On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study

•The importance of geological data in HT is investigated via sandbox experiments.•Both accurate and inaccurate geological models can be well calibrated.•A well calibrated inaccurate geological model can yield poor model validations.•Using geological model as prior K values in geostatistical inversio...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) Vol. 542; pp. 156 - 171
Main Authors: Zhao, Zhanfeng, Illman, Walter A., Berg, Steven J.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.11.2016
Subjects:
ISSN:0022-1694, 1879-2707
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The importance of geological data in HT is investigated via sandbox experiments.•Both accurate and inaccurate geological models can be well calibrated.•A well calibrated inaccurate geological model can yield poor model validations.•Using geological model as prior K values in geostatistical inversion approach preserves geological structures. This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with homogeneous geological units constructed with borehole data of varying accuracy are jointly calibrated with multiple pumping test data of two different pumping and observation densities. The results are compared to those from a geostatistical inverse model. Model calibration and validation performances are quantitatively assessed using drawdown scatterplots. We find that accurate and inaccurate geological models can be well calibrated, despite the estimated K values for the poor geological models being quite different from the actual values. Model validation results reveal that inaccurate geological models yield poor drawdown predictions, but using more calibration data improves its predictive capability. Moreover, model comparisons among a highly parameterized geostatistical and layer-based geological models show that, (1) as the number of pumping tests and monitoring locations are reduced, the performance gap between the approaches decreases, and (2) a simplified geological model with a fewer number of layers is more reliable than the one based on the wrong description of stratigraphy. Finally, using a geological model as prior information in geostatistical inverse models results in the preservation of geological features, especially in areas where drawdown data are not available. Overall, our sandbox results emphasize the importance of incorporating geological data in HT surveys when data from pumping tests is sparse. These findings have important implications for field applications of HT where well distances are large.
AbstractList This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with homogeneous geological units constructed with borehole data of varying accuracy are jointly calibrated with multiple pumping test data of two different pumping and observation densities. The results are compared to those from a geostatistical inverse model. Model calibration and validation performances are quantitatively assessed using drawdown scatterplots. We find that accurate and inaccurate geological models can be well calibrated, despite the estimated K values for the poor geological models being quite different from the actual values. Model validation results reveal that inaccurate geological models yield poor drawdown predictions, but using more calibration data improves its predictive capability. Moreover, model comparisons among a highly parameterized geostatistical and layer-based geological models show that, (1) as the number of pumping tests and monitoring locations are reduced, the performance gap between the approaches decreases, and (2) a simplified geological model with a fewer number of layers is more reliable than the one based on the wrong description of stratigraphy. Finally, using a geological model as prior information in geostatistical inverse models results in the preservation of geological features, especially in areas where drawdown data are not available. Overall, our sandbox results emphasize the importance of incorporating geological data in HT surveys when data from pumping tests is sparse. These findings have important implications for field applications of HT where well distances are large.
•The importance of geological data in HT is investigated via sandbox experiments.•Both accurate and inaccurate geological models can be well calibrated.•A well calibrated inaccurate geological model can yield poor model validations.•Using geological model as prior K values in geostatistical inversion approach preserves geological structures. This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with homogeneous geological units constructed with borehole data of varying accuracy are jointly calibrated with multiple pumping test data of two different pumping and observation densities. The results are compared to those from a geostatistical inverse model. Model calibration and validation performances are quantitatively assessed using drawdown scatterplots. We find that accurate and inaccurate geological models can be well calibrated, despite the estimated K values for the poor geological models being quite different from the actual values. Model validation results reveal that inaccurate geological models yield poor drawdown predictions, but using more calibration data improves its predictive capability. Moreover, model comparisons among a highly parameterized geostatistical and layer-based geological models show that, (1) as the number of pumping tests and monitoring locations are reduced, the performance gap between the approaches decreases, and (2) a simplified geological model with a fewer number of layers is more reliable than the one based on the wrong description of stratigraphy. Finally, using a geological model as prior information in geostatistical inverse models results in the preservation of geological features, especially in areas where drawdown data are not available. Overall, our sandbox results emphasize the importance of incorporating geological data in HT surveys when data from pumping tests is sparse. These findings have important implications for field applications of HT where well distances are large.
Author Zhao, Zhanfeng
Berg, Steven J.
Illman, Walter A.
Author_xml – sequence: 1
  givenname: Zhanfeng
  surname: Zhao
  fullname: Zhao, Zhanfeng
  email: z58zhao@uwaterloo.ca
  organization: Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
– sequence: 2
  givenname: Walter A.
  surname: Illman
  fullname: Illman, Walter A.
  organization: Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
– sequence: 3
  givenname: Steven J.
  surname: Berg
  fullname: Berg, Steven J.
  organization: Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
BookMark eNqNkU2P0zAQhi20SHQXfgKSj1wSPIlju3BAaLV8SJX2Amcz8Ufryo2L7SLy70npnriUuYxGet93NPPckpspTY6Q18BaYCDe7tv9brY5xbZbxpaplgl4Rlag5LrpJJM3ZMVY1zUg1vwFuS1lz5bqe74iPx4nWneOhsMx5YqTcTR5unUppm0wGKnFitSnTM8r8BSDoTUd0jbjcTdTnDDOJZR3dINjylhTnmnByY7pNy31ZOeX5LnHWNyrp35Hvn96-Hb_pdk8fv56_3HTIO-hNtLw3kr0Etl67A0f7KhAKNl1I3g1DFwo4a2yCHIYOukFSj8axQbBgEuF_R15c8k95vTz5ErVh1CMixEnl05Fd8vFoJTkcFUKSvCBgxD_I-WCA1uzs_T9RWpyKiU7r02oWEOaasYQNTB9pqX3-omWPtPSTGn2d9Hwj_uYwwHzfNX34eJzy29_BZd1McEtGG3IzlRtU7iS8AeldbSS
CitedBy_id crossref_primary_10_1016_j_jhydrol_2022_128124
crossref_primary_10_1016_j_jhydrol_2022_128883
crossref_primary_10_1016_j_jhydrol_2023_130325
crossref_primary_10_1016_j_jhydrol_2024_130648
crossref_primary_10_1016_j_jhydrol_2022_129018
crossref_primary_10_1007_s00477_025_03051_8
crossref_primary_10_1016_j_jhydrol_2022_127830
crossref_primary_10_1016_j_jhydrol_2021_127233
crossref_primary_10_1016_j_jhydrol_2020_125099
crossref_primary_10_1111_gwat_13476
crossref_primary_10_1016_j_advwatres_2021_103960
crossref_primary_10_1016_j_jhydrol_2019_124024
crossref_primary_10_1029_2022WR033831
crossref_primary_10_1016_j_advwatres_2024_104778
crossref_primary_10_1016_j_jhydrol_2017_02_032
crossref_primary_10_1111_gwat_13348
crossref_primary_10_1007_s13137_020_00151_1
crossref_primary_10_1016_j_jhydrol_2022_127911
crossref_primary_10_1016_j_jhydrol_2020_125137
crossref_primary_10_1016_j_jhydrol_2021_126700
crossref_primary_10_3390_w11091864
crossref_primary_10_1016_j_jhydrol_2024_130816
crossref_primary_10_1016_j_jhydrol_2019_03_089
crossref_primary_10_1016_j_jhydrol_2023_129247
crossref_primary_10_1007_s10040_019_01978_1
crossref_primary_10_1016_j_jhydrol_2017_09_045
crossref_primary_10_1029_2023WR036786
crossref_primary_10_1016_j_jhydrol_2021_126939
crossref_primary_10_1007_s10040_022_02535_z
crossref_primary_10_1016_j_jhydrol_2018_02_024
crossref_primary_10_1016_j_jhydrol_2019_02_044
crossref_primary_10_1002_hyp_14755
crossref_primary_10_1016_j_enggeo_2024_107692
crossref_primary_10_1007_s10712_023_09806_8
crossref_primary_10_2166_wst_2019_243
crossref_primary_10_1016_j_jhydrol_2022_127655
crossref_primary_10_3390_w13030383
crossref_primary_10_1016_j_enggeo_2020_105967
crossref_primary_10_1016_j_jconhyd_2021_103884
crossref_primary_10_1016_j_jhydrol_2022_128785
crossref_primary_10_1016_j_jhydrol_2025_133018
crossref_primary_10_1016_j_applthermaleng_2017_10_048
crossref_primary_10_1016_j_tust_2023_105034
crossref_primary_10_1111_gwat_13053
crossref_primary_10_1029_2019WR026531
crossref_primary_10_1029_2022WR034034
crossref_primary_10_1111_gwat_12879
crossref_primary_10_1016_j_advwatres_2024_104674
crossref_primary_10_1016_j_jhydrol_2020_125874
crossref_primary_10_1016_j_jhydrol_2023_130061
crossref_primary_10_1016_j_jhydrol_2016_12_004
crossref_primary_10_1016_j_jhydrol_2020_125438
crossref_primary_10_1016_j_jhydrol_2022_128673
crossref_primary_10_1029_2020WR028331
crossref_primary_10_1016_j_advwatres_2023_104404
crossref_primary_10_1002_2016WR019185
crossref_primary_10_1002_hyp_14299
crossref_primary_10_1007_s10040_021_02320_4
crossref_primary_10_1029_2023WR035191
Cites_doi 10.1029/2006WR005144
10.1029/92WR01756
10.1016/j.advwatres.2015.04.001
10.1190/1.2194528
10.1029/2009WR007745
10.1029/2011WR011704
10.1016/j.advwatres.2011.04.006
10.1111/j.1745-6584.2003.tb02580.x
10.1111/j.1745-6584.2005.00103.x
10.1190/geo2015-0147.1
10.1111/j.1745-6584.2007.00374.x
10.1111/j.1745-6584.2011.00859.x
10.1016/j.jhydrol.2012.09.031
10.1029/2011WR010462
10.1023/A:1022303706942
10.1029/2010WR009262
10.1029/2011WR010616
10.1029/2006WR004932
10.1016/j.advwatres.2016.01.006
10.1111/gwat.12159
10.1029/2008WR007180
10.1190/1.2195487
10.1016/j.jhydrol.2016.02.041
10.1029/2001WR000279
10.1029/2008WR007078
10.1111/gwat.12119
10.1111/gwat.12308
10.1029/2011WR010429
10.1029/2005WR004114
10.1029/2008WR007558
10.1029/2004WR003790
10.1029/2000WR900114
10.1016/j.advwatres.2012.08.005
10.1088/0266-5611/11/2/005
10.1029/WR022i013p02069
10.1002/2015WR017751
10.1007/s10040-007-0192-y
10.1111/j.1745-6584.2010.00729.x
10.1021/es101654j
10.1029/2001WR000338
10.1002/wrcr.20129
10.1016/j.jhydrol.2012.08.044
10.1029/2001WR001176
10.1007/s10040-004-0404-7
10.1029/2005WR004237
10.1029/2007WR006715
10.1029/2006WR005287
10.1029/2006WR004877
10.1111/j.1745-6584.1998.tb02843.x
10.1016/j.jhydrol.2015.07.047
10.1029/2010WR009635
10.1029/2011WR011044
10.1111/j.1745-6584.2010.00757.x
10.1002/2014WR016552
10.1016/j.jhydrol.2007.05.011
10.1190/geo2014-0569.1
10.1029/2003WR002262
10.1007/s10040-007-0252-3
10.1002/2015WR016910
10.1111/j.1745-6584.1993.tb00597.x
10.1029/2005WR004309
10.1029/94WR00950
10.1029/2010WR010367
10.1002/wrcr.20519
10.1002/wrcr.20356
10.1029/2010WR009144
10.1111/j.1745-6584.2012.00914.x
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7QH
7ST
7TG
7UA
C1K
F1W
H96
KL.
L.G
SOI
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.jhydrol.2016.08.061
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

Technology Research Database
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 1879-2707
EndPage 171
ExternalDocumentID 10_1016_j_jhydrol_2016_08_061
S0022169416305510
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QH
7ST
7TG
7UA
C1K
F1W
H96
KL.
L.G
SOI
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-a431t-7c43d7af7a09b3c45db8168722b1f8554686fd8da175527f6a7fbc805601478a3
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388248400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Nov 09 13:58:33 EST 2025
Sat Sep 27 20:47:05 EDT 2025
Tue Oct 07 09:49:38 EDT 2025
Sat Nov 29 07:28:35 EST 2025
Tue Nov 18 21:09:13 EST 2025
Fri Feb 23 02:27:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Geological model
Aquifer heterogeneity
Hydraulic tomography
Model calibration and validation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a431t-7c43d7af7a09b3c45db8168722b1f8554686fd8da175527f6a7fbc805601478a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1846410901
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_2000188741
proquest_miscellaneous_1864541661
proquest_miscellaneous_1846410901
crossref_citationtrail_10_1016_j_jhydrol_2016_08_061
crossref_primary_10_1016_j_jhydrol_2016_08_061
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2016_08_061
PublicationCentury 2000
PublicationDate November 2016
2016-11-00
20161101
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: November 2016
PublicationDecade 2010
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cardiff, Barrash (b0100) 2015; 53
Hubbard, Chen, Peterson, Majer, Williams, Swift, Mailloux, Rubin (b0150) 2001; 37
Cardiff, Barrash (b0080) 2011; 47
Zhu, Yeh (b0365) 2006; 42
Martin, Frind (b0230) 1998; 36
Cardiff, Bakhos, Kitanidis, Barrash (b0095) 2013; 49
Carle, Fogg (b0105) 1997; 29
Bowling, Rodriguez, Harry, Zheng (b0060) 2005; 43
Illman (b9000) 2014; 52
Illman, Zhu, Craig, Yin (b0175) 2010; 46
Soueid Ahmed, Zhou, Jardani, Revil, Dupont (b0280) 2015; 82
Paradis, Gloaguen, Lefebvre, Giroux (b0245) 2016; 536
Carrera, Alcolea, Medina, Hidalgo, Slooten (b0075) 2005; 13
Jardani, Revil, Dupont (b0200) 2013; 52
Hyndman, Harris, Gorelick (b0155) 1994; 30
Illman, Liu, Craig (b0160) 2007; 341
Gottlieb, Dietrich (b0145) 1995; 11
Troldborg, Refsgaard, Jensen, Engesgaard (b0305) 2007; 15
Berg, Illman (b0015) 2011; 47
Berg, Illman (b0035) 2015; 53
ARANZ Geo Limited, 2015. Leapfrog Hydro 2.2.3. 3D Geological Modelling Software.
Cardiff, Barrash, Kitanidis (b0090) 2013; 49
Illman, Berg, Yeh (b0185) 2012; 50
Illman, Craig, Liu (b0165) 2008; 46
Doherty (b0130) 2003; 41
Bohling, Zhan, Butler, Zheng (b0040) 2002; 38
Castagna, Becker, Bellin (b0115) 2011; 47
Refsgaard, Christensen, Sonnenborg, Seifert, Højberg, Troldborg (b0255) 2012; 36
Illman, Berg, Liu, Massi (b0180) 2010; 44
Zhang, Revil (b9005) 2015; 80
Illman, Liu, Takeuchi, Yeh, Ando, Saegusa (b0170) 2009; 45
Liu, Yeh, Gardiner (b0210) 2002; 38
Bohling, Butler (b0050) 2010; 48
Clement, Barrash, Knoll (b0120) 2006; 71
Schöniger, Illman, Wöhling, Nowak (b0265) 2015; 531
Craig (b0125) 2005
Jardani, Dupont, Revil, Massei, Fournier, Laignel (b0195) 2012; 472–473
Berg, Illman (b0020) 2011; 47
Sudicky (b0295) 1986; 22
Alexander, Berg, Illman (b0005) 2011; 49
Brauchler, Liedl, Dietrich (b0065) 2003; 39
Cardiff, Barrash, Kitanidis (b0085) 2012; 48
Zhu, Yeh (b0360) 2005; 41
Gupta, Clark, Vrugt, Abramowitz, Ye (b0140) 2012; 48
Zhou, Revil, Karaoulis, Hale, Doetsch, Cuttler (b0345) 2014
Sudicky, Illman, Goltz, Adams, McLaren (b0300) 2010; 46
Moret, Knoll, Barrash, Clement (b0240) 2006; 71
Mao, Yeh, Wan, Wen, Lu, Lee, Hsu (b0225) 2013; 49
Doherty (b0135) 2005
Boggs, Young, Beard, Gelhar, Rehfeldt, Adams (b0055) 1992; 28
Schöniger, Nowak, Hendricks Franssen (b0260) 2012; 48
Soueid Ahmed, Jardani, Revil, Dupont (b0285) 2016; 89
Zhou, Revil, Jardani (b0350) 2016; 81
Castagna, Bellin (b0110) 2009; 45
Kowalsky, Finsterle, Peterson, Hubbard, Rubin, Majer, Ward, Gee (b0205) 2005; 41
Straface, Yeh, Zhu, Troisi, Lee (b0290) 2007; 43
Zhou, Lim, Cupola, Cardiff (b0355) 2016; 52
Parra, Hackert, Bennett (b0250) 2006; 42
Liu, Kitanidis (b0220) 2011; 47
Illman, Berg, Zhao (b0190) 2015; 51
Seifert, Sonnenborg, Scharling, Hinsby (b0275) 2008; 16
Liu, Illman, Craig, Zhu, Yeh (b0215) 2007; 43
Yeh, Zhu (b0330) 2007; 43
Berg, Illman (b0030) 2013; 51
Brauchler, Hu, Dietrich, Sauter (b0070) 2011; 47
Zhao, Illman, Yeh, Berg, Mao (b0340) 2015; 51
Yeh, Liu (b0325) 2000; 36
Berg, Illman (b0025) 2012; 470–471
Bohling, Butler, Zhan, Knoll (b0045) 2007; 43
Xiang, Yeh, Lee, Hsu, Wen (b0310) 2009; 45
Yeh, Srivastava, Guzman, Harter (b0315) 1993; 31
Bohling (10.1016/j.jhydrol.2016.08.061_b0050) 2010; 48
Soueid Ahmed (10.1016/j.jhydrol.2016.08.061_b0285) 2016; 89
Berg (10.1016/j.jhydrol.2016.08.061_b0035) 2015; 53
Cardiff (10.1016/j.jhydrol.2016.08.061_b0090) 2013; 49
Zhao (10.1016/j.jhydrol.2016.08.061_b0340) 2015; 51
Yeh (10.1016/j.jhydrol.2016.08.061_b0325) 2000; 36
Sudicky (10.1016/j.jhydrol.2016.08.061_b0300) 2010; 46
Doherty (10.1016/j.jhydrol.2016.08.061_b0130) 2003; 41
Parra (10.1016/j.jhydrol.2016.08.061_b0250) 2006; 42
Zhou (10.1016/j.jhydrol.2016.08.061_b0350) 2016; 81
Craig (10.1016/j.jhydrol.2016.08.061_b0125) 2005
Illman (10.1016/j.jhydrol.2016.08.061_b0170) 2009; 45
Liu (10.1016/j.jhydrol.2016.08.061_b0215) 2007; 43
Paradis (10.1016/j.jhydrol.2016.08.061_b0245) 2016; 536
Yeh (10.1016/j.jhydrol.2016.08.061_b0330) 2007; 43
Alexander (10.1016/j.jhydrol.2016.08.061_b0005) 2011; 49
Illman (10.1016/j.jhydrol.2016.08.061_b9000) 2014; 52
Liu (10.1016/j.jhydrol.2016.08.061_b0210) 2002; 38
Illman (10.1016/j.jhydrol.2016.08.061_b0160) 2007; 341
Liu (10.1016/j.jhydrol.2016.08.061_b0220) 2011; 47
Bohling (10.1016/j.jhydrol.2016.08.061_b0040) 2002; 38
Zhang (10.1016/j.jhydrol.2016.08.061_b9005) 2015; 80
Refsgaard (10.1016/j.jhydrol.2016.08.061_b0255) 2012; 36
Sudicky (10.1016/j.jhydrol.2016.08.061_b0295) 1986; 22
Brauchler (10.1016/j.jhydrol.2016.08.061_b0070) 2011; 47
Moret (10.1016/j.jhydrol.2016.08.061_b0240) 2006; 71
Gottlieb (10.1016/j.jhydrol.2016.08.061_b0145) 1995; 11
Illman (10.1016/j.jhydrol.2016.08.061_b0165) 2008; 46
Zhu (10.1016/j.jhydrol.2016.08.061_b0360) 2005; 41
Berg (10.1016/j.jhydrol.2016.08.061_b0030) 2013; 51
Boggs (10.1016/j.jhydrol.2016.08.061_b0055) 1992; 28
Doherty (10.1016/j.jhydrol.2016.08.061_b0135) 2005
Soueid Ahmed (10.1016/j.jhydrol.2016.08.061_b0280) 2015; 82
Cardiff (10.1016/j.jhydrol.2016.08.061_b0095) 2013; 49
Seifert (10.1016/j.jhydrol.2016.08.061_b0275) 2008; 16
Zhou (10.1016/j.jhydrol.2016.08.061_b0345) 2014
10.1016/j.jhydrol.2016.08.061_b0010
Carle (10.1016/j.jhydrol.2016.08.061_b0105) 1997; 29
Brauchler (10.1016/j.jhydrol.2016.08.061_b0065) 2003; 39
Bohling (10.1016/j.jhydrol.2016.08.061_b0045) 2007; 43
Martin (10.1016/j.jhydrol.2016.08.061_b0230) 1998; 36
Bowling (10.1016/j.jhydrol.2016.08.061_b0060) 2005; 43
Illman (10.1016/j.jhydrol.2016.08.061_b0175) 2010; 46
Straface (10.1016/j.jhydrol.2016.08.061_b0290) 2007; 43
Berg (10.1016/j.jhydrol.2016.08.061_b0015) 2011; 47
Hubbard (10.1016/j.jhydrol.2016.08.061_b0150) 2001; 37
Jardani (10.1016/j.jhydrol.2016.08.061_b0195) 2012; 472–473
Troldborg (10.1016/j.jhydrol.2016.08.061_b0305) 2007; 15
Schöniger (10.1016/j.jhydrol.2016.08.061_b0260) 2012; 48
Cardiff (10.1016/j.jhydrol.2016.08.061_b0080) 2011; 47
Illman (10.1016/j.jhydrol.2016.08.061_b0185) 2012; 50
Cardiff (10.1016/j.jhydrol.2016.08.061_b0085) 2012; 48
Zhou (10.1016/j.jhydrol.2016.08.061_b0355) 2016; 52
Schöniger (10.1016/j.jhydrol.2016.08.061_b0265) 2015; 531
Berg (10.1016/j.jhydrol.2016.08.061_b0020) 2011; 47
Cardiff (10.1016/j.jhydrol.2016.08.061_b0100) 2015; 53
Illman (10.1016/j.jhydrol.2016.08.061_b0190) 2015; 51
Zhu (10.1016/j.jhydrol.2016.08.061_b0365) 2006; 42
Castagna (10.1016/j.jhydrol.2016.08.061_b0110) 2009; 45
Clement (10.1016/j.jhydrol.2016.08.061_b0120) 2006; 71
Castagna (10.1016/j.jhydrol.2016.08.061_b0115) 2011; 47
Berg (10.1016/j.jhydrol.2016.08.061_b0025) 2012; 470–471
Hyndman (10.1016/j.jhydrol.2016.08.061_b0155) 1994; 30
Illman (10.1016/j.jhydrol.2016.08.061_b0180) 2010; 44
Carrera (10.1016/j.jhydrol.2016.08.061_b0075) 2005; 13
Gupta (10.1016/j.jhydrol.2016.08.061_b0140) 2012; 48
Jardani (10.1016/j.jhydrol.2016.08.061_b0200) 2013; 52
Xiang (10.1016/j.jhydrol.2016.08.061_b0310) 2009; 45
Yeh (10.1016/j.jhydrol.2016.08.061_b0315) 1993; 31
Mao (10.1016/j.jhydrol.2016.08.061_b0225) 2013; 49
Kowalsky (10.1016/j.jhydrol.2016.08.061_b0205) 2005; 41
References_xml – volume: 71
  start-page: K59
  year: 2006
  end-page: K66
  ident: b0120
  article-title: Reflectivity modeling of a ground-penetrating-radar profile of a saturated fluvial formation
  publication-title: Geophysics
– volume: 52
  start-page: 659
  year: 2014
  end-page: 684
  ident: b9000
  article-title: Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks
  publication-title: Groundwater
– volume: 80
  start-page: M69
  year: 2015
  end-page: M88
  ident: b9005
  article-title: 2D joint inversion of geophysical data using petrophysical clustering and facies deformation
  publication-title: GEOPHYSICS
– volume: 22
  start-page: 2069
  year: 1986
  end-page: 2082
  ident: b0295
  article-title: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process
  publication-title: Water Resour. Res.
– volume: 46
  start-page: 1
  year: 2010
  end-page: 18
  ident: b0175
  article-title: Comparison of aquifer characterization approaches through steady state groundwater model validation: a controlled laboratory sandbox study
  publication-title: Water Resour. Res.
– volume: 43
  start-page: W06435
  year: 2007
  ident: b0330
  article-title: Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones
  publication-title: Water Resour. Res.
– year: 2014
  ident: b0345
  article-title: Image-guided inversion of electrical resistivity data
  publication-title: J. Int.
– volume: 47
  year: 2011
  ident: b0080
  article-title: 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response
  publication-title: Water Resour. Res.
– volume: 47
  start-page: 1
  year: 2011
  end-page: 17
  ident: b0015
  article-title: Capturing aquifer heterogeneity: comparison of approaches through controlled sandbox experiments
  publication-title: Water Resour. Res.
– volume: 43
  start-page: 1
  year: 2007
  end-page: 13
  ident: b0290
  article-title: Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy
  publication-title: Water Resour. Res.
– volume: 39
  start-page: 1370
  year: 2003
  ident: b0065
  article-title: A travel time based hydraulic tomographic approach
  publication-title: Water Resour. Res.
– volume: 30
  start-page: 1965
  year: 1994
  ident: b0155
  article-title: Coupled seismic and tracer test inversion for aquifer property characterization
  publication-title: Water Resour. Res.
– volume: 50
  start-page: 421
  year: 2012
  end-page: 431
  ident: b0185
  article-title: Comparison of approaches for predicting solute transport: sandbox experiments
  publication-title: Ground Water
– volume: 51
  start-page: 3219
  year: 2015
  end-page: 3237
  ident: b0190
  article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? a laboratory sandbox investigation
  publication-title: Water Resour. Res.
– volume: 15
  start-page: 843
  year: 2007
  end-page: 860
  ident: b0305
  article-title: The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system
  publication-title: Hydrogeol. J.
– volume: 41
  start-page: 1
  year: 2005
  end-page: 10
  ident: b0360
  article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography
  publication-title: Water Resour. Res.
– volume: 41
  start-page: 170
  year: 2003
  end-page: 177
  ident: b0130
  article-title: Ground water model calibration using pilot points and regularization
  publication-title: Ground Water
– year: 2005
  ident: b0135
  article-title: PEST Model-Independent Parameter Estimation User Manual
– volume: 38
  start-page: 60-1
  year: 2002
  end-page: 60-15
  ident: b0040
  article-title: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities
  publication-title: Water Resour. Res.
– volume: 48
  start-page: 1
  year: 2012
  end-page: 16
  ident: b0140
  article-title: Towards a comprehensive assessment of model structural adequacy
  publication-title: Water Resour. Res.
– volume: 48
  start-page: 1
  year: 2012
  end-page: 18
  ident: b0260
  article-title: Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography
  publication-title: Water Resour. Res.
– volume: 51
  start-page: 29
  year: 2013
  end-page: 40
  ident: b0030
  article-title: Field study of subsurface heterogeneity with steady-state hydraulic tomography
  publication-title: GroundWater
– volume: 53
  start-page: 896
  year: 2015
  end-page: 907
  ident: b0100
  article-title: Analytical and semi-analytical tools for the design of oscillatory pumping tests
  publication-title: Groundwater
– volume: 536
  start-page: 61
  year: 2016
  end-page: 73
  ident: b0245
  article-title: A field proof-of-concept of tomographic slug tests in an anisotropic littoral aquifer
  publication-title: J. Hydrol.
– volume: 472–473
  start-page: 287
  year: 2012
  end-page: 300
  ident: b0195
  article-title: Geostatistical inverse modeling of the transmissivity field of a heterogeneous alluvial aquifer under tidal influence
  publication-title: J. Hydrol.
– volume: 38
  start-page: 2
  year: 2002
  end-page: 10
  ident: b0210
  article-title: Effectiveness of hydraulic tomography: sandbox experiments
  publication-title: Water Resour. Res.
– volume: 31
  start-page: 634
  year: 1993
  end-page: 644
  ident: b0315
  article-title: A numerical model for water flow and chemical transport in variably saturated porous media
  publication-title: Ground Water
– volume: 36
  start-page: 679
  year: 1998
  end-page: 690
  ident: b0230
  article-title: Modeling a complex multi-aquifer system: the Waterloo moraine
  publication-title: Ground Water
– volume: 13
  start-page: 206
  year: 2005
  end-page: 222
  ident: b0075
  article-title: Inverse problem in hydrogeology
  publication-title: Hydrogeol. J.
– volume: 47
  year: 2011
  ident: b0020
  article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system
  publication-title: Water Resour. Res.
– volume: 45
  start-page: 1
  year: 2009
  end-page: 18
  ident: b0170
  article-title: Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan
  publication-title: Water Resour. Res.
– volume: 29
  start-page: 891
  year: 1997
  end-page: 918
  ident: b0105
  article-title: Modeling spatial variability with one and multi-dimensional continuous Markov Chains
  publication-title: Math. Geol.
– volume: 82
  start-page: 83
  year: 2015
  end-page: 97
  ident: b0280
  article-title: Image-guided inversion in steady-state hydraulic tomography
  publication-title: Adv. Water Resour.
– volume: 41
  start-page: 1
  year: 2005
  end-page: 19
  ident: b0205
  article-title: Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data
  publication-title: Water Resour. Res.
– volume: 45
  start-page: 1
  year: 2009
  end-page: 14
  ident: b0310
  article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis
  publication-title: Water Resour. Res.
– volume: 48
  start-page: 809
  year: 2010
  end-page: 824
  ident: b0050
  article-title: Inherent limitations of hydraulic tomography
  publication-title: Ground Water
– volume: 45
  start-page: 1
  year: 2009
  end-page: 16
  ident: b0110
  article-title: A Bayesian approach for inversion of hydraulic tomographic data
  publication-title: Water Resour. Res.
– volume: 470–471
  start-page: 172
  year: 2012
  end-page: 183
  ident: b0025
  article-title: Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: laboratory sandbox experiments
  publication-title: J. Hydrol.
– volume: 28
  start-page: 3281
  year: 1992
  end-page: 3291
  ident: b0055
  article-title: Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description
  publication-title: Water Resour. Res.
– volume: 47
  start-page: 1
  year: 2011
  end-page: 12
  ident: b0070
  article-title: A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography
  publication-title: Water Resour. Res.
– volume: 89
  start-page: 80
  year: 2016
  end-page: 90
  ident: b0285
  article-title: Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data
  publication-title: Adv. Water Resour.
– year: 2005
  ident: b0125
  article-title: Measurement of hydraulic parameters at multiple scales in two synthetic heterogeneous aquifers constructed in the laboratory
– volume: 42
  start-page: 1
  year: 2006
  end-page: 11
  ident: b0365
  article-title: Analysis of hydraulic tomography using temporal moments of drawdown recovery data
  publication-title: Water Resour. Res.
– volume: 341
  start-page: 222
  year: 2007
  end-page: 234
  ident: b0160
  article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: multi-method and multiscale validation of hydraulic conductivity tomograms
  publication-title: J. Hydrol.
– volume: 43
  start-page: 1
  year: 2007
  end-page: 23
  ident: b0045
  article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities
  publication-title: Water Resour. Res.
– volume: 37
  start-page: 2431
  year: 2001
  end-page: 2456
  ident: b0150
  article-title: Hydrogeological characterization of the south oyster bacterial transport site using geophysical data
  publication-title: Water Resour. Res.
– volume: 49
  start-page: 7311
  year: 2013
  end-page: 7326
  ident: b0090
  article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities
  publication-title: Water Resour. Res.
– volume: 49
  start-page: 5395
  year: 2013
  end-page: 5410
  ident: b0095
  article-title: Aquifer heterogeneity characterization with oscillatory pumping: sensitivity analysis and imaging potential
  publication-title: Water Resour. Res.
– volume: 49
  start-page: 365
  year: 2011
  end-page: 382
  ident: b0005
  article-title: Field study of hydrogeologic characterization methods in a heterogeneous aquifer
  publication-title: Ground Water
– volume: 11
  start-page: 353
  year: 1995
  end-page: 360
  ident: b0145
  article-title: Identification of the permeability distribution in soil by hydraulic tomography
  publication-title: Inverse Probl.
– volume: 49
  start-page: 1782
  year: 2013
  end-page: 1796
  ident: b0225
  article-title: Joint interpretation of sequential pumping tests in unconfined aquifers
  publication-title: Water Resour. Res.
– volume: 46
  start-page: W01508
  year: 2010
  ident: b0300
  article-title: Heterogeneity in hydraulic conductivity and its role on the macroscale transport of a solute plume: from measurements to a practical application of stochastic flow and transport theory
  publication-title: Water Resour. Res.
– volume: 531
  start-page: 96
  year: 2015
  end-page: 110
  ident: b0265
  article-title: Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection
  publication-title: J. Hydrol.
– volume: 48
  year: 2012
  ident: b0085
  article-title: A field proof-of-concept of aquifer imaging using 3-D transient hydraulic tomography with modular, temporarily-emplaced equipment
  publication-title: Water Resour. Res.
– volume: 36
  start-page: 36
  year: 2012
  end-page: 50
  ident: b0255
  article-title: Review of strategies for handling geological uncertainty in groundwater flow and transport modeling
  publication-title: Adv. Water Resour.
– volume: 16
  start-page: 659
  year: 2008
  end-page: 674
  ident: b0275
  article-title: Use of alternative conceptual models to assess the impact of a buried valley on groundwater vulnerability
  publication-title: Hydrogeol. J.
– volume: 36
  start-page: 2095
  year: 2000
  ident: b0325
  article-title: Hydraulic tomography: development of a new aquifer test method
  publication-title: Water Resour. Res.
– volume: 46
  start-page: 120
  year: 2008
  end-page: 132
  ident: b0165
  article-title: Practical issues in imaging hydraulic conductivity through hydraulic tomography
  publication-title: Ground Water
– volume: 47
  start-page: 1
  year: 2011
  end-page: 19
  ident: b0115
  article-title: Joint estimation of transmissivity and storativity in a bedrock fracture
  publication-title: Water Resour. Res.
– volume: 43
  start-page: 1
  year: 2007
  end-page: 13
  ident: b0215
  article-title: Laboratory sandbox validation of transient hydraulic tomography
  publication-title: Water Resour. Res.
– volume: 47
  start-page: 1
  year: 2011
  end-page: 9
  ident: b0220
  article-title: Large-scale inverse modeling with an application in hydraulic tomography
  publication-title: Water Resour. Res.
– reference: ARANZ Geo Limited, 2015. Leapfrog Hydro 2.2.3. 3D Geological Modelling Software.
– volume: 44
  start-page: 8609
  year: 2010
  end-page: 8614
  ident: b0180
  article-title: Hydraulic/partitioning tracer tomography for trichloroethene source zone characterization: small-scale sandbox experiments
  publication-title: Environ. Sci. Technol.
– volume: 42
  year: 2006
  ident: b0250
  article-title: Permeability and porosity images based on P -wave surface seismic data: application to a south Florida aquifer
  publication-title: Water Resour. Res.
– volume: 53
  start-page: 71
  year: 2015
  end-page: 89
  ident: b0035
  article-title: Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site
  publication-title: Groundwater
– volume: 51
  start-page: 4137
  year: 2015
  end-page: 4155
  ident: b0340
  article-title: Validation of hydraulic tomography in an unconfined aquifer: a controlled sandbox study
  publication-title: Water Resour. Res.
– volume: 52
  start-page: 2141
  year: 2016
  end-page: 2156
  ident: b0355
  article-title: Aquifer imaging with pressure waves—evaluation of low-impact characterization through sandbox experiments
  publication-title: Water Resour. Res.
– volume: 71
  start-page: B63
  year: 2006
  ident: b0240
  article-title: Investigating the stratigraphy of an alluvial aquifer using crosswell seismic travel time tomography
  publication-title: Geophysics
– volume: 81
  start-page: E89
  year: 2016
  end-page: E101
  ident: b0350
  article-title: Stochastic structure-constrained image-guided inversion of geophysical data
  publication-title: GEOPHYSICS
– volume: 43
  start-page: 890
  year: 2005
  end-page: 903
  ident: b0060
  article-title: Delineating alluvial aquifer heterogeneity using resistivity and GPR data
  publication-title: Ground Water
– volume: 52
  start-page: 62
  year: 2013
  end-page: 77
  ident: b0200
  article-title: Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging
  publication-title: Adv. Water Resour.
– volume: 43
  start-page: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2016.08.061_b0215
  article-title: Laboratory sandbox validation of transient hydraulic tomography
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR005144
– volume: 28
  start-page: 3281
  year: 1992
  ident: 10.1016/j.jhydrol.2016.08.061_b0055
  article-title: Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description
  publication-title: Water Resour. Res.
  doi: 10.1029/92WR01756
– volume: 82
  start-page: 83
  year: 2015
  ident: 10.1016/j.jhydrol.2016.08.061_b0280
  article-title: Image-guided inversion in steady-state hydraulic tomography
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2015.04.001
– volume: 71
  start-page: K59
  year: 2006
  ident: 10.1016/j.jhydrol.2016.08.061_b0120
  article-title: Reflectivity modeling of a ground-penetrating-radar profile of a saturated fluvial formation
  publication-title: Geophysics
  doi: 10.1190/1.2194528
– volume: 46
  start-page: 1
  year: 2010
  ident: 10.1016/j.jhydrol.2016.08.061_b0175
  article-title: Comparison of aquifer characterization approaches through steady state groundwater model validation: a controlled laboratory sandbox study
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR007745
– volume: 48
  year: 2012
  ident: 10.1016/j.jhydrol.2016.08.061_b0085
  article-title: A field proof-of-concept of aquifer imaging using 3-D transient hydraulic tomography with modular, temporarily-emplaced equipment
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR011704
– volume: 36
  start-page: 36
  year: 2012
  ident: 10.1016/j.jhydrol.2016.08.061_b0255
  article-title: Review of strategies for handling geological uncertainty in groundwater flow and transport modeling
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2011.04.006
– volume: 41
  start-page: 170
  year: 2003
  ident: 10.1016/j.jhydrol.2016.08.061_b0130
  article-title: Ground water model calibration using pilot points and regularization
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2003.tb02580.x
– volume: 43
  start-page: 890
  year: 2005
  ident: 10.1016/j.jhydrol.2016.08.061_b0060
  article-title: Delineating alluvial aquifer heterogeneity using resistivity and GPR data
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2005.00103.x
– volume: 80
  start-page: M69
  year: 2015
  ident: 10.1016/j.jhydrol.2016.08.061_b9005
  article-title: 2D joint inversion of geophysical data using petrophysical clustering and facies deformation
  publication-title: GEOPHYSICS
  doi: 10.1190/geo2015-0147.1
– volume: 46
  start-page: 120
  year: 2008
  ident: 10.1016/j.jhydrol.2016.08.061_b0165
  article-title: Practical issues in imaging hydraulic conductivity through hydraulic tomography
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2007.00374.x
– volume: 50
  start-page: 421
  year: 2012
  ident: 10.1016/j.jhydrol.2016.08.061_b0185
  article-title: Comparison of approaches for predicting solute transport: sandbox experiments
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2011.00859.x
– volume: 472–473
  start-page: 287
  year: 2012
  ident: 10.1016/j.jhydrol.2016.08.061_b0195
  article-title: Geostatistical inverse modeling of the transmissivity field of a heterogeneous alluvial aquifer under tidal influence
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.09.031
– volume: 48
  start-page: 1
  year: 2012
  ident: 10.1016/j.jhydrol.2016.08.061_b0260
  article-title: Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010462
– volume: 29
  start-page: 891
  issue: 7
  year: 1997
  ident: 10.1016/j.jhydrol.2016.08.061_b0105
  article-title: Modeling spatial variability with one and multi-dimensional continuous Markov Chains
  publication-title: Math. Geol.
  doi: 10.1023/A:1022303706942
– volume: 47
  start-page: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2016.08.061_b0115
  article-title: Joint estimation of transmissivity and storativity in a bedrock fracture
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009262
– volume: 47
  year: 2011
  ident: 10.1016/j.jhydrol.2016.08.061_b0020
  article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010616
– volume: 43
  start-page: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2016.08.061_b0045
  article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR004932
– year: 2005
  ident: 10.1016/j.jhydrol.2016.08.061_b0125
– volume: 89
  start-page: 80
  year: 2016
  ident: 10.1016/j.jhydrol.2016.08.061_b0285
  article-title: Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2016.01.006
– volume: 53
  start-page: 71
  year: 2015
  ident: 10.1016/j.jhydrol.2016.08.061_b0035
  article-title: Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site
  publication-title: Groundwater
  doi: 10.1111/gwat.12159
– volume: 45
  start-page: 1
  year: 2009
  ident: 10.1016/j.jhydrol.2016.08.061_b0310
  article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007180
– volume: 71
  start-page: B63
  year: 2006
  ident: 10.1016/j.jhydrol.2016.08.061_b0240
  article-title: Investigating the stratigraphy of an alluvial aquifer using crosswell seismic travel time tomography
  publication-title: Geophysics
  doi: 10.1190/1.2195487
– volume: 536
  start-page: 61
  year: 2016
  ident: 10.1016/j.jhydrol.2016.08.061_b0245
  article-title: A field proof-of-concept of tomographic slug tests in an anisotropic littoral aquifer
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.02.041
– volume: 37
  start-page: 2431
  year: 2001
  ident: 10.1016/j.jhydrol.2016.08.061_b0150
  article-title: Hydrogeological characterization of the south oyster bacterial transport site using geophysical data
  publication-title: Water Resour. Res.
  doi: 10.1029/2001WR000279
– volume: 45
  start-page: 1
  year: 2009
  ident: 10.1016/j.jhydrol.2016.08.061_b0110
  article-title: A Bayesian approach for inversion of hydraulic tomographic data
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007078
– volume: 52
  start-page: 659
  year: 2014
  ident: 10.1016/j.jhydrol.2016.08.061_b9000
  article-title: Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks
  publication-title: Groundwater
  doi: 10.1111/gwat.12119
– volume: 53
  start-page: 896
  year: 2015
  ident: 10.1016/j.jhydrol.2016.08.061_b0100
  article-title: Analytical and semi-analytical tools for the design of oscillatory pumping tests
  publication-title: Groundwater
  doi: 10.1111/gwat.12308
– volume: 47
  start-page: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2016.08.061_b0015
  article-title: Capturing aquifer heterogeneity: comparison of approaches through controlled sandbox experiments
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR010429
– volume: 42
  year: 2006
  ident: 10.1016/j.jhydrol.2016.08.061_b0250
  article-title: Permeability and porosity images based on P -wave surface seismic data: application to a south Florida aquifer
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004114
– volume: 46
  start-page: W01508
  year: 2010
  ident: 10.1016/j.jhydrol.2016.08.061_b0300
  article-title: Heterogeneity in hydraulic conductivity and its role on the macroscale transport of a solute plume: from measurements to a practical application of stochastic flow and transport theory
  publication-title: Water Resour. Res.
  doi: 10.1029/2008WR007558
– volume: 41
  start-page: 1
  year: 2005
  ident: 10.1016/j.jhydrol.2016.08.061_b0360
  article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003790
– volume: 36
  start-page: 2095
  year: 2000
  ident: 10.1016/j.jhydrol.2016.08.061_b0325
  article-title: Hydraulic tomography: development of a new aquifer test method
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900114
– volume: 52
  start-page: 62
  year: 2013
  ident: 10.1016/j.jhydrol.2016.08.061_b0200
  article-title: Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.08.005
– volume: 11
  start-page: 353
  year: 1995
  ident: 10.1016/j.jhydrol.2016.08.061_b0145
  article-title: Identification of the permeability distribution in soil by hydraulic tomography
  publication-title: Inverse Probl.
  doi: 10.1088/0266-5611/11/2/005
– volume: 22
  start-page: 2069
  year: 1986
  ident: 10.1016/j.jhydrol.2016.08.061_b0295
  article-title: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process
  publication-title: Water Resour. Res.
  doi: 10.1029/WR022i013p02069
– volume: 52
  start-page: 2141
  year: 2016
  ident: 10.1016/j.jhydrol.2016.08.061_b0355
  article-title: Aquifer imaging with pressure waves—evaluation of low-impact characterization through sandbox experiments
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR017751
– year: 2005
  ident: 10.1016/j.jhydrol.2016.08.061_b0135
– volume: 15
  start-page: 843
  year: 2007
  ident: 10.1016/j.jhydrol.2016.08.061_b0305
  article-title: The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-007-0192-y
– volume: 49
  start-page: 365
  year: 2011
  ident: 10.1016/j.jhydrol.2016.08.061_b0005
  article-title: Field study of hydrogeologic characterization methods in a heterogeneous aquifer
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2010.00729.x
– year: 2014
  ident: 10.1016/j.jhydrol.2016.08.061_b0345
  article-title: Image-guided inversion of electrical resistivity data
  publication-title: J. Int.
– volume: 44
  start-page: 8609
  issue: 22
  year: 2010
  ident: 10.1016/j.jhydrol.2016.08.061_b0180
  article-title: Hydraulic/partitioning tracer tomography for trichloroethene source zone characterization: small-scale sandbox experiments
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es101654j
– volume: 38
  start-page: 2
  year: 2002
  ident: 10.1016/j.jhydrol.2016.08.061_b0210
  article-title: Effectiveness of hydraulic tomography: sandbox experiments
  publication-title: Water Resour. Res.
  doi: 10.1029/2001WR000338
– volume: 49
  start-page: 1782
  year: 2013
  ident: 10.1016/j.jhydrol.2016.08.061_b0225
  article-title: Joint interpretation of sequential pumping tests in unconfined aquifers
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20129
– volume: 470–471
  start-page: 172
  year: 2012
  ident: 10.1016/j.jhydrol.2016.08.061_b0025
  article-title: Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: laboratory sandbox experiments
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2012.08.044
– volume: 38
  start-page: 60-1
  year: 2002
  ident: 10.1016/j.jhydrol.2016.08.061_b0040
  article-title: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities
  publication-title: Water Resour. Res.
  doi: 10.1029/2001WR001176
– volume: 13
  start-page: 206
  year: 2005
  ident: 10.1016/j.jhydrol.2016.08.061_b0075
  article-title: Inverse problem in hydrogeology
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-004-0404-7
– volume: 41
  start-page: 1
  year: 2005
  ident: 10.1016/j.jhydrol.2016.08.061_b0205
  article-title: Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004237
– volume: 45
  start-page: 1
  year: 2009
  ident: 10.1016/j.jhydrol.2016.08.061_b0170
  article-title: Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006715
– volume: 43
  start-page: 1
  year: 2007
  ident: 10.1016/j.jhydrol.2016.08.061_b0290
  article-title: Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR005287
– volume: 43
  start-page: W06435
  issue: 6
  year: 2007
  ident: 10.1016/j.jhydrol.2016.08.061_b0330
  article-title: Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR004877
– volume: 36
  start-page: 679
  year: 1998
  ident: 10.1016/j.jhydrol.2016.08.061_b0230
  article-title: Modeling a complex multi-aquifer system: the Waterloo moraine
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1998.tb02843.x
– volume: 531
  start-page: 96
  year: 2015
  ident: 10.1016/j.jhydrol.2016.08.061_b0265
  article-title: Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.07.047
– volume: 47
  start-page: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2016.08.061_b0070
  article-title: A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009635
– volume: 48
  start-page: 1
  year: 2012
  ident: 10.1016/j.jhydrol.2016.08.061_b0140
  article-title: Towards a comprehensive assessment of model structural adequacy
  publication-title: Water Resour. Res.
  doi: 10.1029/2011WR011044
– volume: 48
  start-page: 809
  year: 2010
  ident: 10.1016/j.jhydrol.2016.08.061_b0050
  article-title: Inherent limitations of hydraulic tomography
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.2010.00757.x
– ident: 10.1016/j.jhydrol.2016.08.061_b0010
– volume: 51
  start-page: 3219
  year: 2015
  ident: 10.1016/j.jhydrol.2016.08.061_b0190
  article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? a laboratory sandbox investigation
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR016552
– volume: 341
  start-page: 222
  year: 2007
  ident: 10.1016/j.jhydrol.2016.08.061_b0160
  article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: multi-method and multiscale validation of hydraulic conductivity tomograms
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.05.011
– volume: 81
  start-page: E89
  year: 2016
  ident: 10.1016/j.jhydrol.2016.08.061_b0350
  article-title: Stochastic structure-constrained image-guided inversion of geophysical data
  publication-title: GEOPHYSICS
  doi: 10.1190/geo2014-0569.1
– volume: 39
  start-page: 1370
  year: 2003
  ident: 10.1016/j.jhydrol.2016.08.061_b0065
  article-title: A travel time based hydraulic tomographic approach
  publication-title: Water Resour. Res.
  doi: 10.1029/2003WR002262
– volume: 16
  start-page: 659
  year: 2008
  ident: 10.1016/j.jhydrol.2016.08.061_b0275
  article-title: Use of alternative conceptual models to assess the impact of a buried valley on groundwater vulnerability
  publication-title: Hydrogeol. J.
  doi: 10.1007/s10040-007-0252-3
– volume: 51
  start-page: 4137
  year: 2015
  ident: 10.1016/j.jhydrol.2016.08.061_b0340
  article-title: Validation of hydraulic tomography in an unconfined aquifer: a controlled sandbox study
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR016910
– volume: 31
  start-page: 634
  year: 1993
  ident: 10.1016/j.jhydrol.2016.08.061_b0315
  article-title: A numerical model for water flow and chemical transport in variably saturated porous media
  publication-title: Ground Water
  doi: 10.1111/j.1745-6584.1993.tb00597.x
– volume: 42
  start-page: 1
  year: 2006
  ident: 10.1016/j.jhydrol.2016.08.061_b0365
  article-title: Analysis of hydraulic tomography using temporal moments of drawdown recovery data
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004309
– volume: 30
  start-page: 1965
  year: 1994
  ident: 10.1016/j.jhydrol.2016.08.061_b0155
  article-title: Coupled seismic and tracer test inversion for aquifer property characterization
  publication-title: Water Resour. Res.
  doi: 10.1029/94WR00950
– volume: 47
  year: 2011
  ident: 10.1016/j.jhydrol.2016.08.061_b0080
  article-title: 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR010367
– volume: 49
  start-page: 7311
  year: 2013
  ident: 10.1016/j.jhydrol.2016.08.061_b0090
  article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20519
– volume: 49
  start-page: 5395
  year: 2013
  ident: 10.1016/j.jhydrol.2016.08.061_b0095
  article-title: Aquifer heterogeneity characterization with oscillatory pumping: sensitivity analysis and imaging potential
  publication-title: Water Resour. Res.
  doi: 10.1002/wrcr.20356
– volume: 47
  start-page: 1
  year: 2011
  ident: 10.1016/j.jhydrol.2016.08.061_b0220
  article-title: Large-scale inverse modeling with an application in hydraulic tomography
  publication-title: Water Resour. Res.
  doi: 10.1029/2010WR009144
– volume: 51
  start-page: 29
  year: 2013
  ident: 10.1016/j.jhydrol.2016.08.061_b0030
  article-title: Field study of subsurface heterogeneity with steady-state hydraulic tomography
  publication-title: GroundWater
  doi: 10.1111/j.1745-6584.2012.00914.x
SSID ssj0000334
Score 2.4483428
Snippet •The importance of geological data in HT is investigated via sandbox experiments.•Both accurate and inaccurate geological models can be well calibrated.•A well...
This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 156
SubjectTerms Aquifer heterogeneity
Calibration
drawdown
Fluid flow
Geological model
Geology
Geostatistics
Heat treatment
Hydraulic tomography
Hydraulics
hydrologic models
Mathematical models
Model calibration and validation
model validation
monitoring
prediction
Pumping
stratigraphy
surveys
tomography
Title On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study
URI https://dx.doi.org/10.1016/j.jhydrol.2016.08.061
https://www.proquest.com/docview/1846410901
https://www.proquest.com/docview/1864541661
https://www.proquest.com/docview/2000188741
Volume 542
WOSCitedRecordID wos000388248400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLaqDQleEFcxbjISb1VKnTh2wluFxmWaNh6GqHgJdhyzVW0y9TKV38Cf5pzYSaoNOvbASxRFtRX3fDnn8_G5EPIaKGwuQsaDQqkoQE4e6JSrwDBpjLI8tS5R-FAeHSXjcfq51_vV5MJcTGVZJut1ev5fRQ3PQNiYOnsDcbeTwgO4B6HDFcQO138S_LELXDyb1cwav1vggz-KVslhTGgdXHj608zVCotcL6uZr1zdV75ICXoKDh1A8BR-oUqjq_VGNdqrhBbncxWdgLWOZliBwSDcWlfDt1NVO2bRSW0LbzIRltOp98N-rQ_v-6NB6yXw0Weu-Vr_YLDppWDCp-ttaF7Y9DLhGho3mjd2hbW87mSx2DDDzHVmuaLhnbNhMpi4RWFwnnBFWFln0ppj_EuWro0_bELbJpmfJsNpMmzIiVvp3VDGKajI3dGn_fFBZ9ijiDfF53EpXULYmz--z9-oziWjXzOZk3vkrpcYHTno3Ce9onxAbn8oPAQeku_HJQUI0Q5CtLK0gxBFCFGAEG0hRDsI0QZCb2kHIOoBRGsAPSJf3u-fvPsY-E4cgQKCuQxkziMjlZVqmOoo57HR2K9FhqFmtg50TIQ1iVFARuNQWqGk1XkyxO0-l4mKHpOdsiqLJ4Rag5sEq8OhybnANGmtZFiEesgSoRXfI7z507Lcl6nHbinTbKvQ9sigHXbu6rRcNyBpJJJ5sulIZAZIu27oq0aCGShjPGFTZVGtFhkDNs8x1Hnrb7CIHhPb5sH8OQbmn7OnN13XM3Kn-_6ek53lfFW8ILfyi-XZYv7SQ_o3ru7J5w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+importance+of+geological+data+for+hydraulic+tomography+analysis%3A+Laboratory+sandbox+study&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Zhao%2C+Zhanfeng&rft.au=Illman%2C+Walter+A.&rft.au=Berg%2C+Steven+J.&rft.date=2016-11-01&rft.issn=0022-1694&rft.volume=542&rft.spage=156&rft.epage=171&rft_id=info:doi/10.1016%2Fj.jhydrol.2016.08.061&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2016_08_061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon