On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study
•The importance of geological data in HT is investigated via sandbox experiments.•Both accurate and inaccurate geological models can be well calibrated.•A well calibrated inaccurate geological model can yield poor model validations.•Using geological model as prior K values in geostatistical inversio...
Saved in:
| Published in: | Journal of hydrology (Amsterdam) Vol. 542; pp. 156 - 171 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.11.2016
|
| Subjects: | |
| ISSN: | 0022-1694, 1879-2707 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •The importance of geological data in HT is investigated via sandbox experiments.•Both accurate and inaccurate geological models can be well calibrated.•A well calibrated inaccurate geological model can yield poor model validations.•Using geological model as prior K values in geostatistical inversion approach preserves geological structures.
This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with homogeneous geological units constructed with borehole data of varying accuracy are jointly calibrated with multiple pumping test data of two different pumping and observation densities. The results are compared to those from a geostatistical inverse model. Model calibration and validation performances are quantitatively assessed using drawdown scatterplots. We find that accurate and inaccurate geological models can be well calibrated, despite the estimated K values for the poor geological models being quite different from the actual values. Model validation results reveal that inaccurate geological models yield poor drawdown predictions, but using more calibration data improves its predictive capability. Moreover, model comparisons among a highly parameterized geostatistical and layer-based geological models show that, (1) as the number of pumping tests and monitoring locations are reduced, the performance gap between the approaches decreases, and (2) a simplified geological model with a fewer number of layers is more reliable than the one based on the wrong description of stratigraphy. Finally, using a geological model as prior information in geostatistical inverse models results in the preservation of geological features, especially in areas where drawdown data are not available. Overall, our sandbox results emphasize the importance of incorporating geological data in HT surveys when data from pumping tests is sparse. These findings have important implications for field applications of HT where well distances are large. |
|---|---|
| AbstractList | •The importance of geological data in HT is investigated via sandbox experiments.•Both accurate and inaccurate geological models can be well calibrated.•A well calibrated inaccurate geological model can yield poor model validations.•Using geological model as prior K values in geostatistical inversion approach preserves geological structures.
This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with homogeneous geological units constructed with borehole data of varying accuracy are jointly calibrated with multiple pumping test data of two different pumping and observation densities. The results are compared to those from a geostatistical inverse model. Model calibration and validation performances are quantitatively assessed using drawdown scatterplots. We find that accurate and inaccurate geological models can be well calibrated, despite the estimated K values for the poor geological models being quite different from the actual values. Model validation results reveal that inaccurate geological models yield poor drawdown predictions, but using more calibration data improves its predictive capability. Moreover, model comparisons among a highly parameterized geostatistical and layer-based geological models show that, (1) as the number of pumping tests and monitoring locations are reduced, the performance gap between the approaches decreases, and (2) a simplified geological model with a fewer number of layers is more reliable than the one based on the wrong description of stratigraphy. Finally, using a geological model as prior information in geostatistical inverse models results in the preservation of geological features, especially in areas where drawdown data are not available. Overall, our sandbox results emphasize the importance of incorporating geological data in HT surveys when data from pumping tests is sparse. These findings have important implications for field applications of HT where well distances are large. This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with homogeneous geological units constructed with borehole data of varying accuracy are jointly calibrated with multiple pumping test data of two different pumping and observation densities. The results are compared to those from a geostatistical inverse model. Model calibration and validation performances are quantitatively assessed using drawdown scatterplots. We find that accurate and inaccurate geological models can be well calibrated, despite the estimated K values for the poor geological models being quite different from the actual values. Model validation results reveal that inaccurate geological models yield poor drawdown predictions, but using more calibration data improves its predictive capability. Moreover, model comparisons among a highly parameterized geostatistical and layer-based geological models show that, (1) as the number of pumping tests and monitoring locations are reduced, the performance gap between the approaches decreases, and (2) a simplified geological model with a fewer number of layers is more reliable than the one based on the wrong description of stratigraphy. Finally, using a geological model as prior information in geostatistical inverse models results in the preservation of geological features, especially in areas where drawdown data are not available. Overall, our sandbox results emphasize the importance of incorporating geological data in HT surveys when data from pumping tests is sparse. These findings have important implications for field applications of HT where well distances are large. |
| Author | Zhao, Zhanfeng Berg, Steven J. Illman, Walter A. |
| Author_xml | – sequence: 1 givenname: Zhanfeng surname: Zhao fullname: Zhao, Zhanfeng email: z58zhao@uwaterloo.ca organization: Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada – sequence: 2 givenname: Walter A. surname: Illman fullname: Illman, Walter A. organization: Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada – sequence: 3 givenname: Steven J. surname: Berg fullname: Berg, Steven J. organization: Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada |
| BookMark | eNqNkU2P0zAQhi20SHQXfgKSj1wSPIlju3BAaLV8SJX2Amcz8Ufryo2L7SLy70npnriUuYxGet93NPPckpspTY6Q18BaYCDe7tv9brY5xbZbxpaplgl4Rlag5LrpJJM3ZMVY1zUg1vwFuS1lz5bqe74iPx4nWneOhsMx5YqTcTR5unUppm0wGKnFitSnTM8r8BSDoTUd0jbjcTdTnDDOJZR3dINjylhTnmnByY7pNy31ZOeX5LnHWNyrp35Hvn96-Hb_pdk8fv56_3HTIO-hNtLw3kr0Etl67A0f7KhAKNl1I3g1DFwo4a2yCHIYOukFSj8axQbBgEuF_R15c8k95vTz5ErVh1CMixEnl05Fd8vFoJTkcFUKSvCBgxD_I-WCA1uzs_T9RWpyKiU7r02oWEOaasYQNTB9pqX3-omWPtPSTGn2d9Hwj_uYwwHzfNX34eJzy29_BZd1McEtGG3IzlRtU7iS8AeldbSS |
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2022_128124 crossref_primary_10_1016_j_jhydrol_2022_128883 crossref_primary_10_1016_j_jhydrol_2023_130325 crossref_primary_10_1016_j_jhydrol_2024_130648 crossref_primary_10_1016_j_jhydrol_2022_129018 crossref_primary_10_1007_s00477_025_03051_8 crossref_primary_10_1016_j_jhydrol_2022_127830 crossref_primary_10_1016_j_jhydrol_2021_127233 crossref_primary_10_1016_j_jhydrol_2020_125099 crossref_primary_10_1111_gwat_13476 crossref_primary_10_1016_j_advwatres_2021_103960 crossref_primary_10_1016_j_jhydrol_2019_124024 crossref_primary_10_1029_2022WR033831 crossref_primary_10_1016_j_advwatres_2024_104778 crossref_primary_10_1016_j_jhydrol_2017_02_032 crossref_primary_10_1111_gwat_13348 crossref_primary_10_1007_s13137_020_00151_1 crossref_primary_10_1016_j_jhydrol_2022_127911 crossref_primary_10_1016_j_jhydrol_2020_125137 crossref_primary_10_1016_j_jhydrol_2021_126700 crossref_primary_10_3390_w11091864 crossref_primary_10_1016_j_jhydrol_2024_130816 crossref_primary_10_1016_j_jhydrol_2019_03_089 crossref_primary_10_1016_j_jhydrol_2023_129247 crossref_primary_10_1007_s10040_019_01978_1 crossref_primary_10_1016_j_jhydrol_2017_09_045 crossref_primary_10_1029_2023WR036786 crossref_primary_10_1016_j_jhydrol_2021_126939 crossref_primary_10_1007_s10040_022_02535_z crossref_primary_10_1016_j_jhydrol_2018_02_024 crossref_primary_10_1016_j_jhydrol_2019_02_044 crossref_primary_10_1002_hyp_14755 crossref_primary_10_1016_j_enggeo_2024_107692 crossref_primary_10_1007_s10712_023_09806_8 crossref_primary_10_2166_wst_2019_243 crossref_primary_10_1016_j_jhydrol_2022_127655 crossref_primary_10_3390_w13030383 crossref_primary_10_1016_j_enggeo_2020_105967 crossref_primary_10_1016_j_jconhyd_2021_103884 crossref_primary_10_1016_j_jhydrol_2022_128785 crossref_primary_10_1016_j_jhydrol_2025_133018 crossref_primary_10_1016_j_applthermaleng_2017_10_048 crossref_primary_10_1016_j_tust_2023_105034 crossref_primary_10_1111_gwat_13053 crossref_primary_10_1029_2019WR026531 crossref_primary_10_1029_2022WR034034 crossref_primary_10_1111_gwat_12879 crossref_primary_10_1016_j_advwatres_2024_104674 crossref_primary_10_1016_j_jhydrol_2020_125874 crossref_primary_10_1016_j_jhydrol_2023_130061 crossref_primary_10_1016_j_jhydrol_2016_12_004 crossref_primary_10_1016_j_jhydrol_2020_125438 crossref_primary_10_1016_j_jhydrol_2022_128673 crossref_primary_10_1029_2020WR028331 crossref_primary_10_1016_j_advwatres_2023_104404 crossref_primary_10_1002_2016WR019185 crossref_primary_10_1002_hyp_14299 crossref_primary_10_1007_s10040_021_02320_4 crossref_primary_10_1029_2023WR035191 |
| Cites_doi | 10.1029/2006WR005144 10.1029/92WR01756 10.1016/j.advwatres.2015.04.001 10.1190/1.2194528 10.1029/2009WR007745 10.1029/2011WR011704 10.1016/j.advwatres.2011.04.006 10.1111/j.1745-6584.2003.tb02580.x 10.1111/j.1745-6584.2005.00103.x 10.1190/geo2015-0147.1 10.1111/j.1745-6584.2007.00374.x 10.1111/j.1745-6584.2011.00859.x 10.1016/j.jhydrol.2012.09.031 10.1029/2011WR010462 10.1023/A:1022303706942 10.1029/2010WR009262 10.1029/2011WR010616 10.1029/2006WR004932 10.1016/j.advwatres.2016.01.006 10.1111/gwat.12159 10.1029/2008WR007180 10.1190/1.2195487 10.1016/j.jhydrol.2016.02.041 10.1029/2001WR000279 10.1029/2008WR007078 10.1111/gwat.12119 10.1111/gwat.12308 10.1029/2011WR010429 10.1029/2005WR004114 10.1029/2008WR007558 10.1029/2004WR003790 10.1029/2000WR900114 10.1016/j.advwatres.2012.08.005 10.1088/0266-5611/11/2/005 10.1029/WR022i013p02069 10.1002/2015WR017751 10.1007/s10040-007-0192-y 10.1111/j.1745-6584.2010.00729.x 10.1021/es101654j 10.1029/2001WR000338 10.1002/wrcr.20129 10.1016/j.jhydrol.2012.08.044 10.1029/2001WR001176 10.1007/s10040-004-0404-7 10.1029/2005WR004237 10.1029/2007WR006715 10.1029/2006WR005287 10.1029/2006WR004877 10.1111/j.1745-6584.1998.tb02843.x 10.1016/j.jhydrol.2015.07.047 10.1029/2010WR009635 10.1029/2011WR011044 10.1111/j.1745-6584.2010.00757.x 10.1002/2014WR016552 10.1016/j.jhydrol.2007.05.011 10.1190/geo2014-0569.1 10.1029/2003WR002262 10.1007/s10040-007-0252-3 10.1002/2015WR016910 10.1111/j.1745-6584.1993.tb00597.x 10.1029/2005WR004309 10.1029/94WR00950 10.1029/2010WR010367 10.1002/wrcr.20519 10.1002/wrcr.20356 10.1029/2010WR009144 10.1111/j.1745-6584.2012.00914.x |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier B.V. |
| Copyright_xml | – notice: 2016 Elsevier B.V. |
| DBID | AAYXX CITATION 7QH 7ST 7TG 7UA C1K F1W H96 KL. L.G SOI 8FD FR3 KR7 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2016.08.061 |
| DatabaseName | CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Technology Research Database Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Geology |
| EISSN | 1879-2707 |
| EndPage | 171 |
| ExternalDocumentID | 10_1016_j_jhydrol_2016_08_061 S0022169416305510 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QH 7ST 7TG 7UA C1K F1W H96 KL. L.G SOI 8FD FR3 KR7 7S9 L.6 |
| ID | FETCH-LOGICAL-a431t-7c43d7af7a09b3c45db8168722b1f8554686fd8da175527f6a7fbc805601478a3 |
| ISICitedReferencesCount | 59 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000388248400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Sun Nov 09 13:58:33 EST 2025 Sat Sep 27 20:47:05 EDT 2025 Tue Oct 07 09:49:38 EDT 2025 Sat Nov 29 07:28:35 EST 2025 Tue Nov 18 21:09:13 EST 2025 Fri Feb 23 02:27:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Geological model Aquifer heterogeneity Hydraulic tomography Model calibration and validation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a431t-7c43d7af7a09b3c45db8168722b1f8554686fd8da175527f6a7fbc805601478a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1846410901 |
| PQPubID | 23462 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_2000188741 proquest_miscellaneous_1864541661 proquest_miscellaneous_1846410901 crossref_citationtrail_10_1016_j_jhydrol_2016_08_061 crossref_primary_10_1016_j_jhydrol_2016_08_061 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2016_08_061 |
| PublicationCentury | 2000 |
| PublicationDate | November 2016 2016-11-00 20161101 |
| PublicationDateYYYYMMDD | 2016-11-01 |
| PublicationDate_xml | – month: 11 year: 2016 text: November 2016 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2016 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cardiff, Barrash (b0100) 2015; 53 Hubbard, Chen, Peterson, Majer, Williams, Swift, Mailloux, Rubin (b0150) 2001; 37 Cardiff, Barrash (b0080) 2011; 47 Zhu, Yeh (b0365) 2006; 42 Martin, Frind (b0230) 1998; 36 Cardiff, Bakhos, Kitanidis, Barrash (b0095) 2013; 49 Carle, Fogg (b0105) 1997; 29 Bowling, Rodriguez, Harry, Zheng (b0060) 2005; 43 Illman (b9000) 2014; 52 Illman, Zhu, Craig, Yin (b0175) 2010; 46 Soueid Ahmed, Zhou, Jardani, Revil, Dupont (b0280) 2015; 82 Paradis, Gloaguen, Lefebvre, Giroux (b0245) 2016; 536 Carrera, Alcolea, Medina, Hidalgo, Slooten (b0075) 2005; 13 Jardani, Revil, Dupont (b0200) 2013; 52 Hyndman, Harris, Gorelick (b0155) 1994; 30 Illman, Liu, Craig (b0160) 2007; 341 Gottlieb, Dietrich (b0145) 1995; 11 Troldborg, Refsgaard, Jensen, Engesgaard (b0305) 2007; 15 Berg, Illman (b0015) 2011; 47 Berg, Illman (b0035) 2015; 53 ARANZ Geo Limited, 2015. Leapfrog Hydro 2.2.3. 3D Geological Modelling Software. Cardiff, Barrash, Kitanidis (b0090) 2013; 49 Illman, Berg, Yeh (b0185) 2012; 50 Illman, Craig, Liu (b0165) 2008; 46 Doherty (b0130) 2003; 41 Bohling, Zhan, Butler, Zheng (b0040) 2002; 38 Castagna, Becker, Bellin (b0115) 2011; 47 Refsgaard, Christensen, Sonnenborg, Seifert, Højberg, Troldborg (b0255) 2012; 36 Illman, Berg, Liu, Massi (b0180) 2010; 44 Zhang, Revil (b9005) 2015; 80 Illman, Liu, Takeuchi, Yeh, Ando, Saegusa (b0170) 2009; 45 Liu, Yeh, Gardiner (b0210) 2002; 38 Bohling, Butler (b0050) 2010; 48 Clement, Barrash, Knoll (b0120) 2006; 71 Schöniger, Illman, Wöhling, Nowak (b0265) 2015; 531 Craig (b0125) 2005 Jardani, Dupont, Revil, Massei, Fournier, Laignel (b0195) 2012; 472–473 Berg, Illman (b0020) 2011; 47 Sudicky (b0295) 1986; 22 Alexander, Berg, Illman (b0005) 2011; 49 Brauchler, Liedl, Dietrich (b0065) 2003; 39 Cardiff, Barrash, Kitanidis (b0085) 2012; 48 Zhu, Yeh (b0360) 2005; 41 Gupta, Clark, Vrugt, Abramowitz, Ye (b0140) 2012; 48 Zhou, Revil, Karaoulis, Hale, Doetsch, Cuttler (b0345) 2014 Sudicky, Illman, Goltz, Adams, McLaren (b0300) 2010; 46 Moret, Knoll, Barrash, Clement (b0240) 2006; 71 Mao, Yeh, Wan, Wen, Lu, Lee, Hsu (b0225) 2013; 49 Doherty (b0135) 2005 Boggs, Young, Beard, Gelhar, Rehfeldt, Adams (b0055) 1992; 28 Schöniger, Nowak, Hendricks Franssen (b0260) 2012; 48 Soueid Ahmed, Jardani, Revil, Dupont (b0285) 2016; 89 Zhou, Revil, Jardani (b0350) 2016; 81 Castagna, Bellin (b0110) 2009; 45 Kowalsky, Finsterle, Peterson, Hubbard, Rubin, Majer, Ward, Gee (b0205) 2005; 41 Straface, Yeh, Zhu, Troisi, Lee (b0290) 2007; 43 Zhou, Lim, Cupola, Cardiff (b0355) 2016; 52 Parra, Hackert, Bennett (b0250) 2006; 42 Liu, Kitanidis (b0220) 2011; 47 Illman, Berg, Zhao (b0190) 2015; 51 Seifert, Sonnenborg, Scharling, Hinsby (b0275) 2008; 16 Liu, Illman, Craig, Zhu, Yeh (b0215) 2007; 43 Yeh, Zhu (b0330) 2007; 43 Berg, Illman (b0030) 2013; 51 Brauchler, Hu, Dietrich, Sauter (b0070) 2011; 47 Zhao, Illman, Yeh, Berg, Mao (b0340) 2015; 51 Yeh, Liu (b0325) 2000; 36 Berg, Illman (b0025) 2012; 470–471 Bohling, Butler, Zhan, Knoll (b0045) 2007; 43 Xiang, Yeh, Lee, Hsu, Wen (b0310) 2009; 45 Yeh, Srivastava, Guzman, Harter (b0315) 1993; 31 Bohling (10.1016/j.jhydrol.2016.08.061_b0050) 2010; 48 Soueid Ahmed (10.1016/j.jhydrol.2016.08.061_b0285) 2016; 89 Berg (10.1016/j.jhydrol.2016.08.061_b0035) 2015; 53 Cardiff (10.1016/j.jhydrol.2016.08.061_b0090) 2013; 49 Zhao (10.1016/j.jhydrol.2016.08.061_b0340) 2015; 51 Yeh (10.1016/j.jhydrol.2016.08.061_b0325) 2000; 36 Sudicky (10.1016/j.jhydrol.2016.08.061_b0300) 2010; 46 Doherty (10.1016/j.jhydrol.2016.08.061_b0130) 2003; 41 Parra (10.1016/j.jhydrol.2016.08.061_b0250) 2006; 42 Zhou (10.1016/j.jhydrol.2016.08.061_b0350) 2016; 81 Craig (10.1016/j.jhydrol.2016.08.061_b0125) 2005 Illman (10.1016/j.jhydrol.2016.08.061_b0170) 2009; 45 Liu (10.1016/j.jhydrol.2016.08.061_b0215) 2007; 43 Paradis (10.1016/j.jhydrol.2016.08.061_b0245) 2016; 536 Yeh (10.1016/j.jhydrol.2016.08.061_b0330) 2007; 43 Alexander (10.1016/j.jhydrol.2016.08.061_b0005) 2011; 49 Illman (10.1016/j.jhydrol.2016.08.061_b9000) 2014; 52 Liu (10.1016/j.jhydrol.2016.08.061_b0210) 2002; 38 Illman (10.1016/j.jhydrol.2016.08.061_b0160) 2007; 341 Liu (10.1016/j.jhydrol.2016.08.061_b0220) 2011; 47 Bohling (10.1016/j.jhydrol.2016.08.061_b0040) 2002; 38 Zhang (10.1016/j.jhydrol.2016.08.061_b9005) 2015; 80 Refsgaard (10.1016/j.jhydrol.2016.08.061_b0255) 2012; 36 Sudicky (10.1016/j.jhydrol.2016.08.061_b0295) 1986; 22 Brauchler (10.1016/j.jhydrol.2016.08.061_b0070) 2011; 47 Moret (10.1016/j.jhydrol.2016.08.061_b0240) 2006; 71 Gottlieb (10.1016/j.jhydrol.2016.08.061_b0145) 1995; 11 Illman (10.1016/j.jhydrol.2016.08.061_b0165) 2008; 46 Zhu (10.1016/j.jhydrol.2016.08.061_b0360) 2005; 41 Berg (10.1016/j.jhydrol.2016.08.061_b0030) 2013; 51 Boggs (10.1016/j.jhydrol.2016.08.061_b0055) 1992; 28 Doherty (10.1016/j.jhydrol.2016.08.061_b0135) 2005 Soueid Ahmed (10.1016/j.jhydrol.2016.08.061_b0280) 2015; 82 Cardiff (10.1016/j.jhydrol.2016.08.061_b0095) 2013; 49 Seifert (10.1016/j.jhydrol.2016.08.061_b0275) 2008; 16 Zhou (10.1016/j.jhydrol.2016.08.061_b0345) 2014 10.1016/j.jhydrol.2016.08.061_b0010 Carle (10.1016/j.jhydrol.2016.08.061_b0105) 1997; 29 Brauchler (10.1016/j.jhydrol.2016.08.061_b0065) 2003; 39 Bohling (10.1016/j.jhydrol.2016.08.061_b0045) 2007; 43 Martin (10.1016/j.jhydrol.2016.08.061_b0230) 1998; 36 Bowling (10.1016/j.jhydrol.2016.08.061_b0060) 2005; 43 Illman (10.1016/j.jhydrol.2016.08.061_b0175) 2010; 46 Straface (10.1016/j.jhydrol.2016.08.061_b0290) 2007; 43 Berg (10.1016/j.jhydrol.2016.08.061_b0015) 2011; 47 Hubbard (10.1016/j.jhydrol.2016.08.061_b0150) 2001; 37 Jardani (10.1016/j.jhydrol.2016.08.061_b0195) 2012; 472–473 Troldborg (10.1016/j.jhydrol.2016.08.061_b0305) 2007; 15 Schöniger (10.1016/j.jhydrol.2016.08.061_b0260) 2012; 48 Cardiff (10.1016/j.jhydrol.2016.08.061_b0080) 2011; 47 Illman (10.1016/j.jhydrol.2016.08.061_b0185) 2012; 50 Cardiff (10.1016/j.jhydrol.2016.08.061_b0085) 2012; 48 Zhou (10.1016/j.jhydrol.2016.08.061_b0355) 2016; 52 Schöniger (10.1016/j.jhydrol.2016.08.061_b0265) 2015; 531 Berg (10.1016/j.jhydrol.2016.08.061_b0020) 2011; 47 Cardiff (10.1016/j.jhydrol.2016.08.061_b0100) 2015; 53 Illman (10.1016/j.jhydrol.2016.08.061_b0190) 2015; 51 Zhu (10.1016/j.jhydrol.2016.08.061_b0365) 2006; 42 Castagna (10.1016/j.jhydrol.2016.08.061_b0110) 2009; 45 Clement (10.1016/j.jhydrol.2016.08.061_b0120) 2006; 71 Castagna (10.1016/j.jhydrol.2016.08.061_b0115) 2011; 47 Berg (10.1016/j.jhydrol.2016.08.061_b0025) 2012; 470–471 Hyndman (10.1016/j.jhydrol.2016.08.061_b0155) 1994; 30 Illman (10.1016/j.jhydrol.2016.08.061_b0180) 2010; 44 Carrera (10.1016/j.jhydrol.2016.08.061_b0075) 2005; 13 Gupta (10.1016/j.jhydrol.2016.08.061_b0140) 2012; 48 Jardani (10.1016/j.jhydrol.2016.08.061_b0200) 2013; 52 Xiang (10.1016/j.jhydrol.2016.08.061_b0310) 2009; 45 Yeh (10.1016/j.jhydrol.2016.08.061_b0315) 1993; 31 Mao (10.1016/j.jhydrol.2016.08.061_b0225) 2013; 49 Kowalsky (10.1016/j.jhydrol.2016.08.061_b0205) 2005; 41 |
| References_xml | – volume: 71 start-page: K59 year: 2006 end-page: K66 ident: b0120 article-title: Reflectivity modeling of a ground-penetrating-radar profile of a saturated fluvial formation publication-title: Geophysics – volume: 52 start-page: 659 year: 2014 end-page: 684 ident: b9000 article-title: Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks publication-title: Groundwater – volume: 80 start-page: M69 year: 2015 end-page: M88 ident: b9005 article-title: 2D joint inversion of geophysical data using petrophysical clustering and facies deformation publication-title: GEOPHYSICS – volume: 22 start-page: 2069 year: 1986 end-page: 2082 ident: b0295 article-title: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process publication-title: Water Resour. Res. – volume: 46 start-page: 1 year: 2010 end-page: 18 ident: b0175 article-title: Comparison of aquifer characterization approaches through steady state groundwater model validation: a controlled laboratory sandbox study publication-title: Water Resour. Res. – volume: 43 start-page: W06435 year: 2007 ident: b0330 article-title: Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones publication-title: Water Resour. Res. – year: 2014 ident: b0345 article-title: Image-guided inversion of electrical resistivity data publication-title: J. Int. – volume: 47 year: 2011 ident: b0080 article-title: 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response publication-title: Water Resour. Res. – volume: 47 start-page: 1 year: 2011 end-page: 17 ident: b0015 article-title: Capturing aquifer heterogeneity: comparison of approaches through controlled sandbox experiments publication-title: Water Resour. Res. – volume: 43 start-page: 1 year: 2007 end-page: 13 ident: b0290 article-title: Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy publication-title: Water Resour. Res. – volume: 39 start-page: 1370 year: 2003 ident: b0065 article-title: A travel time based hydraulic tomographic approach publication-title: Water Resour. Res. – volume: 30 start-page: 1965 year: 1994 ident: b0155 article-title: Coupled seismic and tracer test inversion for aquifer property characterization publication-title: Water Resour. Res. – volume: 50 start-page: 421 year: 2012 end-page: 431 ident: b0185 article-title: Comparison of approaches for predicting solute transport: sandbox experiments publication-title: Ground Water – volume: 51 start-page: 3219 year: 2015 end-page: 3237 ident: b0190 article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? a laboratory sandbox investigation publication-title: Water Resour. Res. – volume: 15 start-page: 843 year: 2007 end-page: 860 ident: b0305 article-title: The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system publication-title: Hydrogeol. J. – volume: 41 start-page: 1 year: 2005 end-page: 10 ident: b0360 article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography publication-title: Water Resour. Res. – volume: 41 start-page: 170 year: 2003 end-page: 177 ident: b0130 article-title: Ground water model calibration using pilot points and regularization publication-title: Ground Water – year: 2005 ident: b0135 article-title: PEST Model-Independent Parameter Estimation User Manual – volume: 38 start-page: 60-1 year: 2002 end-page: 60-15 ident: b0040 article-title: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities publication-title: Water Resour. Res. – volume: 48 start-page: 1 year: 2012 end-page: 16 ident: b0140 article-title: Towards a comprehensive assessment of model structural adequacy publication-title: Water Resour. Res. – volume: 48 start-page: 1 year: 2012 end-page: 18 ident: b0260 article-title: Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography publication-title: Water Resour. Res. – volume: 51 start-page: 29 year: 2013 end-page: 40 ident: b0030 article-title: Field study of subsurface heterogeneity with steady-state hydraulic tomography publication-title: GroundWater – volume: 53 start-page: 896 year: 2015 end-page: 907 ident: b0100 article-title: Analytical and semi-analytical tools for the design of oscillatory pumping tests publication-title: Groundwater – volume: 536 start-page: 61 year: 2016 end-page: 73 ident: b0245 article-title: A field proof-of-concept of tomographic slug tests in an anisotropic littoral aquifer publication-title: J. Hydrol. – volume: 472–473 start-page: 287 year: 2012 end-page: 300 ident: b0195 article-title: Geostatistical inverse modeling of the transmissivity field of a heterogeneous alluvial aquifer under tidal influence publication-title: J. Hydrol. – volume: 38 start-page: 2 year: 2002 end-page: 10 ident: b0210 article-title: Effectiveness of hydraulic tomography: sandbox experiments publication-title: Water Resour. Res. – volume: 31 start-page: 634 year: 1993 end-page: 644 ident: b0315 article-title: A numerical model for water flow and chemical transport in variably saturated porous media publication-title: Ground Water – volume: 36 start-page: 679 year: 1998 end-page: 690 ident: b0230 article-title: Modeling a complex multi-aquifer system: the Waterloo moraine publication-title: Ground Water – volume: 13 start-page: 206 year: 2005 end-page: 222 ident: b0075 article-title: Inverse problem in hydrogeology publication-title: Hydrogeol. J. – volume: 47 year: 2011 ident: b0020 article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system publication-title: Water Resour. Res. – volume: 45 start-page: 1 year: 2009 end-page: 18 ident: b0170 article-title: Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan publication-title: Water Resour. Res. – volume: 29 start-page: 891 year: 1997 end-page: 918 ident: b0105 article-title: Modeling spatial variability with one and multi-dimensional continuous Markov Chains publication-title: Math. Geol. – volume: 82 start-page: 83 year: 2015 end-page: 97 ident: b0280 article-title: Image-guided inversion in steady-state hydraulic tomography publication-title: Adv. Water Resour. – volume: 41 start-page: 1 year: 2005 end-page: 19 ident: b0205 article-title: Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data publication-title: Water Resour. Res. – volume: 45 start-page: 1 year: 2009 end-page: 14 ident: b0310 article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis publication-title: Water Resour. Res. – volume: 48 start-page: 809 year: 2010 end-page: 824 ident: b0050 article-title: Inherent limitations of hydraulic tomography publication-title: Ground Water – volume: 45 start-page: 1 year: 2009 end-page: 16 ident: b0110 article-title: A Bayesian approach for inversion of hydraulic tomographic data publication-title: Water Resour. Res. – volume: 470–471 start-page: 172 year: 2012 end-page: 183 ident: b0025 article-title: Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: laboratory sandbox experiments publication-title: J. Hydrol. – volume: 28 start-page: 3281 year: 1992 end-page: 3291 ident: b0055 article-title: Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description publication-title: Water Resour. Res. – volume: 47 start-page: 1 year: 2011 end-page: 12 ident: b0070 article-title: A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography publication-title: Water Resour. Res. – volume: 89 start-page: 80 year: 2016 end-page: 90 ident: b0285 article-title: Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data publication-title: Adv. Water Resour. – year: 2005 ident: b0125 article-title: Measurement of hydraulic parameters at multiple scales in two synthetic heterogeneous aquifers constructed in the laboratory – volume: 42 start-page: 1 year: 2006 end-page: 11 ident: b0365 article-title: Analysis of hydraulic tomography using temporal moments of drawdown recovery data publication-title: Water Resour. Res. – volume: 341 start-page: 222 year: 2007 end-page: 234 ident: b0160 article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: multi-method and multiscale validation of hydraulic conductivity tomograms publication-title: J. Hydrol. – volume: 43 start-page: 1 year: 2007 end-page: 23 ident: b0045 article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities publication-title: Water Resour. Res. – volume: 37 start-page: 2431 year: 2001 end-page: 2456 ident: b0150 article-title: Hydrogeological characterization of the south oyster bacterial transport site using geophysical data publication-title: Water Resour. Res. – volume: 49 start-page: 7311 year: 2013 end-page: 7326 ident: b0090 article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities publication-title: Water Resour. Res. – volume: 49 start-page: 5395 year: 2013 end-page: 5410 ident: b0095 article-title: Aquifer heterogeneity characterization with oscillatory pumping: sensitivity analysis and imaging potential publication-title: Water Resour. Res. – volume: 49 start-page: 365 year: 2011 end-page: 382 ident: b0005 article-title: Field study of hydrogeologic characterization methods in a heterogeneous aquifer publication-title: Ground Water – volume: 11 start-page: 353 year: 1995 end-page: 360 ident: b0145 article-title: Identification of the permeability distribution in soil by hydraulic tomography publication-title: Inverse Probl. – volume: 49 start-page: 1782 year: 2013 end-page: 1796 ident: b0225 article-title: Joint interpretation of sequential pumping tests in unconfined aquifers publication-title: Water Resour. Res. – volume: 46 start-page: W01508 year: 2010 ident: b0300 article-title: Heterogeneity in hydraulic conductivity and its role on the macroscale transport of a solute plume: from measurements to a practical application of stochastic flow and transport theory publication-title: Water Resour. Res. – volume: 531 start-page: 96 year: 2015 end-page: 110 ident: b0265 article-title: Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection publication-title: J. Hydrol. – volume: 48 year: 2012 ident: b0085 article-title: A field proof-of-concept of aquifer imaging using 3-D transient hydraulic tomography with modular, temporarily-emplaced equipment publication-title: Water Resour. Res. – volume: 36 start-page: 36 year: 2012 end-page: 50 ident: b0255 article-title: Review of strategies for handling geological uncertainty in groundwater flow and transport modeling publication-title: Adv. Water Resour. – volume: 16 start-page: 659 year: 2008 end-page: 674 ident: b0275 article-title: Use of alternative conceptual models to assess the impact of a buried valley on groundwater vulnerability publication-title: Hydrogeol. J. – volume: 36 start-page: 2095 year: 2000 ident: b0325 article-title: Hydraulic tomography: development of a new aquifer test method publication-title: Water Resour. Res. – volume: 46 start-page: 120 year: 2008 end-page: 132 ident: b0165 article-title: Practical issues in imaging hydraulic conductivity through hydraulic tomography publication-title: Ground Water – volume: 47 start-page: 1 year: 2011 end-page: 19 ident: b0115 article-title: Joint estimation of transmissivity and storativity in a bedrock fracture publication-title: Water Resour. Res. – volume: 43 start-page: 1 year: 2007 end-page: 13 ident: b0215 article-title: Laboratory sandbox validation of transient hydraulic tomography publication-title: Water Resour. Res. – volume: 47 start-page: 1 year: 2011 end-page: 9 ident: b0220 article-title: Large-scale inverse modeling with an application in hydraulic tomography publication-title: Water Resour. Res. – reference: ARANZ Geo Limited, 2015. Leapfrog Hydro 2.2.3. 3D Geological Modelling Software. – volume: 44 start-page: 8609 year: 2010 end-page: 8614 ident: b0180 article-title: Hydraulic/partitioning tracer tomography for trichloroethene source zone characterization: small-scale sandbox experiments publication-title: Environ. Sci. Technol. – volume: 42 year: 2006 ident: b0250 article-title: Permeability and porosity images based on P -wave surface seismic data: application to a south Florida aquifer publication-title: Water Resour. Res. – volume: 53 start-page: 71 year: 2015 end-page: 89 ident: b0035 article-title: Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site publication-title: Groundwater – volume: 51 start-page: 4137 year: 2015 end-page: 4155 ident: b0340 article-title: Validation of hydraulic tomography in an unconfined aquifer: a controlled sandbox study publication-title: Water Resour. Res. – volume: 52 start-page: 2141 year: 2016 end-page: 2156 ident: b0355 article-title: Aquifer imaging with pressure waves—evaluation of low-impact characterization through sandbox experiments publication-title: Water Resour. Res. – volume: 71 start-page: B63 year: 2006 ident: b0240 article-title: Investigating the stratigraphy of an alluvial aquifer using crosswell seismic travel time tomography publication-title: Geophysics – volume: 81 start-page: E89 year: 2016 end-page: E101 ident: b0350 article-title: Stochastic structure-constrained image-guided inversion of geophysical data publication-title: GEOPHYSICS – volume: 43 start-page: 890 year: 2005 end-page: 903 ident: b0060 article-title: Delineating alluvial aquifer heterogeneity using resistivity and GPR data publication-title: Ground Water – volume: 52 start-page: 62 year: 2013 end-page: 77 ident: b0200 article-title: Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging publication-title: Adv. Water Resour. – volume: 43 start-page: 1 year: 2007 ident: 10.1016/j.jhydrol.2016.08.061_b0215 article-title: Laboratory sandbox validation of transient hydraulic tomography publication-title: Water Resour. Res. doi: 10.1029/2006WR005144 – volume: 28 start-page: 3281 year: 1992 ident: 10.1016/j.jhydrol.2016.08.061_b0055 article-title: Field study of dispersion in a heterogeneous aquifer: 1. Overview and site description publication-title: Water Resour. Res. doi: 10.1029/92WR01756 – volume: 82 start-page: 83 year: 2015 ident: 10.1016/j.jhydrol.2016.08.061_b0280 article-title: Image-guided inversion in steady-state hydraulic tomography publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2015.04.001 – volume: 71 start-page: K59 year: 2006 ident: 10.1016/j.jhydrol.2016.08.061_b0120 article-title: Reflectivity modeling of a ground-penetrating-radar profile of a saturated fluvial formation publication-title: Geophysics doi: 10.1190/1.2194528 – volume: 46 start-page: 1 year: 2010 ident: 10.1016/j.jhydrol.2016.08.061_b0175 article-title: Comparison of aquifer characterization approaches through steady state groundwater model validation: a controlled laboratory sandbox study publication-title: Water Resour. Res. doi: 10.1029/2009WR007745 – volume: 48 year: 2012 ident: 10.1016/j.jhydrol.2016.08.061_b0085 article-title: A field proof-of-concept of aquifer imaging using 3-D transient hydraulic tomography with modular, temporarily-emplaced equipment publication-title: Water Resour. Res. doi: 10.1029/2011WR011704 – volume: 36 start-page: 36 year: 2012 ident: 10.1016/j.jhydrol.2016.08.061_b0255 article-title: Review of strategies for handling geological uncertainty in groundwater flow and transport modeling publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2011.04.006 – volume: 41 start-page: 170 year: 2003 ident: 10.1016/j.jhydrol.2016.08.061_b0130 article-title: Ground water model calibration using pilot points and regularization publication-title: Ground Water doi: 10.1111/j.1745-6584.2003.tb02580.x – volume: 43 start-page: 890 year: 2005 ident: 10.1016/j.jhydrol.2016.08.061_b0060 article-title: Delineating alluvial aquifer heterogeneity using resistivity and GPR data publication-title: Ground Water doi: 10.1111/j.1745-6584.2005.00103.x – volume: 80 start-page: M69 year: 2015 ident: 10.1016/j.jhydrol.2016.08.061_b9005 article-title: 2D joint inversion of geophysical data using petrophysical clustering and facies deformation publication-title: GEOPHYSICS doi: 10.1190/geo2015-0147.1 – volume: 46 start-page: 120 year: 2008 ident: 10.1016/j.jhydrol.2016.08.061_b0165 article-title: Practical issues in imaging hydraulic conductivity through hydraulic tomography publication-title: Ground Water doi: 10.1111/j.1745-6584.2007.00374.x – volume: 50 start-page: 421 year: 2012 ident: 10.1016/j.jhydrol.2016.08.061_b0185 article-title: Comparison of approaches for predicting solute transport: sandbox experiments publication-title: Ground Water doi: 10.1111/j.1745-6584.2011.00859.x – volume: 472–473 start-page: 287 year: 2012 ident: 10.1016/j.jhydrol.2016.08.061_b0195 article-title: Geostatistical inverse modeling of the transmissivity field of a heterogeneous alluvial aquifer under tidal influence publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.09.031 – volume: 48 start-page: 1 year: 2012 ident: 10.1016/j.jhydrol.2016.08.061_b0260 article-title: Parameter estimation by ensemble Kalman filters with transformed data: approach and application to hydraulic tomography publication-title: Water Resour. Res. doi: 10.1029/2011WR010462 – volume: 29 start-page: 891 issue: 7 year: 1997 ident: 10.1016/j.jhydrol.2016.08.061_b0105 article-title: Modeling spatial variability with one and multi-dimensional continuous Markov Chains publication-title: Math. Geol. doi: 10.1023/A:1022303706942 – volume: 47 start-page: 1 year: 2011 ident: 10.1016/j.jhydrol.2016.08.061_b0115 article-title: Joint estimation of transmissivity and storativity in a bedrock fracture publication-title: Water Resour. Res. doi: 10.1029/2010WR009262 – volume: 47 year: 2011 ident: 10.1016/j.jhydrol.2016.08.061_b0020 article-title: Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system publication-title: Water Resour. Res. doi: 10.1029/2011WR010616 – volume: 43 start-page: 1 year: 2007 ident: 10.1016/j.jhydrol.2016.08.061_b0045 article-title: A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities publication-title: Water Resour. Res. doi: 10.1029/2006WR004932 – year: 2005 ident: 10.1016/j.jhydrol.2016.08.061_b0125 – volume: 89 start-page: 80 year: 2016 ident: 10.1016/j.jhydrol.2016.08.061_b0285 article-title: Specific storage and hydraulic conductivity tomography through the joint inversion of hydraulic heads and self-potential data publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2016.01.006 – volume: 53 start-page: 71 year: 2015 ident: 10.1016/j.jhydrol.2016.08.061_b0035 article-title: Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site publication-title: Groundwater doi: 10.1111/gwat.12159 – volume: 45 start-page: 1 year: 2009 ident: 10.1016/j.jhydrol.2016.08.061_b0310 article-title: A simultaneous successive linear estimator and a guide for hydraulic tomography analysis publication-title: Water Resour. Res. doi: 10.1029/2008WR007180 – volume: 71 start-page: B63 year: 2006 ident: 10.1016/j.jhydrol.2016.08.061_b0240 article-title: Investigating the stratigraphy of an alluvial aquifer using crosswell seismic travel time tomography publication-title: Geophysics doi: 10.1190/1.2195487 – volume: 536 start-page: 61 year: 2016 ident: 10.1016/j.jhydrol.2016.08.061_b0245 article-title: A field proof-of-concept of tomographic slug tests in an anisotropic littoral aquifer publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.02.041 – volume: 37 start-page: 2431 year: 2001 ident: 10.1016/j.jhydrol.2016.08.061_b0150 article-title: Hydrogeological characterization of the south oyster bacterial transport site using geophysical data publication-title: Water Resour. Res. doi: 10.1029/2001WR000279 – volume: 45 start-page: 1 year: 2009 ident: 10.1016/j.jhydrol.2016.08.061_b0110 article-title: A Bayesian approach for inversion of hydraulic tomographic data publication-title: Water Resour. Res. doi: 10.1029/2008WR007078 – volume: 52 start-page: 659 year: 2014 ident: 10.1016/j.jhydrol.2016.08.061_b9000 article-title: Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks publication-title: Groundwater doi: 10.1111/gwat.12119 – volume: 53 start-page: 896 year: 2015 ident: 10.1016/j.jhydrol.2016.08.061_b0100 article-title: Analytical and semi-analytical tools for the design of oscillatory pumping tests publication-title: Groundwater doi: 10.1111/gwat.12308 – volume: 47 start-page: 1 year: 2011 ident: 10.1016/j.jhydrol.2016.08.061_b0015 article-title: Capturing aquifer heterogeneity: comparison of approaches through controlled sandbox experiments publication-title: Water Resour. Res. doi: 10.1029/2011WR010429 – volume: 42 year: 2006 ident: 10.1016/j.jhydrol.2016.08.061_b0250 article-title: Permeability and porosity images based on P -wave surface seismic data: application to a south Florida aquifer publication-title: Water Resour. Res. doi: 10.1029/2005WR004114 – volume: 46 start-page: W01508 year: 2010 ident: 10.1016/j.jhydrol.2016.08.061_b0300 article-title: Heterogeneity in hydraulic conductivity and its role on the macroscale transport of a solute plume: from measurements to a practical application of stochastic flow and transport theory publication-title: Water Resour. Res. doi: 10.1029/2008WR007558 – volume: 41 start-page: 1 year: 2005 ident: 10.1016/j.jhydrol.2016.08.061_b0360 article-title: Characterization of aquifer heterogeneity using transient hydraulic tomography publication-title: Water Resour. Res. doi: 10.1029/2004WR003790 – volume: 36 start-page: 2095 year: 2000 ident: 10.1016/j.jhydrol.2016.08.061_b0325 article-title: Hydraulic tomography: development of a new aquifer test method publication-title: Water Resour. Res. doi: 10.1029/2000WR900114 – volume: 52 start-page: 62 year: 2013 ident: 10.1016/j.jhydrol.2016.08.061_b0200 article-title: Stochastic joint inversion of hydrogeophysical data for salt tracer test monitoring and hydraulic conductivity imaging publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.08.005 – volume: 11 start-page: 353 year: 1995 ident: 10.1016/j.jhydrol.2016.08.061_b0145 article-title: Identification of the permeability distribution in soil by hydraulic tomography publication-title: Inverse Probl. doi: 10.1088/0266-5611/11/2/005 – volume: 22 start-page: 2069 year: 1986 ident: 10.1016/j.jhydrol.2016.08.061_b0295 article-title: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process publication-title: Water Resour. Res. doi: 10.1029/WR022i013p02069 – volume: 52 start-page: 2141 year: 2016 ident: 10.1016/j.jhydrol.2016.08.061_b0355 article-title: Aquifer imaging with pressure waves—evaluation of low-impact characterization through sandbox experiments publication-title: Water Resour. Res. doi: 10.1002/2015WR017751 – year: 2005 ident: 10.1016/j.jhydrol.2016.08.061_b0135 – volume: 15 start-page: 843 year: 2007 ident: 10.1016/j.jhydrol.2016.08.061_b0305 article-title: The importance of alternative conceptual models for simulation of concentrations in a multi-aquifer system publication-title: Hydrogeol. J. doi: 10.1007/s10040-007-0192-y – volume: 49 start-page: 365 year: 2011 ident: 10.1016/j.jhydrol.2016.08.061_b0005 article-title: Field study of hydrogeologic characterization methods in a heterogeneous aquifer publication-title: Ground Water doi: 10.1111/j.1745-6584.2010.00729.x – year: 2014 ident: 10.1016/j.jhydrol.2016.08.061_b0345 article-title: Image-guided inversion of electrical resistivity data publication-title: J. Int. – volume: 44 start-page: 8609 issue: 22 year: 2010 ident: 10.1016/j.jhydrol.2016.08.061_b0180 article-title: Hydraulic/partitioning tracer tomography for trichloroethene source zone characterization: small-scale sandbox experiments publication-title: Environ. Sci. Technol. doi: 10.1021/es101654j – volume: 38 start-page: 2 year: 2002 ident: 10.1016/j.jhydrol.2016.08.061_b0210 article-title: Effectiveness of hydraulic tomography: sandbox experiments publication-title: Water Resour. Res. doi: 10.1029/2001WR000338 – volume: 49 start-page: 1782 year: 2013 ident: 10.1016/j.jhydrol.2016.08.061_b0225 article-title: Joint interpretation of sequential pumping tests in unconfined aquifers publication-title: Water Resour. Res. doi: 10.1002/wrcr.20129 – volume: 470–471 start-page: 172 year: 2012 ident: 10.1016/j.jhydrol.2016.08.061_b0025 article-title: Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: laboratory sandbox experiments publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2012.08.044 – volume: 38 start-page: 60-1 year: 2002 ident: 10.1016/j.jhydrol.2016.08.061_b0040 article-title: Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities publication-title: Water Resour. Res. doi: 10.1029/2001WR001176 – volume: 13 start-page: 206 year: 2005 ident: 10.1016/j.jhydrol.2016.08.061_b0075 article-title: Inverse problem in hydrogeology publication-title: Hydrogeol. J. doi: 10.1007/s10040-004-0404-7 – volume: 41 start-page: 1 year: 2005 ident: 10.1016/j.jhydrol.2016.08.061_b0205 article-title: Estimation of field-scale soil hydraulic and dielectric parameters through joint inversion of GPR and hydrological data publication-title: Water Resour. Res. doi: 10.1029/2005WR004237 – volume: 45 start-page: 1 year: 2009 ident: 10.1016/j.jhydrol.2016.08.061_b0170 article-title: Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan publication-title: Water Resour. Res. doi: 10.1029/2007WR006715 – volume: 43 start-page: 1 year: 2007 ident: 10.1016/j.jhydrol.2016.08.061_b0290 article-title: Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy publication-title: Water Resour. Res. doi: 10.1029/2006WR005287 – volume: 43 start-page: W06435 issue: 6 year: 2007 ident: 10.1016/j.jhydrol.2016.08.061_b0330 article-title: Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones publication-title: Water Resour. Res. doi: 10.1029/2006WR004877 – volume: 36 start-page: 679 year: 1998 ident: 10.1016/j.jhydrol.2016.08.061_b0230 article-title: Modeling a complex multi-aquifer system: the Waterloo moraine publication-title: Ground Water doi: 10.1111/j.1745-6584.1998.tb02843.x – volume: 531 start-page: 96 year: 2015 ident: 10.1016/j.jhydrol.2016.08.061_b0265 article-title: Finding the right balance between groundwater model complexity and experimental effort via Bayesian model selection publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.07.047 – volume: 47 start-page: 1 year: 2011 ident: 10.1016/j.jhydrol.2016.08.061_b0070 article-title: A field assessment of high-resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography publication-title: Water Resour. Res. doi: 10.1029/2010WR009635 – volume: 48 start-page: 1 year: 2012 ident: 10.1016/j.jhydrol.2016.08.061_b0140 article-title: Towards a comprehensive assessment of model structural adequacy publication-title: Water Resour. Res. doi: 10.1029/2011WR011044 – volume: 48 start-page: 809 year: 2010 ident: 10.1016/j.jhydrol.2016.08.061_b0050 article-title: Inherent limitations of hydraulic tomography publication-title: Ground Water doi: 10.1111/j.1745-6584.2010.00757.x – ident: 10.1016/j.jhydrol.2016.08.061_b0010 – volume: 51 start-page: 3219 year: 2015 ident: 10.1016/j.jhydrol.2016.08.061_b0190 article-title: Should hydraulic tomography data be interpreted using geostatistical inverse modeling? a laboratory sandbox investigation publication-title: Water Resour. Res. doi: 10.1002/2014WR016552 – volume: 341 start-page: 222 year: 2007 ident: 10.1016/j.jhydrol.2016.08.061_b0160 article-title: Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: multi-method and multiscale validation of hydraulic conductivity tomograms publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.05.011 – volume: 81 start-page: E89 year: 2016 ident: 10.1016/j.jhydrol.2016.08.061_b0350 article-title: Stochastic structure-constrained image-guided inversion of geophysical data publication-title: GEOPHYSICS doi: 10.1190/geo2014-0569.1 – volume: 39 start-page: 1370 year: 2003 ident: 10.1016/j.jhydrol.2016.08.061_b0065 article-title: A travel time based hydraulic tomographic approach publication-title: Water Resour. Res. doi: 10.1029/2003WR002262 – volume: 16 start-page: 659 year: 2008 ident: 10.1016/j.jhydrol.2016.08.061_b0275 article-title: Use of alternative conceptual models to assess the impact of a buried valley on groundwater vulnerability publication-title: Hydrogeol. J. doi: 10.1007/s10040-007-0252-3 – volume: 51 start-page: 4137 year: 2015 ident: 10.1016/j.jhydrol.2016.08.061_b0340 article-title: Validation of hydraulic tomography in an unconfined aquifer: a controlled sandbox study publication-title: Water Resour. Res. doi: 10.1002/2015WR016910 – volume: 31 start-page: 634 year: 1993 ident: 10.1016/j.jhydrol.2016.08.061_b0315 article-title: A numerical model for water flow and chemical transport in variably saturated porous media publication-title: Ground Water doi: 10.1111/j.1745-6584.1993.tb00597.x – volume: 42 start-page: 1 year: 2006 ident: 10.1016/j.jhydrol.2016.08.061_b0365 article-title: Analysis of hydraulic tomography using temporal moments of drawdown recovery data publication-title: Water Resour. Res. doi: 10.1029/2005WR004309 – volume: 30 start-page: 1965 year: 1994 ident: 10.1016/j.jhydrol.2016.08.061_b0155 article-title: Coupled seismic and tracer test inversion for aquifer property characterization publication-title: Water Resour. Res. doi: 10.1029/94WR00950 – volume: 47 year: 2011 ident: 10.1016/j.jhydrol.2016.08.061_b0080 article-title: 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response publication-title: Water Resour. Res. doi: 10.1029/2010WR010367 – volume: 49 start-page: 7311 year: 2013 ident: 10.1016/j.jhydrol.2016.08.061_b0090 article-title: Hydraulic conductivity imaging from 3-D transient hydraulic tomography at several pumping/observation densities publication-title: Water Resour. Res. doi: 10.1002/wrcr.20519 – volume: 49 start-page: 5395 year: 2013 ident: 10.1016/j.jhydrol.2016.08.061_b0095 article-title: Aquifer heterogeneity characterization with oscillatory pumping: sensitivity analysis and imaging potential publication-title: Water Resour. Res. doi: 10.1002/wrcr.20356 – volume: 47 start-page: 1 year: 2011 ident: 10.1016/j.jhydrol.2016.08.061_b0220 article-title: Large-scale inverse modeling with an application in hydraulic tomography publication-title: Water Resour. Res. doi: 10.1029/2010WR009144 – volume: 51 start-page: 29 year: 2013 ident: 10.1016/j.jhydrol.2016.08.061_b0030 article-title: Field study of subsurface heterogeneity with steady-state hydraulic tomography publication-title: GroundWater doi: 10.1111/j.1745-6584.2012.00914.x |
| SSID | ssj0000334 |
| Score | 2.4483428 |
| Snippet | •The importance of geological data in HT is investigated via sandbox experiments.•Both accurate and inaccurate geological models can be well calibrated.•A well... This paper investigates the importance of geological data in Hydraulic Tomography (HT) through sandbox experiments. In particular, four groundwater models with... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 156 |
| SubjectTerms | Aquifer heterogeneity Calibration drawdown Fluid flow Geological model Geology Geostatistics Heat treatment Hydraulic tomography Hydraulics hydrologic models Mathematical models Model calibration and validation model validation monitoring prediction Pumping stratigraphy surveys tomography |
| Title | On the importance of geological data for hydraulic tomography analysis: Laboratory sandbox study |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2016.08.061 https://www.proquest.com/docview/1846410901 https://www.proquest.com/docview/1864541661 https://www.proquest.com/docview/2000188741 |
| Volume | 542 |
| WOSCitedRecordID | wos000388248400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZgFwQXBAsrlpeMhLigLHHixAm3CnV5qGo5dKHiYpw4oVu1SekDtf-emdhJKhZ2lwOXqIpqN_V8mRnPjL8h5IWb-UrwgDs6Va7DUxE7ytUeRps8L8u1F1Xs_J97ot-PRqP4k40qLat2AqIoos0mnv9XUcM9EDYenf0HcTeTwg34DEKHK4gdrlcS_MAULp7NKs8a31vwB79njZLDmtCquHC81Qu1RpLrVTmzzNWvlCUpwUhBzwAEs_BLVeik3Oyw0Z53aHE-w-gEXmtnhgwMGuHWhBq-jlUVmMUgdZ5Zk4mwnE5tHPZLlbzfia_a4jPTe82msGyMgoX2sN6O3oUtLwtNO-Na7waGVstqThaEO0aYmb4s5_S7CTVMjifmL2FpXmgoWFlr0Ookfn8gT057PTnsjoYv5z8cbDWGKXnbd-U62fdEEIMq3O986I4-tgbc93lNMo8P3R78ev3HX_6bS_Obca88luFdcsdKhnYMRO6Ra1lxQG7Zrvfj7QG5-a5CxfY--TYoKICGtqChZU5b0FAEDQXQ0AY0tAUNrUHzhraQoRYytILMA3J60h2-fe_Y3huOApdy5YiU-1qoXCg3TvyUBzrBDi3C8xKWV6WNUZjrSCtwPwNP5KESeZJGLm7wuYiUf0j2irLIHhLqpx7sMXjOeJ5wHmrUBbArT0IWZeCMJ0eE18snU0tMj_1RprKuQJxIu-oSV11i39SQHZHjZtjcMLNcNiCqZSOte2ncRgnoumzo81qWEtQv5tRUkZXrpWTgv3Msbr7wO0ibx8KL5sETcwwMPmePrjDPY3K7fc2ekL3VYp09JTfSn6uz5eKZxfMvi9fB_w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+importance+of+geological+data+for+hydraulic+tomography+analysis%3A+Laboratory+sandbox+study&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Zhao%2C+Zhanfeng&rft.au=Illman%2C+Walter+A&rft.au=Berg%2C+Steven+J&rft.date=2016-11-01&rft.issn=0022-1694&rft.volume=542&rft.spage=156&rft.epage=171&rft_id=info:doi/10.1016%2Fj.jhydrol.2016.08.061&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |