DDS) algorithm for water distribution system design optimization
  publication-title: Water Resour. Res.
– volume: 47
  year: 2011
  ident: b0215
  article-title: Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity
  publication-title: Water Resour. Res.
– volume: 528
  start-page: 652
  year: 2015
  end-page: 667
  ident: b0205
  article-title: Global Land Data Assimilation System data assessment using a distributed biosphere hydrological model
  publication-title: J. Hydrol.
– volume: 24
  start-page: 1015
  year: 2010
  end-page: 1026
  ident: b0275
  article-title: Comparison of genetic algorithms and shuffled complex evolution approach for calibrating distributed rainfall–runoff model
  publication-title: Hydrol. Process.
– volume: 35
  start-page: 767
  year: 1999
  end-page: 773
  ident: b0250
  article-title: Probabilistic optimization for conceptual rainfall–runoff models: a comparison of the shuffled complex evolution and simulated annealing algorithms
  publication-title: Water Resour. Res.
– volume: 44
  year: 2008
  ident: b0040
  article-title: Comment on “Dynamically dimensioned search algorithm for computationally efficient watershed model calibration” by Bryan A. Tolson and Christine A. Shoemaker
  publication-title: Water Resour. Res.
– volume: 44
  start-page: 1314
  year: 2014
  end-page: 1327
  ident: b0130
  article-title: A cluster-based differential evolution with self-adaptive strategy for multimodal optimization
  publication-title: IEEE Trans. Cybernetics
– volume: 45
  start-page: 1489
  year: 2013
  end-page: 1509
  ident: b0020
  article-title: Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization
  publication-title: Eng. Optimization
– volume: 10
  start-page: 289
  year: 2006
  end-page: 307
  ident: b0245
  article-title: How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 44
  start-page: 1080
  year: 2014
  end-page: 1099
  ident: b0285
  article-title: Differential evolution with two-level parameter adaptation
  publication-title: IEEE Trans. Cybernetics
– volume: 31
  start-page: 497
  year: 2005
  end-page: 512
  ident: b0170
  article-title: Assessment of a stochastic interpolation based parameter sampling scheme for efficient uncertainty analyses of hydrologic models
  publication-title: Comput. Geosci.
– volume: 55
  start-page: 271
  year: 2001
  end-page: 280
  ident: b0235
  article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
  publication-title: Math. Comput. Simul.
– volume: 29
  start-page: 1185
  year: 1993
  end-page: 1194
  ident: b0240
  article-title: Calibration of rainfall–runoff models: application of global optimization to the Sacramento Soil Moisture Accounting Model
  publication-title: Water Resour. Res.
– volume: 188
  start-page: 895
  year: 2007
  end-page: 911
  ident: b0095
  article-title: A new crossover operator for real coded genetic algorithms
  publication-title: Appl. Math. Comput.
– volume: 49
  start-page: 1523
  year: 2013
  end-page: 1536
  ident: b0065
  article-title: Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections
  publication-title: Water Resour. Res.
– volume: 29
  start-page: 792
  year: 2006
  end-page: 807
  ident: b0175
  article-title: Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design
  publication-title: Adv. Water Resour.
– volume: 44
  year: 2008
  ident: b0265
  article-title: Reply to comment on “Dynamically dimensioned search algorithm for computationally efficient watershed model calibration” by Ali Behrangi et al.
  publication-title: Water Resour. Res.
– volume: 23
  start-page: 430
  year: 2008
  end-page: 441
  ident: b0290
  article-title: Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model
  publication-title: Hydrol. Process.
– volume: 1
  start-page: 19
  year: 2011
  end-page: 31
  ident: b0115
  article-title: Parameter tuning for configuring and analyzing evolutionary algorithms
  publication-title: Swarm Evolut. Comput.
– volume: 2015
  year: 2015
  ident: b0080
  article-title: Calibration of conceptual rainfall–runoff models using global optimization
  publication-title: Adv. Meteorol.
– volume: 7
  year: 1965
  ident: b0185
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
– year: 1996
  ident: b0025
  article-title: Evolutionary Algorithms in Theory and Practice. Evolution Strategies, Evolutionary Programming, Genetic Algorithms
– volume: 195
  start-page: 256
  year: 1997
  end-page: 278
  ident: b0060
  article-title: Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL
  publication-title: J. Hydrol.
– volume: 6
  start-page: 279
  year: 1992
  end-page: 298
  ident: b0045
  article-title: The future of distributed models: model calibration and uncertainty prediction
  publication-title: Hydrol. Process.
– volume: 50
  start-page: 7541
  year: 2014
  end-page: 7562
  ident: b0005
  article-title: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments
  publication-title: Water Resour. Res.
– volume: 47
  start-page: W07551
  year: 2011
  ident: b0210
  article-title: Temporal dynamics of model parameter sensitivity for computationally expensive models with the Fourier amplitude sensitivity test
  publication-title: Water Resour. Res.
– start-page: 1
  year: 2015
  end-page: 14
  ident: b0225
  article-title: An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms
  publication-title: Int. J. Syst. Sci.
– volume: 33
  start-page: 1090
  year: 2008
  end-page: 1094
  ident: b0125
  article-title: Upscaling discrete internal observations for obtaining catchment-averaged TOPMODEL parameters in a small Mediterranean mountain basin
  publication-title: Phys. Chem. Earth
– volume: 17
  start-page: 619
  year: 2013
  end-page: 635
  ident: b0180
  article-title: The importance of glacier and forest change in hydrological climate-impact studies
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 44
  start-page: W12603
  year: 2008
  ident: b0035
  article-title: Comment on “Dynamically dimensioned search algorithm for computationally efficient watershed model calibration” by Bryan A. Tolson and Christine A. Shoemaker
  publication-title: Water Resour. Res.
– volume: 138
  start-page: 196
  year: 2012
  end-page: 207
  ident: b0120
  article-title: Reducing the complexity of multiobjective water distribution system optimization through global sensitivity analysis
  publication-title: J. Water Resour. Plan. Manage.
– volume: 19
  start-page: 167
  year: 2015
  end-page: 187
  ident: b0140
  article-title: Parameter control in evolutionary algorithms: trends and challenges
  publication-title: IEEE Trans. Evol. Comput.
– volume: 23
  start-page: 451
  year: 2015
  end-page: 479
  ident: b0150
  article-title: Fast and efficient black box optimization using the parameter-less population pyramid
  publication-title: Evolut. Comput.
– volume: 31
  start-page: 635
  year: 2005
  end-page: 672
  ident: b0010
  article-title: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems
  publication-title: J. Global Optim.
– year: 1975
  ident: b0165
  article-title: Adaptation in Natural and Artificial Systems
– volume: 20
  start-page: 423
  year: 2011
  end-page: 452
  ident: b0155
  article-title: Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization
  publication-title: Evolut. Comput.
– start-page: 1
  year: 2015
  ident: 10.1016/j.jhydrol.2015.11.052_b0225
  article-title: An analysis of parameter sensitivities of preference-inspired co-evolutionary algorithms
  publication-title: Int. J. Syst. Sci.
– volume: 9
  start-page: 527
  issue: 2
  year: 2009
  ident: 10.1016/j.jhydrol.2015.11.052_b0230
  article-title: Adaptive parameter control of evolutionary algorithms to improve quality-time trade-off
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2008.07.001
– volume: 138
  start-page: 196
  issue: 3
  year: 2012
  ident: 10.1016/j.jhydrol.2015.11.052_b0120
  article-title: Reducing the complexity of multiobjective water distribution system optimization through global sensitivity analysis
  publication-title: J. Water Resour. Plan. Manage.
  doi: 10.1061/(ASCE)WR.1943-5452.0000171
– volume: 44
  issue: 12
  year: 2008
  ident: 10.1016/j.jhydrol.2015.11.052_b0040
  article-title: Comment on “Dynamically dimensioned search algorithm for computationally efficient watershed model calibration” by Bryan A. Tolson and Christine A. Shoemaker
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006429
– volume: 528
  start-page: 652
  year: 2015
  ident: 10.1016/j.jhydrol.2015.11.052_b0205
  article-title: Global Land Data Assimilation System data assessment using a distributed biosphere hydrological model
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.07.011
– volume: 10
  start-page: 289
  issue: 2
  year: 2006
  ident: 10.1016/j.jhydrol.2015.11.052_b0245
  article-title: How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-10-289-2006
– volume: 1
  start-page: 19
  issue: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2015.11.052_b0115
  article-title: Parameter tuning for configuring and analyzing evolutionary algorithms
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2011.02.001
– volume: 55
  issue: 1
  year: 1987
  ident: 10.1016/j.jhydrol.2015.11.052_b0195
  article-title: Global optimization algorithms for a CAD workstation
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939049
– volume: 47
  year: 2011
  ident: 10.1016/j.jhydrol.2015.11.052_b0215
  article-title: Inferring model structural deficits by analyzing temporal dynamics of model performance and parameter sensitivity
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009946
– volume: 6
  start-page: 267
  issue: 1
  year: 2015
  ident: 10.1016/j.jhydrol.2015.11.052_b0145
  article-title: Future hydrological extremes: the uncertainty from multiple global climate and global hydrological models
  publication-title: Earth Syst. Dyn.
  doi: 10.5194/esd-6-267-2015
– volume: 44
  start-page: 1080
  issue: 7
  year: 2014
  ident: 10.1016/j.jhydrol.2015.11.052_b0285
  article-title: Differential evolution with two-level parameter adaptation
  publication-title: IEEE Trans. Cybernetics
  doi: 10.1109/TCYB.2013.2279211
– volume: 6
  issue: 2
  year: 2002
  ident: 10.1016/j.jhydrol.2015.11.052_b0090
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 24
  start-page: 43
  issue: 1
  year: 1979
  ident: 10.1016/j.jhydrol.2015.11.052_b0055
  article-title: A physically based, variable contributing area model of basin hydrology
  publication-title: Hydrol. Sci. Bull.
  doi: 10.1080/02626667909491834
– volume: 195
  start-page: 256
  issue: 1–4
  year: 1997
  ident: 10.1016/j.jhydrol.2015.11.052_b0060
  article-title: Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(96)03238-6
– volume: 219
  start-page: 169
  issue: 3–4
  year: 1999
  ident: 10.1016/j.jhydrol.2015.11.052_b0075
  article-title: Flood frequency estimation by continuous simulation for a gauged upland catchment (with uncertainty)
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(99)00057-8
– volume: 28
  start-page: 1015
  issue: 4
  year: 1992
  ident: 10.1016/j.jhydrol.2015.11.052_b0105
  article-title: Effective and efficient global optimization for conceptual rainfall–runoff models
  publication-title: Water Resour. Res.
  doi: 10.1029/91WR02985
– year: 1996
  ident: 10.1016/j.jhydrol.2015.11.052_b0025
– volume: 32
  start-page: 1154
  issue: 8
  year: 2009
  ident: 10.1016/j.jhydrol.2015.11.052_b0270
  article-title: Sensitivity-guided reduction of parametric dimensionality for multi-objective calibration of watershed models
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2009.03.002
– volume: 29
  start-page: 792
  issue: 6
  year: 2006
  ident: 10.1016/j.jhydrol.2015.11.052_b0175
  article-title: Comparing state-of-the-art evolutionary multi-objective algorithms for long-term groundwater monitoring design
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2005.07.010
– volume: 29
  start-page: 1185
  issue: 4
  year: 1993
  ident: 10.1016/j.jhydrol.2015.11.052_b0240
  article-title: Calibration of rainfall–runoff models: application of global optimization to the Sacramento Soil Moisture Accounting Model
  publication-title: Water Resour. Res.
  doi: 10.1029/92WR02617
– volume: 11
  start-page: 315
  issue: 2
  year: 2010
  ident: 10.1016/j.jhydrol.2015.11.052_b0070
  article-title: Coupling the ISBA land surface model and the TOPMODEL hydrological model for mediterranean flash-flood forecasting: description, calibration, and validation
  publication-title: J. Hydrometeorol.
  doi: 10.1175/2009JHM1163.1
– volume: 50
  start-page: 7541
  issue: 10
  year: 2014
  ident: 10.1016/j.jhydrol.2015.11.052_b0005
  article-title: Robust changes and sources of uncertainty in the projected hydrological regimes of Swiss catchments
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR015549
– volume: 357
  start-page: 188
  issue: 3–4
  year: 2008
  ident: 10.1016/j.jhydrol.2015.11.052_b0030
  article-title: Regionalisation of hydrological model parameters under parameter uncertainty: a case study involving TOPMODEL and basins across the globe
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.05.007
– volume: 73
  issue: 3
  year: 1993
  ident: 10.1016/j.jhydrol.2015.11.052_b0100
  article-title: Shuffled complex evolution approach for effective and efficient global minimization
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00939380
– volume: 3
  start-page: 73
  issue: 2
  year: 2011
  ident: 10.1016/j.jhydrol.2015.11.052_b0085
  article-title: Memetic informed evolutionary optimization via data mining
  publication-title: Memet. Comput.
  doi: 10.1007/s12293-011-0058-7
– volume: 31
  start-page: 497
  issue: 4
  year: 2005
  ident: 10.1016/j.jhydrol.2015.11.052_b0170
  article-title: Assessment of a stochastic interpolation based parameter sampling scheme for efficient uncertainty analyses of hydrologic models
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2004.11.001
– volume: 31
  start-page: 635
  issue: 4
  year: 2005
  ident: 10.1016/j.jhydrol.2015.11.052_b0010
  article-title: A numerical evaluation of several stochastic algorithms on selected continuous global optimization test problems
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-004-9972-2
– volume: 7
  issue: 4
  year: 1965
  ident: 10.1016/j.jhydrol.2015.11.052_b0185
  article-title: A simplex method for function minimization
  publication-title: Comput. J.
  doi: 10.1093/comjnl/7.4.308
– volume: 6
  start-page: 279
  issue: 3
  year: 1992
  ident: 10.1016/j.jhydrol.2015.11.052_b0045
  article-title: The future of distributed models: model calibration and uncertainty prediction
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.3360060305
– volume: 249
  start-page: 11
  issue: 1–4
  year: 2001
  ident: 10.1016/j.jhydrol.2015.11.052_b0050
  article-title: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(01)00421-8
– volume: 44
  start-page: 1314
  issue: 8
  year: 2014
  ident: 10.1016/j.jhydrol.2015.11.052_b0130
  article-title: A cluster-based differential evolution with self-adaptive strategy for multimodal optimization
  publication-title: IEEE Trans. Cybernetics
  doi: 10.1109/TCYB.2013.2282491
– volume: 23
  start-page: 451
  issue: 3
  year: 2015
  ident: 10.1016/j.jhydrol.2015.11.052_b0150
  article-title: Fast and efficient black box optimization using the parameter-less population pyramid
  publication-title: Evolut. Comput.
  doi: 10.1162/EVCO_a_00148
– volume: 35
  start-page: 767
  issue: 3
  year: 1999
  ident: 10.1016/j.jhydrol.2015.11.052_b0250
  article-title: Probabilistic optimization for conceptual rainfall–runoff models: a comparison of the shuffled complex evolution and simulated annealing algorithms
  publication-title: Water Resour. Res.
  doi: 10.1029/1998WR900058
– volume: 47
  start-page: W07551
  year: 2011
  ident: 10.1016/j.jhydrol.2015.11.052_b0210
  article-title: Temporal dynamics of model parameter sensitivity for computationally expensive models with the Fourier amplitude sensitivity test
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009947
– volume: 43
  start-page: W01413
  issue: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2015.11.052_b0260
  article-title: Dynamically dimensioned search algorithm for computationally efficient watershed model calibration
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004723
– volume: 1
  start-page: 1
  year: 2013
  ident: 10.1016/j.jhydrol.2015.11.052_b0200
  article-title: Sobol’’s sensitivity analysis for TOPMODEL hydrological model: a case study for the Biliu river basin, China
  publication-title: J. Hydrol. Environ. Res.
– volume: 45
  start-page: 1489
  issue: 12
  year: 2013
  ident: 10.1016/j.jhydrol.2015.11.052_b0020
  article-title: Pareto archived dynamically dimensioned search with hypervolume-based selection for multi-objective optimization
  publication-title: Eng. Optimization
  doi: 10.1080/0305215X.2012.748046
– volume: 188
  start-page: 895
  issue: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2015.11.052_b0095
  article-title: A new crossover operator for real coded genetic algorithms
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.10.047
– volume: 19
  start-page: 167
  issue: 2
  year: 2015
  ident: 10.1016/j.jhydrol.2015.11.052_b0140
  article-title: Parameter control in evolutionary algorithms: trends and challenges
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2308294
– volume: 44
  issue: 12
  year: 2008
  ident: 10.1016/j.jhydrol.2015.11.052_b0265
  article-title: Reply to comment on “Dynamically dimensioned search algorithm for computationally efficient watershed model calibration” by Ali Behrangi et al.
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR006862
– volume: 49
  start-page: 1523
  issue: 3
  year: 2013
  ident: 10.1016/j.jhydrol.2015.11.052_b0065
  article-title: Quantifying uncertainty sources in an ensemble of hydrological climate-impact projections
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR011533
– volume: 17
  start-page: 619
  issue: 2
  year: 2013
  ident: 10.1016/j.jhydrol.2015.11.052_b0180
  article-title: The importance of glacier and forest change in hydrological climate-impact studies
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-619-2013
– volume: 33
  start-page: 1090
  issue: 17–18
  year: 2008
  ident: 10.1016/j.jhydrol.2015.11.052_b0125
  article-title: Upscaling discrete internal observations for obtaining catchment-averaged TOPMODEL parameters in a small Mediterranean mountain basin
  publication-title: Phys. Chem. Earth
  doi: 10.1016/j.pce.2008.03.003
– volume: 20
  start-page: 423
  issue: 3
  year: 2011
  ident: 10.1016/j.jhydrol.2015.11.052_b0155
  article-title: Diagnostic assessment of search controls and failure modes in many-objective evolutionary optimization
  publication-title: Evolut. Comput.
  doi: 10.1162/EVCO_a_00053
– volume: 23
  start-page: 430
  issue: 3
  year: 2008
  ident: 10.1016/j.jhydrol.2015.11.052_b0290
  article-title: Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7152
– volume: 12
  start-page: 1729
  year: 2015
  ident: 10.1016/j.jhydrol.2015.11.052_b0190
  article-title: Temporal parameter sensitivity guided verification of process dynamics
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
  doi: 10.5194/hessd-12-1729-2015
– volume: 45
  start-page: W12416
  issue: 12
  year: 2009
  ident: 10.1016/j.jhydrol.2015.11.052_b0255
  article-title: Hybrid discrete dynamically dimensioned search (HD-DDS) algorithm for water distribution system design optimization
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007673
– volume: 55
  start-page: 271
  issue: 1–3
  year: 2001
  ident: 10.1016/j.jhydrol.2015.11.052_b0235
  article-title: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
  publication-title: Math. Comput. Simul.
  doi: 10.1016/S0378-4754(00)00270-6
– volume: 49
  start-page: 1400
  year: 2013
  ident: 10.1016/j.jhydrol.2015.11.052_b0160
  article-title: Time-varying sensitivity analysis clarifies the effects of watershed model formulation on model behavior
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20124
– start-page: 513
  year: 1982
  ident: 10.1016/j.jhydrol.2015.11.052_b0220
  article-title: Parameter adaptive control algorithms—a tutorial
  publication-title: Automatica
– volume: 158
  start-page: 265
  issue: 3–4
  year: 1994
  ident: 10.1016/j.jhydrol.2015.11.052_b0110
  article-title: Optimal use of the SCE-UA global optimization method for calibrating watershed models
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(94)90057-4
– volume: 44
  start-page: W12603
  issue: 12
  year: 2008
  ident: 10.1016/j.jhydrol.2015.11.052_b0035
  article-title: Comment on “Dynamically dimensioned search algorithm for computationally efficient watershed model calibration” by Bryan A. Tolson and Christine A. Shoemaker
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006429
– volume: 26
  start-page: 1659
  issue: 8
  year: 2015
  ident: 10.1016/j.jhydrol.2015.11.052_b0280
  article-title: A hybrid constructive algorithm for single-layer feedforward networks learning
  publication-title: IEEE Trans. Neural Networks Learning Syst.
  doi: 10.1109/TNNLS.2014.2350957
– year: 1975
  ident: 10.1016/j.jhydrol.2015.11.052_b0165
– volume: 24
  start-page: 1015
  issue: 8
  year: 2010
  ident: 10.1016/j.jhydrol.2015.11.052_b0275
  article-title: Comparison of genetic algorithms and shuffled complex evolution approach for calibrating distributed rainfall–runoff model
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7543
– volume: 2015
  year: 2015
  ident: 10.1016/j.jhydrol.2015.11.052_b0080
  article-title: Calibration of conceptual rainfall–runoff models using global optimization
  publication-title: Adv. Meteorol.
– volume: 17
  start-page: 2305
  year: 2013
  ident: 10.1016/j.jhydrol.2015.11.052_b0135
  article-title: Characterization of process-oriented hydrologic model behavior with temporal sensitivity analysis for flash floods in Mediterranean catchments
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-17-2305-2013
– volume: 19
  start-page: 1374
  issue: 7
  year: 2014
  ident: 10.1016/j.jhydrol.2015.11.052_b0015
  article-title: Comparison of stochastic optimization algorithms in hydrological model calibration
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000938
SSID ssj0000334
Score 2.3583987
Snippet •A framework for dynamically quantifying algorithm parameter impacts is developed.•Interactions among parameters have significant influence on algorithm...
It is widely recognized that optimization algorithm parameters have significant impacts on algorithm performance, but quantifying the influence is very complex...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 213
SubjectTerms Algorithm
Algorithms
Analysis of variance
Arizona
Dynamics
hydrologic models
Interactive
Mathematical models
Optimization
SCE-UA
Search process
Sensitivity
Sensitivity analysis
TOPMODEL
variance
Variance decomposition
Title Quantifying dynamic sensitivity of optimization algorithm parameters to improve hydrological model calibration
URI https://dx.doi.org/10.1016/j.jhydrol.2015.11.052
https://www.proquest.com/docview/1762360715
https://www.proquest.com/docview/1786166377
https://www.proquest.com/docview/1825423593
Volume 533
WOSCitedRecordID wos000370086200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQviKsYNxmJtyqljpPYfqymjcHDxKQh-hY5ibO2apOpTafxf_ZDd47jpGGFDZB4iSLLblOfr8ffOTkXQj4kOlGhMYEngpx7YH8ZTwGL9ZIwSnMVaZUl0jabEMfHcjxWX3u9qyYX5mIuikJeXqrz_ypqGANhY-rsX4i7_VAYgHsQOlxB7HD9I8GfrDUGANn0pazuN99fYZi66xMB7LAEPbFwCZh9PT8rl9NqsuhjGfAFhsfYqg9T624w_cmPbNlqSNs4pw93aGW3Mt0mt80iG0swWmA1hgyh17odTmwUwXcz3fJc70_ascO1ddvDDzqrdLmZWdrxozWGsbqT1zkuWBvr3HjTtjJq2uwCFtWNjwemVspSKMybE12tHXL-k97lnSPcr1OYt06H2lExG8zqTcDAvnCANVzrIro3Cm_je2wfHwU4M1YZ5PfIri9CBep_d_T5YPxlc-JzHjRV6XHBJlPs4y-_7Hcc6AYbsBTn9DF55MRHRzWmnpCeKZ6SB5-Mq2r-jBQdbFGHLdrBFi1z2sUWbbFFN9iiVUkdtmgXW9Rii3aw9Zx8Ozw43T_yXMMOTwMPrTyZ5oJLE6S-jnQuwFIA8scyNsxkyoTWLFU-UlAu5DBnAlREaFKwdxMwW0TOff6C7BRlYV4SGgG5YiIZpn6YB0yLRKrQB30S5YnJA5PskaDZwjh11eyxqco8bsIWZ7Hb-Rh3HizdGHZ-jwzaZed1OZe7FshGPrHjpDXXjAFUdy1938gzBp2NL-J0Ycr1KmbAQDgWdgxvmyMjBuaAELfMQfeOz0PFX_37Y74mDzf_zjdkp1quzVtyP72opqvlOwf1ax4x3W0
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+dynamic+sensitivity+of+optimization+algorithm+parameters+to+improve+hydrological+model+calibration&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Qi%2C+Wei&rft.au=Zhang%2C+Chi&rft.au=Fu%2C+Guangtao&rft.au=Zhou%2C+Huicheng&rft.date=2016-02-01&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=533&rft.spage=213&rft.epage=223&rft_id=info:doi/10.1016%2Fj.jhydrol.2015.11.052&rft.externalDocID=S0022169415009403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon