Resolving precipitation induced water content profiles by inversion of dispersive GPR data: A numerical study
•Distribution of water in precipitation-induced waveguides impacts GPR dispersion.•Dispersion can be used to resolve water content profiles of dispersive waveguides.•Effective layer models cannot describe the gradational nature of the profiles.•Piece-wise linear models better explain the data and th...
Uloženo v:
| Vydáno v: | Journal of hydrology (Amsterdam) Ročník 525; s. 496 - 505 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.06.2015
|
| Témata: | |
| ISSN: | 0022-1694, 1879-2707 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Distribution of water in precipitation-induced waveguides impacts GPR dispersion.•Dispersion can be used to resolve water content profiles of dispersive waveguides.•Effective layer models cannot describe the gradational nature of the profiles.•Piece-wise linear models better explain the data and the water content distribution.
Surface-based ground-penetrating radar (GPR) measurements have significant potential for monitoring dynamic hydrologic processes at multiple scales in time and space. At early times during infiltration into a soil, the zone above the wetting front may act as a low-velocity waveguide that traps GPR waves, thereby causing dispersion and making interpretation of the data using standard methods difficult. In this work, we show that the dispersion is dependent upon the distribution of water within the waveguide, which is controlled by soil hydrologic properties. Simulations of infiltration were performed by varying the n-parameter of the Mualem–van Genuchten equation using HYDRUS-1D; the associated GPR data were simulated to evaluate the influence of dispersion. We observed a notable decrease in wave dispersion as the sharpness of the wetting front profile decreased. Given the sensitivity of the dispersion effect to the wetting front profile, we also evaluated whether the water content distribution can be determined through inversion of the dispersive GPR data. We found that a global grid search combined with the simplex algorithm was able to estimate the average water content when the wetted zone is divided into 2 layers. This approach was incapable, however, of representing the gradational nature of the water content distribution behind the wetting front. In contrast, the shuffled complex evolution algorithm was able to constrain a piece-wise linear function to closely match the shallow gradational water content profile. In both the layered and piece-wise linear case, the sensitivity of the dispersive data dropped sharply below the wetting front, which in this case was around 20cm, i.e., twice the average wavelength, for a 900MHz GPR survey. This study demonstrates that dispersive GPR data has significant potential for capturing the early-time dynamics of infiltration that cannot be obtained with standard GPR analysis approaches. |
|---|---|
| AbstractList | Surface-based ground-penetrating radar (GPR) measurements have significant potential for monitoring dynamic hydrologic processes at multiple scales in time and space. At early times during infiltration into a soil, the zone above the wetting front may act as a low-velocity waveguide that traps GPR waves, thereby causing dispersion and making interpretation of the data using standard methods difficult. In this work, we show that the dispersion is dependent upon the distribution of water within the waveguide, which is controlled by soil hydrologic properties. Simulations of infiltration were performed by varying the n-parameter of the Mualem–van Genuchten equation using HYDRUS-1D; the associated GPR data were simulated to evaluate the influence of dispersion. We observed a notable decrease in wave dispersion as the sharpness of the wetting front profile decreased. Given the sensitivity of the dispersion effect to the wetting front profile, we also evaluated whether the water content distribution can be determined through inversion of the dispersive GPR data. We found that a global grid search combined with the simplex algorithm was able to estimate the average water content when the wetted zone is divided into 2 layers. This approach was incapable, however, of representing the gradational nature of the water content distribution behind the wetting front. In contrast, the shuffled complex evolution algorithm was able to constrain a piece-wise linear function to closely match the shallow gradational water content profile. In both the layered and piece-wise linear case, the sensitivity of the dispersive data dropped sharply below the wetting front, which in this case was around 20cm, i.e., twice the average wavelength, for a 900MHz GPR survey. This study demonstrates that dispersive GPR data has significant potential for capturing the early-time dynamics of infiltration that cannot be obtained with standard GPR analysis approaches. •Distribution of water in precipitation-induced waveguides impacts GPR dispersion.•Dispersion can be used to resolve water content profiles of dispersive waveguides.•Effective layer models cannot describe the gradational nature of the profiles.•Piece-wise linear models better explain the data and the water content distribution. Surface-based ground-penetrating radar (GPR) measurements have significant potential for monitoring dynamic hydrologic processes at multiple scales in time and space. At early times during infiltration into a soil, the zone above the wetting front may act as a low-velocity waveguide that traps GPR waves, thereby causing dispersion and making interpretation of the data using standard methods difficult. In this work, we show that the dispersion is dependent upon the distribution of water within the waveguide, which is controlled by soil hydrologic properties. Simulations of infiltration were performed by varying the n-parameter of the Mualem–van Genuchten equation using HYDRUS-1D; the associated GPR data were simulated to evaluate the influence of dispersion. We observed a notable decrease in wave dispersion as the sharpness of the wetting front profile decreased. Given the sensitivity of the dispersion effect to the wetting front profile, we also evaluated whether the water content distribution can be determined through inversion of the dispersive GPR data. We found that a global grid search combined with the simplex algorithm was able to estimate the average water content when the wetted zone is divided into 2 layers. This approach was incapable, however, of representing the gradational nature of the water content distribution behind the wetting front. In contrast, the shuffled complex evolution algorithm was able to constrain a piece-wise linear function to closely match the shallow gradational water content profile. In both the layered and piece-wise linear case, the sensitivity of the dispersive data dropped sharply below the wetting front, which in this case was around 20cm, i.e., twice the average wavelength, for a 900MHz GPR survey. This study demonstrates that dispersive GPR data has significant potential for capturing the early-time dynamics of infiltration that cannot be obtained with standard GPR analysis approaches. |
| Author | van der Kruk, Jan Moysey, Stephen M.J. Mangel, Adam R. |
| Author_xml | – sequence: 1 givenname: Adam R. surname: Mangel fullname: Mangel, Adam R. email: amangel@clemson.edu organization: Department of Environmental Engineering and Earth Science, Clemson University, Clemson, SC, USA – sequence: 2 givenname: Stephen M.J. surname: Moysey fullname: Moysey, Stephen M.J. organization: Department of Environmental Engineering and Earth Science, Clemson University, Clemson, SC, USA – sequence: 3 givenname: Jan surname: van der Kruk fullname: van der Kruk, Jan organization: Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Leo-Brandtstrasse, Jülich, Germany |
| BookMark | eNqFkcFqGzEQhkVJoU7aRyjo2MtuNZJ2V9seSghpGgikhPYsZGm2lVlLrqR18dtXxj714rmIge8fxP9dk6sQAxLyHlgLDPqPm3bz--BSnFvOoGuZbBnAK7ICNYwNH9hwRVaMcd5AP8o35DrnDasjhFyR7QvmOO99-EV3Ca3f-WKKj4H64BaLjv41BRO1MRQMpTJx8jNmuj5UYo8pH9k4Uefz7rjtkT58f6HOFPOJ3tKwbDF5a2aay-IOb8nrycwZ353fG_Lz6_2Pu2_N0_PD493tU2OkgNL0qCzvLTgUAx-ntUDFJ2UHq4x1zMAIZnKjkF0HnZNWdUYNa-cMSItWDL24IR9Od-t__yyYi976bHGeTcC4ZA2Kd5KNjMNldBiYYAJqXZdRwRVnUo0V_XxCbYo5J5y0PRdbkvGzBqaP6vRGn9XpozrNpK7qarr7L71LfmvS4WLuyymHtdu9x6Sz9RiqRl_dFu2iv3DhH-AWuls |
| CitedBy_id | crossref_primary_10_1007_s42947_023_00282_2 crossref_primary_10_5194_hess_22_2487_2018 crossref_primary_10_26636_jtit_2017_119717 crossref_primary_10_2136_vzj2017_02_0037 crossref_primary_10_2136_vzj2018_03_0052 crossref_primary_10_1016_j_geoderma_2019_02_024 crossref_primary_10_1002_2016WR019330 crossref_primary_10_1016_j_conbuildmat_2023_132834 crossref_primary_10_1002_nsg_12099 crossref_primary_10_3390_rs10101667 crossref_primary_10_5194_hess_24_159_2020 |
| Cites_doi | 10.1029/WR024i005p00755 10.1190/1.3467444 10.1007/BF00939380 10.1190/1.2716374 10.2136/sssaj1980.03615995004400050002x 10.1016/S0022-1694(97)00107-8 10.1190/1.3249780 10.5194/hess-16-4009-2012 10.1190/1.1441584 10.1016/j.jappgeo.2011.09.013 10.1190/1.2168011 10.1029/WR016i003p00574 10.2113/JEEG15.3.93 10.1016/j.cageo.2005.11.006 10.1002/hyp.7688 10.1029/2005WR004395 10.1016/S0022-1694(96)03244-1 10.1190/1.1635046 10.1190/1.1443996 10.1002/2013WR013992 10.1016/S0022-1694(01)00336-5 10.13031/2013.31551 10.1029/2009GL039581 10.1109/TGRS.2006.877286 10.1002/2013WR014864 10.2136/vzj2009.0188 10.1190/1.3463416 10.1190/1.1820161 10.1029/2009WR008815 10.1016/j.jhydrol.2004.02.011 |
| ContentType | Journal Article |
| Copyright | 2015 Elsevier B.V. |
| Copyright_xml | – notice: 2015 Elsevier B.V. |
| DBID | AAYXX CITATION 7QH 7ST 7TG 7UA C1K F1W H96 KL. L.G SOI 8FD FR3 KR7 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2015.04.011 |
| DatabaseName | CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| EndPage | 505 |
| ExternalDocumentID | 10_1016_j_jhydrol_2015_04_011 S0022169415002607 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXUO ABEFU ABFNM ABGRD ABJNI ABMAC ABQEM ABQYD ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFFNX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CBWCG CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FA8 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMA HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SCC SDF SDG SDP SEP SES SEW SPC SPCBC SPD SSA SSE SSZ T5K TN5 UQL VOH WUQ Y6R ZCA ZMT ZY4 ~02 ~G- ~KM 9DU AAHBH AATTM AAXKI AAYWO AAYXX ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7QH 7ST 7TG 7UA C1K F1W H96 KL. L.G SOI 8FD FR3 KR7 7S9 L.6 |
| ID | FETCH-LOGICAL-a431t-6e8c26c1de3729fb3e82f8c7c8acd0a191afd9345515d4c85a87bdda14cec3763 |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000355885600042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Sun Sep 28 06:02:34 EDT 2025 Wed Oct 01 13:59:11 EDT 2025 Tue Oct 07 09:51:53 EDT 2025 Tue Nov 18 21:46:02 EST 2025 Sat Nov 29 04:33:34 EST 2025 Fri Feb 23 02:26:59 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Infiltration Ground-penetrating radar Waveguide Shuffled-complex evolution Water content Wave dispersion |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a431t-6e8c26c1de3729fb3e82f8c7c8acd0a191afd9345515d4c85a87bdda14cec3763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1732820489 |
| PQPubID | 23462 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1825409021 proquest_miscellaneous_1770303103 proquest_miscellaneous_1732820489 crossref_citationtrail_10_1016_j_jhydrol_2015_04_011 crossref_primary_10_1016_j_jhydrol_2015_04_011 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2015_04_011 |
| PublicationCentury | 2000 |
| PublicationDate | June 2015 2015-06-00 20150601 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: June 2015 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2015 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Greaves, Lesmes, Lee, Toksoz (b0035) 1996; 61 Haarder, Looms, Jensen, Nielsen (b0045) 2011; 10 van der Kruk, Streich, Green (b0120) 2006; 71 Carsel, Parrish (b0025) 1998; 24 Steelman, Endres (b0090) 2010; 46 van Overmeeren, Sariowan, Gehrels (b0150) 1997; 197 van Genuchten (b0145) 1980; 44 Park, C.B., Miller, R.D., Xia, J., 1998. Imaging dispersion curves of surface waves on multi-channel record”, 68th Annual International Meeting, SEG, Expanded Abstracts, pp. 1377–1380. Steelman, Endres, van der Kruk (b0095) 2010; 24 van der Kruk (b0115) 2006; 44 Duan, Gupta, Sorooshian (b0030) 1993; 76 Huisman, Sperl, Bouten, Verstraten (b0050) 2001; 245 Irving, Knight (b0055) 2006; 32 Mangel, Moysey, Ryan, Tarbutton (b0065) 2012; 16 Truss, Grasmueck, Vega, Viggiano (b0110) 2007; 43 von Hebel, Rudolph, Mester, Huisman, Kumbhar, Vereecken, van der Kruk (b0160) 2014; 50 Topp, Davis, Annan (b0105) 1980; 16 Moysey (b0075) 2010; 75 Grote, Anger, Kelly, Hubbard, Rubin (b0040) 2010; 15 van der Kruk, Vereecken, Jacob (b0125) 2009; 28 Yapo, Gupta, Sorooshian (b0165) 1998; 204 Busch, Weihermller, Huisman, Steelman, Endres, Vereecken, van der Kruk (b0020) 2013; 49 van der Kruk, Steelman, Endres, Vereecken (b0130) 2009; 36 van der Kruk, Diamanti, Giannopoulos, Vereecken (b0140) 2012; 81 Vellidis, Smith, Thomas, Asmussen (b0155) 1990; 33 Mertens, Madsen, Feyen, Jacques, Feyen (b0070) 2004; 294 Arcone (b0005) 1984; 49 Budden (b0015) 1961 Lagarias, Reeds, Wright, Wright (b0060) 1998; 9 van der Kruk, Jacob, Vereecken (b0135) 2010; 75 Simunek, J., van Genuchten, M.Th., Sejna, M., 2005. HYDRUS 1D Code for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated porous media, Department of Environmental Sciences and University of California Riverside, US Salinity Laboratory, USDA, ARS, Riverside, CA. Arcone, Peapples, Liu (b0010) 2003; 68 Strobbia, Cassiani (b0100) 2007; 72 van der Kruk (10.1016/j.jhydrol.2015.04.011_b0120) 2006; 71 Huisman (10.1016/j.jhydrol.2015.04.011_b0050) 2001; 245 Topp (10.1016/j.jhydrol.2015.04.011_b0105) 1980; 16 Moysey (10.1016/j.jhydrol.2015.04.011_b0075) 2010; 75 van der Kruk (10.1016/j.jhydrol.2015.04.011_b0135) 2010; 75 Carsel (10.1016/j.jhydrol.2015.04.011_b0025) 1998; 24 Duan (10.1016/j.jhydrol.2015.04.011_b0030) 1993; 76 Irving (10.1016/j.jhydrol.2015.04.011_b0055) 2006; 32 10.1016/j.jhydrol.2015.04.011_b0080 Strobbia (10.1016/j.jhydrol.2015.04.011_b0100) 2007; 72 Yapo (10.1016/j.jhydrol.2015.04.011_b0165) 1998; 204 Mangel (10.1016/j.jhydrol.2015.04.011_b0065) 2012; 16 von Hebel (10.1016/j.jhydrol.2015.04.011_b0160) 2014; 50 10.1016/j.jhydrol.2015.04.011_b0085 van Overmeeren (10.1016/j.jhydrol.2015.04.011_b0150) 1997; 197 Haarder (10.1016/j.jhydrol.2015.04.011_b0045) 2011; 10 van Genuchten (10.1016/j.jhydrol.2015.04.011_b0145) 1980; 44 Vellidis (10.1016/j.jhydrol.2015.04.011_b0155) 1990; 33 Grote (10.1016/j.jhydrol.2015.04.011_b0040) 2010; 15 Steelman (10.1016/j.jhydrol.2015.04.011_b0090) 2010; 46 Truss (10.1016/j.jhydrol.2015.04.011_b0110) 2007; 43 Busch (10.1016/j.jhydrol.2015.04.011_b0020) 2013; 49 Steelman (10.1016/j.jhydrol.2015.04.011_b0095) 2010; 24 Mertens (10.1016/j.jhydrol.2015.04.011_b0070) 2004; 294 Lagarias (10.1016/j.jhydrol.2015.04.011_b0060) 1998; 9 van der Kruk (10.1016/j.jhydrol.2015.04.011_b0130) 2009; 36 Greaves (10.1016/j.jhydrol.2015.04.011_b0035) 1996; 61 van der Kruk (10.1016/j.jhydrol.2015.04.011_b0140) 2012; 81 Budden (10.1016/j.jhydrol.2015.04.011_b0015) 1961 van der Kruk (10.1016/j.jhydrol.2015.04.011_b0115) 2006; 44 Arcone (10.1016/j.jhydrol.2015.04.011_b0010) 2003; 68 Arcone (10.1016/j.jhydrol.2015.04.011_b0005) 1984; 49 van der Kruk (10.1016/j.jhydrol.2015.04.011_b0125) 2009; 28 |
| References_xml | – volume: 46 start-page: W11533 year: 2010 ident: b0090 article-title: An examination of direct ground wave soil moisture monitoring over an annual cycle of soil conditions publication-title: Water Resour. Res. – volume: 32 year: 2006 ident: b0055 article-title: Numerical modeling of ground-penetrating radar in 2-D using MATLAB publication-title: Comput. Geosci. – volume: 81 start-page: 88 year: 2012 end-page: 96 ident: b0140 article-title: Inversion of dispersive GPR pulse propagation in waveguides with heterogeneities and rough and dipping interfaces publication-title: J. Appl. Geophys. – volume: 61 start-page: 683 year: 1996 end-page: 695 ident: b0035 article-title: Velocity variations and water content estimated from multi-offset ground-penetrating radar publication-title: Geophysics – volume: 36 start-page: L18503 year: 2009 ident: b0130 article-title: Dispersion inversion of electromagnetic pulse propagation within freezing and thawing waveguides publication-title: Geophys. Res. Lett. – volume: 15 start-page: 93 year: 2010 end-page: 110 ident: b0040 article-title: Characterization of soil water content variability and soil texture using GPR groundwave techniques publication-title: J. Environ. Eng. Geophys. (JEEG) – volume: 10 start-page: 84 year: 2011 end-page: 97 ident: b0045 article-title: Visualizing unsaturated flow phenomena using high-resolution reflection ground penetrating radar publication-title: Vadose Zone J. – volume: 16 start-page: 574 year: 1980 end-page: 582 ident: b0105 article-title: Electromagnetic determination of soil water content: measurements in coaxial transmission lines publication-title: Water Resour. Res. – volume: 50 start-page: 2732 year: 2014 end-page: 2748 ident: b0160 article-title: Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data publication-title: Water Resour. Res. – volume: 71 start-page: K19 year: 2006 end-page: K29 ident: b0120 article-title: Properties of surface waveguides derived from separate and joint inversion of dispersive TE and TM GPR data publication-title: Geophysics – volume: 49 year: 1984 ident: b0005 article-title: Field observations of electromagnetic pulse propagation in dielectric slabs publication-title: Geophysics – volume: 24 start-page: 755 year: 1998 end-page: 769 ident: b0025 article-title: Developing joint probability distributions of soil water retention characteristics publication-title: Water Resour. Res. – volume: 76 start-page: 501 year: 1993 end-page: 521 ident: b0030 article-title: Shuffled complex evolution approach for effective and efficient global minimization publication-title: J. Opt. Theory Appl. – volume: 72 start-page: J17 year: 2007 end-page: J29 ident: b0100 article-title: Multilayer ground-penetrating radar guided waves in shallow soil layers for estimating soil water content publication-title: Geophysics – volume: 75 start-page: 211 year: 2010 end-page: 219 ident: b0075 article-title: Hydrologic trajectories in transient ground-penetrating radar reflection data publication-title: Geophysics – volume: 9 start-page: 112 year: 1998 end-page: 147 ident: b0060 article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions publication-title: Soc. Ind. Appl. Mathe. J. Opt. – volume: 44 start-page: 892 year: 1980 end-page: 898 ident: b0145 article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. – volume: 204 start-page: 83 year: 1998 end-page: 97 ident: b0165 article-title: Multi-objective global optimization for hydrologic models publication-title: J. Hydrol. – volume: 28 start-page: 936 year: 2009 end-page: 940 ident: b0125 article-title: Identifying dispersive GPR signals and inverting for surface wave-guide properties publication-title: Lead Edge – year: 1961 ident: b0015 article-title: The Wave-guide Mode Theory of Wave Propagation: Prentice-Hall Inc – volume: 44 start-page: 2908 year: 2006 end-page: 2915 ident: b0115 article-title: Properties of surface waveguides derived from inversion of fundamental and higher mode dispersive GPR data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 68 start-page: 1922 year: 2003 end-page: 1933 ident: b0010 article-title: Propagation of a ground-penetrating radar (GPR) pulse in a thin-surface waveguide publication-title: Geophysics – reference: Park, C.B., Miller, R.D., Xia, J., 1998. Imaging dispersion curves of surface waves on multi-channel record”, 68th Annual International Meeting, SEG, Expanded Abstracts, pp. 1377–1380. – volume: 294 start-page: 251 year: 2004 end-page: 269 ident: b0070 article-title: Including prior information in the estimation of effective soil parameters in unsaturated zone modelling publication-title: J. Hydrol. – volume: 75 start-page: WA263 year: 2010 end-page: WA273 ident: b0135 article-title: Properties of precipitation-induced multilayer surface waveguides derived from inversion of dispersive TE and TM GPR data publication-title: Geophysics – volume: 197 start-page: 316 year: 1997 end-page: 338 ident: b0150 article-title: Ground penetrating radar for determining volumetric soil water content; results of comparative measurements at two test sites publication-title: J. Hydrol. – reference: Simunek, J., van Genuchten, M.Th., Sejna, M., 2005. HYDRUS 1D Code for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated porous media, Department of Environmental Sciences and University of California Riverside, US Salinity Laboratory, USDA, ARS, Riverside, CA. – volume: 43 year: 2007 ident: b0110 article-title: Imaging rainfall drainage within the Miami oolitic limestone using high-resolution time-lapse ground-penetrating radar publication-title: Water Resour. Res. – volume: 245 start-page: 48 year: 2001 end-page: 58 ident: b0050 article-title: Soil water content measurements at different scales: accuracy of time domain reflectometry and ground-penetrating radar publication-title: J. Hydrol. – volume: 16 start-page: 4009 year: 2012 end-page: 4022 ident: b0065 article-title: Multi-offset ground-penetrating radar imaging of a lab-scale infiltration test publication-title: Hydrol. Earth Syst. Sci. – volume: 49 start-page: 84808494 year: 2013 ident: b0020 article-title: Coupled hydrogeophysical inversion of time-lapse surface GPR data to estimate hydraulic properties of a layered subsurface publication-title: Water Resour. Res. – volume: 24 start-page: 2022 year: 2010 end-page: 2033 ident: b0095 article-title: Field observations of shallow freeze and thaw processes using high-frequency ground-penetrating radar publication-title: Hydrol. Process. – volume: 33 start-page: 1867 year: 1990 end-page: 1874 ident: b0155 article-title: Detecting wetting front movement in a sandy soil with ground-penetrating radar publication-title: Trans. Am. Soc. Agr. Eng. – volume: 24 start-page: 755 issue: 5 year: 1998 ident: 10.1016/j.jhydrol.2015.04.011_b0025 article-title: Developing joint probability distributions of soil water retention characteristics publication-title: Water Resour. Res. doi: 10.1029/WR024i005p00755 – volume: 75 start-page: WA263 issue: 4 year: 2010 ident: 10.1016/j.jhydrol.2015.04.011_b0135 article-title: Properties of precipitation-induced multilayer surface waveguides derived from inversion of dispersive TE and TM GPR data publication-title: Geophysics doi: 10.1190/1.3467444 – volume: 76 start-page: 501 issue: 3 year: 1993 ident: 10.1016/j.jhydrol.2015.04.011_b0030 article-title: Shuffled complex evolution approach for effective and efficient global minimization publication-title: J. Opt. Theory Appl. doi: 10.1007/BF00939380 – ident: 10.1016/j.jhydrol.2015.04.011_b0085 – volume: 72 start-page: J17 issue: 4 year: 2007 ident: 10.1016/j.jhydrol.2015.04.011_b0100 article-title: Multilayer ground-penetrating radar guided waves in shallow soil layers for estimating soil water content publication-title: Geophysics doi: 10.1190/1.2716374 – volume: 44 start-page: 892 issue: 5 year: 1980 ident: 10.1016/j.jhydrol.2015.04.011_b0145 article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1980.03615995004400050002x – volume: 9 start-page: 112 year: 1998 ident: 10.1016/j.jhydrol.2015.04.011_b0060 article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions publication-title: Soc. Ind. Appl. Mathe. J. Opt. – volume: 204 start-page: 83 year: 1998 ident: 10.1016/j.jhydrol.2015.04.011_b0165 article-title: Multi-objective global optimization for hydrologic models publication-title: J. Hydrol. doi: 10.1016/S0022-1694(97)00107-8 – volume: 28 start-page: 936 year: 2009 ident: 10.1016/j.jhydrol.2015.04.011_b0125 article-title: Identifying dispersive GPR signals and inverting for surface wave-guide properties publication-title: Lead Edge doi: 10.1190/1.3249780 – volume: 16 start-page: 4009 year: 2012 ident: 10.1016/j.jhydrol.2015.04.011_b0065 article-title: Multi-offset ground-penetrating radar imaging of a lab-scale infiltration test publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-16-4009-2012 – volume: 49 issue: 10 year: 1984 ident: 10.1016/j.jhydrol.2015.04.011_b0005 article-title: Field observations of electromagnetic pulse propagation in dielectric slabs publication-title: Geophysics doi: 10.1190/1.1441584 – volume: 81 start-page: 88 year: 2012 ident: 10.1016/j.jhydrol.2015.04.011_b0140 article-title: Inversion of dispersive GPR pulse propagation in waveguides with heterogeneities and rough and dipping interfaces publication-title: J. Appl. Geophys. doi: 10.1016/j.jappgeo.2011.09.013 – volume: 71 start-page: K19 issue: 1 year: 2006 ident: 10.1016/j.jhydrol.2015.04.011_b0120 article-title: Properties of surface waveguides derived from separate and joint inversion of dispersive TE and TM GPR data publication-title: Geophysics doi: 10.1190/1.2168011 – volume: 16 start-page: 574 issue: 3 year: 1980 ident: 10.1016/j.jhydrol.2015.04.011_b0105 article-title: Electromagnetic determination of soil water content: measurements in coaxial transmission lines publication-title: Water Resour. Res. doi: 10.1029/WR016i003p00574 – volume: 15 start-page: 93 issue: 3 year: 2010 ident: 10.1016/j.jhydrol.2015.04.011_b0040 article-title: Characterization of soil water content variability and soil texture using GPR groundwave techniques publication-title: J. Environ. Eng. Geophys. (JEEG) doi: 10.2113/JEEG15.3.93 – volume: 32 year: 2006 ident: 10.1016/j.jhydrol.2015.04.011_b0055 article-title: Numerical modeling of ground-penetrating radar in 2-D using MATLAB publication-title: Comput. Geosci. doi: 10.1016/j.cageo.2005.11.006 – volume: 24 start-page: 2022 year: 2010 ident: 10.1016/j.jhydrol.2015.04.011_b0095 article-title: Field observations of shallow freeze and thaw processes using high-frequency ground-penetrating radar publication-title: Hydrol. Process. doi: 10.1002/hyp.7688 – volume: 43 year: 2007 ident: 10.1016/j.jhydrol.2015.04.011_b0110 article-title: Imaging rainfall drainage within the Miami oolitic limestone using high-resolution time-lapse ground-penetrating radar publication-title: Water Resour. Res. doi: 10.1029/2005WR004395 – volume: 197 start-page: 316 issue: 1-4 year: 1997 ident: 10.1016/j.jhydrol.2015.04.011_b0150 article-title: Ground penetrating radar for determining volumetric soil water content; results of comparative measurements at two test sites publication-title: J. Hydrol. doi: 10.1016/S0022-1694(96)03244-1 – volume: 68 start-page: 1922 issue: 6 year: 2003 ident: 10.1016/j.jhydrol.2015.04.011_b0010 article-title: Propagation of a ground-penetrating radar (GPR) pulse in a thin-surface waveguide publication-title: Geophysics doi: 10.1190/1.1635046 – volume: 61 start-page: 683 issue: 3 year: 1996 ident: 10.1016/j.jhydrol.2015.04.011_b0035 article-title: Velocity variations and water content estimated from multi-offset ground-penetrating radar publication-title: Geophysics doi: 10.1190/1.1443996 – volume: 49 start-page: 84808494 year: 2013 ident: 10.1016/j.jhydrol.2015.04.011_b0020 article-title: Coupled hydrogeophysical inversion of time-lapse surface GPR data to estimate hydraulic properties of a layered subsurface publication-title: Water Resour. Res. doi: 10.1002/2013WR013992 – volume: 245 start-page: 48 year: 2001 ident: 10.1016/j.jhydrol.2015.04.011_b0050 article-title: Soil water content measurements at different scales: accuracy of time domain reflectometry and ground-penetrating radar publication-title: J. Hydrol. doi: 10.1016/S0022-1694(01)00336-5 – volume: 33 start-page: 1867 issue: 6 year: 1990 ident: 10.1016/j.jhydrol.2015.04.011_b0155 article-title: Detecting wetting front movement in a sandy soil with ground-penetrating radar publication-title: Trans. Am. Soc. Agr. Eng. doi: 10.13031/2013.31551 – volume: 36 start-page: L18503 year: 2009 ident: 10.1016/j.jhydrol.2015.04.011_b0130 article-title: Dispersion inversion of electromagnetic pulse propagation within freezing and thawing waveguides publication-title: Geophys. Res. Lett. doi: 10.1029/2009GL039581 – volume: 44 start-page: 2908 issue: 10 year: 2006 ident: 10.1016/j.jhydrol.2015.04.011_b0115 article-title: Properties of surface waveguides derived from inversion of fundamental and higher mode dispersive GPR data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2006.877286 – volume: 50 start-page: 2732 issue: 3 year: 2014 ident: 10.1016/j.jhydrol.2015.04.011_b0160 article-title: Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data publication-title: Water Resour. Res. doi: 10.1002/2013WR014864 – volume: 10 start-page: 84 year: 2011 ident: 10.1016/j.jhydrol.2015.04.011_b0045 article-title: Visualizing unsaturated flow phenomena using high-resolution reflection ground penetrating radar publication-title: Vadose Zone J. doi: 10.2136/vzj2009.0188 – volume: 75 start-page: 211 issue: 4 year: 2010 ident: 10.1016/j.jhydrol.2015.04.011_b0075 article-title: Hydrologic trajectories in transient ground-penetrating radar reflection data publication-title: Geophysics doi: 10.1190/1.3463416 – year: 1961 ident: 10.1016/j.jhydrol.2015.04.011_b0015 – ident: 10.1016/j.jhydrol.2015.04.011_b0080 doi: 10.1190/1.1820161 – volume: 46 start-page: W11533 year: 2010 ident: 10.1016/j.jhydrol.2015.04.011_b0090 article-title: An examination of direct ground wave soil moisture monitoring over an annual cycle of soil conditions publication-title: Water Resour. Res. doi: 10.1029/2009WR008815 – volume: 294 start-page: 251 year: 2004 ident: 10.1016/j.jhydrol.2015.04.011_b0070 article-title: Including prior information in the estimation of effective soil parameters in unsaturated zone modelling publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2004.02.011 |
| SSID | ssj0000334 |
| Score | 2.2224445 |
| Snippet | •Distribution of water in precipitation-induced waveguides impacts GPR dispersion.•Dispersion can be used to resolve water content profiles of dispersive... Surface-based ground-penetrating radar (GPR) measurements have significant potential for monitoring dynamic hydrologic processes at multiple scales in time and... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 496 |
| SubjectTerms | algorithms Dispersions equations Ground penetrating radar Hydrology Infiltration Inversions Mathematical analysis Moisture content monitoring Shuffled-complex evolution space and time surveys Water content water distribution Wave dispersion Waveguide wavelengths Wetting wetting front |
| Title | Resolving precipitation induced water content profiles by inversion of dispersive GPR data: A numerical study |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2015.04.011 https://www.proquest.com/docview/1732820489 https://www.proquest.com/docview/1770303103 https://www.proquest.com/docview/1825409021 |
| Volume | 525 |
| WOSCitedRecordID | wos000355885600042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQviKsYNxkJ8VKl1ImdOLxVqBtM25hQJ_XNcmxHtHRp6Y31Z_CP8YmdtGWwjQdeoiqXpvH5es6J_Z3vIPQmDEmU5TELojBXAU2VCbKkrQKZZXGmE3jj0GWzieTkhPf76Wmj8bOqhVmOkqLgFxfp5L-a2u6zxobS2X8wd_2ldof9bI1ut9bsdnsjw8OE_GjpisyNGky8CHfTvnwvYLH_hwRdRKCoAw3A9-yeQRo6KJZu9gwySD0ADfGS3H5w-qUJTFJXxV4s3CLPaEOa9nJ2-3Wlp07eyaawnXOQY9CAvXre4RiqGhxDwB5obrB_V7MtAlrzuHXYquPCdPHNkXuLsuOw9uRiP29B2JpftVFHQGLX4rjyxSxkzUmLpnHA2mzDr9I03gjR_tgl7-8mIoatoXtGIO6xUsjW-_Mtte2Tz2L_7OhI9Lr93tvJ9wAakcGCve_KcgvthglLrevc7Xzq9g_X4T2KaCVBDz9_XRb27o93_lvC81voL_OZ3n10z5sKdxyAHqCGKR6iOwfGS5g_Quc1kPAWkLAHEi6BhD2QcAUknK1wDSQ8zvEaSNgCCQOQ3uMOrmGESxg9Rmf73d6Hj4FvzhFIm3POg9hwFcaKaAMLv3kWGR7mXCWKS6XbkqRE5jqNqM3ImaaKM8mTTGtJqDIKotoTtFOMC_MUYZlSxm3SJEOpKCPGvkJb90F4TlXObUTdQ7QaQaH8s0IDlZGoKIpD4QdewMCLNhV24PdQq75s4qRbrruAV-YRPv90eaWwALvu0teVOYX1z7DoJgszXswEATUsUMdOrzoH4i50_LviHJjKARI1eXaDc56ju-v_3Au0M58uzEt0Wy3ng9n0lYf0L4VKzmI |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resolving+precipitation+induced+water+content+profiles+by+inversion+of+dispersive+GPR+data%3A+A+numerical+study&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Mangel%2C+Adam+R&rft.au=Moysey%2C+Stephen+M.J.&rft.au=Kruk%2C+Jan+van+der&rft.date=2015-06-01&rft.issn=0022-1694&rft.volume=525+p.496-505&rft.spage=496&rft.epage=505&rft_id=info:doi/10.1016%2Fj.jhydrol.2015.04.011&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |