Resolving precipitation induced water content profiles by inversion of dispersive GPR data: A numerical study

•Distribution of water in precipitation-induced waveguides impacts GPR dispersion.•Dispersion can be used to resolve water content profiles of dispersive waveguides.•Effective layer models cannot describe the gradational nature of the profiles.•Piece-wise linear models better explain the data and th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of hydrology (Amsterdam) Ročník 525; s. 496 - 505
Hlavní autoři: Mangel, Adam R., Moysey, Stephen M.J., van der Kruk, Jan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.06.2015
Témata:
ISSN:0022-1694, 1879-2707
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Distribution of water in precipitation-induced waveguides impacts GPR dispersion.•Dispersion can be used to resolve water content profiles of dispersive waveguides.•Effective layer models cannot describe the gradational nature of the profiles.•Piece-wise linear models better explain the data and the water content distribution. Surface-based ground-penetrating radar (GPR) measurements have significant potential for monitoring dynamic hydrologic processes at multiple scales in time and space. At early times during infiltration into a soil, the zone above the wetting front may act as a low-velocity waveguide that traps GPR waves, thereby causing dispersion and making interpretation of the data using standard methods difficult. In this work, we show that the dispersion is dependent upon the distribution of water within the waveguide, which is controlled by soil hydrologic properties. Simulations of infiltration were performed by varying the n-parameter of the Mualem–van Genuchten equation using HYDRUS-1D; the associated GPR data were simulated to evaluate the influence of dispersion. We observed a notable decrease in wave dispersion as the sharpness of the wetting front profile decreased. Given the sensitivity of the dispersion effect to the wetting front profile, we also evaluated whether the water content distribution can be determined through inversion of the dispersive GPR data. We found that a global grid search combined with the simplex algorithm was able to estimate the average water content when the wetted zone is divided into 2 layers. This approach was incapable, however, of representing the gradational nature of the water content distribution behind the wetting front. In contrast, the shuffled complex evolution algorithm was able to constrain a piece-wise linear function to closely match the shallow gradational water content profile. In both the layered and piece-wise linear case, the sensitivity of the dispersive data dropped sharply below the wetting front, which in this case was around 20cm, i.e., twice the average wavelength, for a 900MHz GPR survey. This study demonstrates that dispersive GPR data has significant potential for capturing the early-time dynamics of infiltration that cannot be obtained with standard GPR analysis approaches.
AbstractList Surface-based ground-penetrating radar (GPR) measurements have significant potential for monitoring dynamic hydrologic processes at multiple scales in time and space. At early times during infiltration into a soil, the zone above the wetting front may act as a low-velocity waveguide that traps GPR waves, thereby causing dispersion and making interpretation of the data using standard methods difficult. In this work, we show that the dispersion is dependent upon the distribution of water within the waveguide, which is controlled by soil hydrologic properties. Simulations of infiltration were performed by varying the n-parameter of the Mualem–van Genuchten equation using HYDRUS-1D; the associated GPR data were simulated to evaluate the influence of dispersion. We observed a notable decrease in wave dispersion as the sharpness of the wetting front profile decreased. Given the sensitivity of the dispersion effect to the wetting front profile, we also evaluated whether the water content distribution can be determined through inversion of the dispersive GPR data. We found that a global grid search combined with the simplex algorithm was able to estimate the average water content when the wetted zone is divided into 2 layers. This approach was incapable, however, of representing the gradational nature of the water content distribution behind the wetting front. In contrast, the shuffled complex evolution algorithm was able to constrain a piece-wise linear function to closely match the shallow gradational water content profile. In both the layered and piece-wise linear case, the sensitivity of the dispersive data dropped sharply below the wetting front, which in this case was around 20cm, i.e., twice the average wavelength, for a 900MHz GPR survey. This study demonstrates that dispersive GPR data has significant potential for capturing the early-time dynamics of infiltration that cannot be obtained with standard GPR analysis approaches.
•Distribution of water in precipitation-induced waveguides impacts GPR dispersion.•Dispersion can be used to resolve water content profiles of dispersive waveguides.•Effective layer models cannot describe the gradational nature of the profiles.•Piece-wise linear models better explain the data and the water content distribution. Surface-based ground-penetrating radar (GPR) measurements have significant potential for monitoring dynamic hydrologic processes at multiple scales in time and space. At early times during infiltration into a soil, the zone above the wetting front may act as a low-velocity waveguide that traps GPR waves, thereby causing dispersion and making interpretation of the data using standard methods difficult. In this work, we show that the dispersion is dependent upon the distribution of water within the waveguide, which is controlled by soil hydrologic properties. Simulations of infiltration were performed by varying the n-parameter of the Mualem–van Genuchten equation using HYDRUS-1D; the associated GPR data were simulated to evaluate the influence of dispersion. We observed a notable decrease in wave dispersion as the sharpness of the wetting front profile decreased. Given the sensitivity of the dispersion effect to the wetting front profile, we also evaluated whether the water content distribution can be determined through inversion of the dispersive GPR data. We found that a global grid search combined with the simplex algorithm was able to estimate the average water content when the wetted zone is divided into 2 layers. This approach was incapable, however, of representing the gradational nature of the water content distribution behind the wetting front. In contrast, the shuffled complex evolution algorithm was able to constrain a piece-wise linear function to closely match the shallow gradational water content profile. In both the layered and piece-wise linear case, the sensitivity of the dispersive data dropped sharply below the wetting front, which in this case was around 20cm, i.e., twice the average wavelength, for a 900MHz GPR survey. This study demonstrates that dispersive GPR data has significant potential for capturing the early-time dynamics of infiltration that cannot be obtained with standard GPR analysis approaches.
Author van der Kruk, Jan
Moysey, Stephen M.J.
Mangel, Adam R.
Author_xml – sequence: 1
  givenname: Adam R.
  surname: Mangel
  fullname: Mangel, Adam R.
  email: amangel@clemson.edu
  organization: Department of Environmental Engineering and Earth Science, Clemson University, Clemson, SC, USA
– sequence: 2
  givenname: Stephen M.J.
  surname: Moysey
  fullname: Moysey, Stephen M.J.
  organization: Department of Environmental Engineering and Earth Science, Clemson University, Clemson, SC, USA
– sequence: 3
  givenname: Jan
  surname: van der Kruk
  fullname: van der Kruk, Jan
  organization: Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, Leo-Brandtstrasse, Jülich, Germany
BookMark eNqFkcFqGzEQhkVJoU7aRyjo2MtuNZJ2V9seSghpGgikhPYsZGm2lVlLrqR18dtXxj714rmIge8fxP9dk6sQAxLyHlgLDPqPm3bz--BSnFvOoGuZbBnAK7ICNYwNH9hwRVaMcd5AP8o35DrnDasjhFyR7QvmOO99-EV3Ca3f-WKKj4H64BaLjv41BRO1MRQMpTJx8jNmuj5UYo8pH9k4Uefz7rjtkT58f6HOFPOJ3tKwbDF5a2aay-IOb8nrycwZ353fG_Lz6_2Pu2_N0_PD493tU2OkgNL0qCzvLTgUAx-ntUDFJ2UHq4x1zMAIZnKjkF0HnZNWdUYNa-cMSItWDL24IR9Od-t__yyYi976bHGeTcC4ZA2Kd5KNjMNldBiYYAJqXZdRwRVnUo0V_XxCbYo5J5y0PRdbkvGzBqaP6vRGn9XpozrNpK7qarr7L71LfmvS4WLuyymHtdu9x6Sz9RiqRl_dFu2iv3DhH-AWuls
CitedBy_id crossref_primary_10_1007_s42947_023_00282_2
crossref_primary_10_5194_hess_22_2487_2018
crossref_primary_10_26636_jtit_2017_119717
crossref_primary_10_2136_vzj2017_02_0037
crossref_primary_10_2136_vzj2018_03_0052
crossref_primary_10_1016_j_geoderma_2019_02_024
crossref_primary_10_1002_2016WR019330
crossref_primary_10_1016_j_conbuildmat_2023_132834
crossref_primary_10_1002_nsg_12099
crossref_primary_10_3390_rs10101667
crossref_primary_10_5194_hess_24_159_2020
Cites_doi 10.1029/WR024i005p00755
10.1190/1.3467444
10.1007/BF00939380
10.1190/1.2716374
10.2136/sssaj1980.03615995004400050002x
10.1016/S0022-1694(97)00107-8
10.1190/1.3249780
10.5194/hess-16-4009-2012
10.1190/1.1441584
10.1016/j.jappgeo.2011.09.013
10.1190/1.2168011
10.1029/WR016i003p00574
10.2113/JEEG15.3.93
10.1016/j.cageo.2005.11.006
10.1002/hyp.7688
10.1029/2005WR004395
10.1016/S0022-1694(96)03244-1
10.1190/1.1635046
10.1190/1.1443996
10.1002/2013WR013992
10.1016/S0022-1694(01)00336-5
10.13031/2013.31551
10.1029/2009GL039581
10.1109/TGRS.2006.877286
10.1002/2013WR014864
10.2136/vzj2009.0188
10.1190/1.3463416
10.1190/1.1820161
10.1029/2009WR008815
10.1016/j.jhydrol.2004.02.011
ContentType Journal Article
Copyright 2015 Elsevier B.V.
Copyright_xml – notice: 2015 Elsevier B.V.
DBID AAYXX
CITATION
7QH
7ST
7TG
7UA
C1K
F1W
H96
KL.
L.G
SOI
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.jhydrol.2015.04.011
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
EndPage 505
ExternalDocumentID 10_1016_j_jhydrol_2015_04_011
S0022169415002607
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AAXUO
ABEFU
ABFNM
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFFNX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CBWCG
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
UQL
VOH
WUQ
Y6R
ZCA
ZMT
ZY4
~02
~G-
~KM
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7QH
7ST
7TG
7UA
C1K
F1W
H96
KL.
L.G
SOI
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-a431t-6e8c26c1de3729fb3e82f8c7c8acd0a191afd9345515d4c85a87bdda14cec3763
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000355885600042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Sep 28 06:02:34 EDT 2025
Wed Oct 01 13:59:11 EDT 2025
Tue Oct 07 09:51:53 EDT 2025
Tue Nov 18 21:46:02 EST 2025
Sat Nov 29 04:33:34 EST 2025
Fri Feb 23 02:26:59 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Infiltration
Ground-penetrating radar
Waveguide
Shuffled-complex evolution
Water content
Wave dispersion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a431t-6e8c26c1de3729fb3e82f8c7c8acd0a191afd9345515d4c85a87bdda14cec3763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1732820489
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_1825409021
proquest_miscellaneous_1770303103
proquest_miscellaneous_1732820489
crossref_citationtrail_10_1016_j_jhydrol_2015_04_011
crossref_primary_10_1016_j_jhydrol_2015_04_011
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2015_04_011
PublicationCentury 2000
PublicationDate June 2015
2015-06-00
20150601
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: June 2015
PublicationDecade 2010
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Greaves, Lesmes, Lee, Toksoz (b0035) 1996; 61
Haarder, Looms, Jensen, Nielsen (b0045) 2011; 10
van der Kruk, Streich, Green (b0120) 2006; 71
Carsel, Parrish (b0025) 1998; 24
Steelman, Endres (b0090) 2010; 46
van Overmeeren, Sariowan, Gehrels (b0150) 1997; 197
van Genuchten (b0145) 1980; 44
Park, C.B., Miller, R.D., Xia, J., 1998. Imaging dispersion curves of surface waves on multi-channel record”, 68th Annual International Meeting, SEG, Expanded Abstracts, pp. 1377–1380.
Steelman, Endres, van der Kruk (b0095) 2010; 24
van der Kruk (b0115) 2006; 44
Duan, Gupta, Sorooshian (b0030) 1993; 76
Huisman, Sperl, Bouten, Verstraten (b0050) 2001; 245
Irving, Knight (b0055) 2006; 32
Mangel, Moysey, Ryan, Tarbutton (b0065) 2012; 16
Truss, Grasmueck, Vega, Viggiano (b0110) 2007; 43
von Hebel, Rudolph, Mester, Huisman, Kumbhar, Vereecken, van der Kruk (b0160) 2014; 50
Topp, Davis, Annan (b0105) 1980; 16
Moysey (b0075) 2010; 75
Grote, Anger, Kelly, Hubbard, Rubin (b0040) 2010; 15
van der Kruk, Vereecken, Jacob (b0125) 2009; 28
Yapo, Gupta, Sorooshian (b0165) 1998; 204
Busch, Weihermller, Huisman, Steelman, Endres, Vereecken, van der Kruk (b0020) 2013; 49
van der Kruk, Steelman, Endres, Vereecken (b0130) 2009; 36
van der Kruk, Diamanti, Giannopoulos, Vereecken (b0140) 2012; 81
Vellidis, Smith, Thomas, Asmussen (b0155) 1990; 33
Mertens, Madsen, Feyen, Jacques, Feyen (b0070) 2004; 294
Arcone (b0005) 1984; 49
Budden (b0015) 1961
Lagarias, Reeds, Wright, Wright (b0060) 1998; 9
van der Kruk, Jacob, Vereecken (b0135) 2010; 75
Simunek, J., van Genuchten, M.Th., Sejna, M., 2005. HYDRUS 1D Code for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated porous media, Department of Environmental Sciences and University of California Riverside, US Salinity Laboratory, USDA, ARS, Riverside, CA.
Arcone, Peapples, Liu (b0010) 2003; 68
Strobbia, Cassiani (b0100) 2007; 72
van der Kruk (10.1016/j.jhydrol.2015.04.011_b0120) 2006; 71
Huisman (10.1016/j.jhydrol.2015.04.011_b0050) 2001; 245
Topp (10.1016/j.jhydrol.2015.04.011_b0105) 1980; 16
Moysey (10.1016/j.jhydrol.2015.04.011_b0075) 2010; 75
van der Kruk (10.1016/j.jhydrol.2015.04.011_b0135) 2010; 75
Carsel (10.1016/j.jhydrol.2015.04.011_b0025) 1998; 24
Duan (10.1016/j.jhydrol.2015.04.011_b0030) 1993; 76
Irving (10.1016/j.jhydrol.2015.04.011_b0055) 2006; 32
10.1016/j.jhydrol.2015.04.011_b0080
Strobbia (10.1016/j.jhydrol.2015.04.011_b0100) 2007; 72
Yapo (10.1016/j.jhydrol.2015.04.011_b0165) 1998; 204
Mangel (10.1016/j.jhydrol.2015.04.011_b0065) 2012; 16
von Hebel (10.1016/j.jhydrol.2015.04.011_b0160) 2014; 50
10.1016/j.jhydrol.2015.04.011_b0085
van Overmeeren (10.1016/j.jhydrol.2015.04.011_b0150) 1997; 197
Haarder (10.1016/j.jhydrol.2015.04.011_b0045) 2011; 10
van Genuchten (10.1016/j.jhydrol.2015.04.011_b0145) 1980; 44
Vellidis (10.1016/j.jhydrol.2015.04.011_b0155) 1990; 33
Grote (10.1016/j.jhydrol.2015.04.011_b0040) 2010; 15
Steelman (10.1016/j.jhydrol.2015.04.011_b0090) 2010; 46
Truss (10.1016/j.jhydrol.2015.04.011_b0110) 2007; 43
Busch (10.1016/j.jhydrol.2015.04.011_b0020) 2013; 49
Steelman (10.1016/j.jhydrol.2015.04.011_b0095) 2010; 24
Mertens (10.1016/j.jhydrol.2015.04.011_b0070) 2004; 294
Lagarias (10.1016/j.jhydrol.2015.04.011_b0060) 1998; 9
van der Kruk (10.1016/j.jhydrol.2015.04.011_b0130) 2009; 36
Greaves (10.1016/j.jhydrol.2015.04.011_b0035) 1996; 61
van der Kruk (10.1016/j.jhydrol.2015.04.011_b0140) 2012; 81
Budden (10.1016/j.jhydrol.2015.04.011_b0015) 1961
van der Kruk (10.1016/j.jhydrol.2015.04.011_b0115) 2006; 44
Arcone (10.1016/j.jhydrol.2015.04.011_b0010) 2003; 68
Arcone (10.1016/j.jhydrol.2015.04.011_b0005) 1984; 49
van der Kruk (10.1016/j.jhydrol.2015.04.011_b0125) 2009; 28
References_xml – volume: 46
  start-page: W11533
  year: 2010
  ident: b0090
  article-title: An examination of direct ground wave soil moisture monitoring over an annual cycle of soil conditions
  publication-title: Water Resour. Res.
– volume: 32
  year: 2006
  ident: b0055
  article-title: Numerical modeling of ground-penetrating radar in 2-D using MATLAB
  publication-title: Comput. Geosci.
– volume: 81
  start-page: 88
  year: 2012
  end-page: 96
  ident: b0140
  article-title: Inversion of dispersive GPR pulse propagation in waveguides with heterogeneities and rough and dipping interfaces
  publication-title: J. Appl. Geophys.
– volume: 61
  start-page: 683
  year: 1996
  end-page: 695
  ident: b0035
  article-title: Velocity variations and water content estimated from multi-offset ground-penetrating radar
  publication-title: Geophysics
– volume: 36
  start-page: L18503
  year: 2009
  ident: b0130
  article-title: Dispersion inversion of electromagnetic pulse propagation within freezing and thawing waveguides
  publication-title: Geophys. Res. Lett.
– volume: 15
  start-page: 93
  year: 2010
  end-page: 110
  ident: b0040
  article-title: Characterization of soil water content variability and soil texture using GPR groundwave techniques
  publication-title: J. Environ. Eng. Geophys. (JEEG)
– volume: 10
  start-page: 84
  year: 2011
  end-page: 97
  ident: b0045
  article-title: Visualizing unsaturated flow phenomena using high-resolution reflection ground penetrating radar
  publication-title: Vadose Zone J.
– volume: 16
  start-page: 574
  year: 1980
  end-page: 582
  ident: b0105
  article-title: Electromagnetic determination of soil water content: measurements in coaxial transmission lines
  publication-title: Water Resour. Res.
– volume: 50
  start-page: 2732
  year: 2014
  end-page: 2748
  ident: b0160
  article-title: Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data
  publication-title: Water Resour. Res.
– volume: 71
  start-page: K19
  year: 2006
  end-page: K29
  ident: b0120
  article-title: Properties of surface waveguides derived from separate and joint inversion of dispersive TE and TM GPR data
  publication-title: Geophysics
– volume: 49
  year: 1984
  ident: b0005
  article-title: Field observations of electromagnetic pulse propagation in dielectric slabs
  publication-title: Geophysics
– volume: 24
  start-page: 755
  year: 1998
  end-page: 769
  ident: b0025
  article-title: Developing joint probability distributions of soil water retention characteristics
  publication-title: Water Resour. Res.
– volume: 76
  start-page: 501
  year: 1993
  end-page: 521
  ident: b0030
  article-title: Shuffled complex evolution approach for effective and efficient global minimization
  publication-title: J. Opt. Theory Appl.
– volume: 72
  start-page: J17
  year: 2007
  end-page: J29
  ident: b0100
  article-title: Multilayer ground-penetrating radar guided waves in shallow soil layers for estimating soil water content
  publication-title: Geophysics
– volume: 75
  start-page: 211
  year: 2010
  end-page: 219
  ident: b0075
  article-title: Hydrologic trajectories in transient ground-penetrating radar reflection data
  publication-title: Geophysics
– volume: 9
  start-page: 112
  year: 1998
  end-page: 147
  ident: b0060
  article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions
  publication-title: Soc. Ind. Appl. Mathe. J. Opt.
– volume: 44
  start-page: 892
  year: 1980
  end-page: 898
  ident: b0145
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 204
  start-page: 83
  year: 1998
  end-page: 97
  ident: b0165
  article-title: Multi-objective global optimization for hydrologic models
  publication-title: J. Hydrol.
– volume: 28
  start-page: 936
  year: 2009
  end-page: 940
  ident: b0125
  article-title: Identifying dispersive GPR signals and inverting for surface wave-guide properties
  publication-title: Lead Edge
– year: 1961
  ident: b0015
  article-title: The Wave-guide Mode Theory of Wave Propagation: Prentice-Hall Inc
– volume: 44
  start-page: 2908
  year: 2006
  end-page: 2915
  ident: b0115
  article-title: Properties of surface waveguides derived from inversion of fundamental and higher mode dispersive GPR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 68
  start-page: 1922
  year: 2003
  end-page: 1933
  ident: b0010
  article-title: Propagation of a ground-penetrating radar (GPR) pulse in a thin-surface waveguide
  publication-title: Geophysics
– reference: Park, C.B., Miller, R.D., Xia, J., 1998. Imaging dispersion curves of surface waves on multi-channel record”, 68th Annual International Meeting, SEG, Expanded Abstracts, pp. 1377–1380.
– volume: 294
  start-page: 251
  year: 2004
  end-page: 269
  ident: b0070
  article-title: Including prior information in the estimation of effective soil parameters in unsaturated zone modelling
  publication-title: J. Hydrol.
– volume: 75
  start-page: WA263
  year: 2010
  end-page: WA273
  ident: b0135
  article-title: Properties of precipitation-induced multilayer surface waveguides derived from inversion of dispersive TE and TM GPR data
  publication-title: Geophysics
– volume: 197
  start-page: 316
  year: 1997
  end-page: 338
  ident: b0150
  article-title: Ground penetrating radar for determining volumetric soil water content; results of comparative measurements at two test sites
  publication-title: J. Hydrol.
– reference: Simunek, J., van Genuchten, M.Th., Sejna, M., 2005. HYDRUS 1D Code for simulating the one-dimensional movement of water, heat, and multiple solutes in variably saturated porous media, Department of Environmental Sciences and University of California Riverside, US Salinity Laboratory, USDA, ARS, Riverside, CA.
– volume: 43
  year: 2007
  ident: b0110
  article-title: Imaging rainfall drainage within the Miami oolitic limestone using high-resolution time-lapse ground-penetrating radar
  publication-title: Water Resour. Res.
– volume: 245
  start-page: 48
  year: 2001
  end-page: 58
  ident: b0050
  article-title: Soil water content measurements at different scales: accuracy of time domain reflectometry and ground-penetrating radar
  publication-title: J. Hydrol.
– volume: 16
  start-page: 4009
  year: 2012
  end-page: 4022
  ident: b0065
  article-title: Multi-offset ground-penetrating radar imaging of a lab-scale infiltration test
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 49
  start-page: 84808494
  year: 2013
  ident: b0020
  article-title: Coupled hydrogeophysical inversion of time-lapse surface GPR data to estimate hydraulic properties of a layered subsurface
  publication-title: Water Resour. Res.
– volume: 24
  start-page: 2022
  year: 2010
  end-page: 2033
  ident: b0095
  article-title: Field observations of shallow freeze and thaw processes using high-frequency ground-penetrating radar
  publication-title: Hydrol. Process.
– volume: 33
  start-page: 1867
  year: 1990
  end-page: 1874
  ident: b0155
  article-title: Detecting wetting front movement in a sandy soil with ground-penetrating radar
  publication-title: Trans. Am. Soc. Agr. Eng.
– volume: 24
  start-page: 755
  issue: 5
  year: 1998
  ident: 10.1016/j.jhydrol.2015.04.011_b0025
  article-title: Developing joint probability distributions of soil water retention characteristics
  publication-title: Water Resour. Res.
  doi: 10.1029/WR024i005p00755
– volume: 75
  start-page: WA263
  issue: 4
  year: 2010
  ident: 10.1016/j.jhydrol.2015.04.011_b0135
  article-title: Properties of precipitation-induced multilayer surface waveguides derived from inversion of dispersive TE and TM GPR data
  publication-title: Geophysics
  doi: 10.1190/1.3467444
– volume: 76
  start-page: 501
  issue: 3
  year: 1993
  ident: 10.1016/j.jhydrol.2015.04.011_b0030
  article-title: Shuffled complex evolution approach for effective and efficient global minimization
  publication-title: J. Opt. Theory Appl.
  doi: 10.1007/BF00939380
– ident: 10.1016/j.jhydrol.2015.04.011_b0085
– volume: 72
  start-page: J17
  issue: 4
  year: 2007
  ident: 10.1016/j.jhydrol.2015.04.011_b0100
  article-title: Multilayer ground-penetrating radar guided waves in shallow soil layers for estimating soil water content
  publication-title: Geophysics
  doi: 10.1190/1.2716374
– volume: 44
  start-page: 892
  issue: 5
  year: 1980
  ident: 10.1016/j.jhydrol.2015.04.011_b0145
  article-title: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj1980.03615995004400050002x
– volume: 9
  start-page: 112
  year: 1998
  ident: 10.1016/j.jhydrol.2015.04.011_b0060
  article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions
  publication-title: Soc. Ind. Appl. Mathe. J. Opt.
– volume: 204
  start-page: 83
  year: 1998
  ident: 10.1016/j.jhydrol.2015.04.011_b0165
  article-title: Multi-objective global optimization for hydrologic models
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(97)00107-8
– volume: 28
  start-page: 936
  year: 2009
  ident: 10.1016/j.jhydrol.2015.04.011_b0125
  article-title: Identifying dispersive GPR signals and inverting for surface wave-guide properties
  publication-title: Lead Edge
  doi: 10.1190/1.3249780
– volume: 16
  start-page: 4009
  year: 2012
  ident: 10.1016/j.jhydrol.2015.04.011_b0065
  article-title: Multi-offset ground-penetrating radar imaging of a lab-scale infiltration test
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-16-4009-2012
– volume: 49
  issue: 10
  year: 1984
  ident: 10.1016/j.jhydrol.2015.04.011_b0005
  article-title: Field observations of electromagnetic pulse propagation in dielectric slabs
  publication-title: Geophysics
  doi: 10.1190/1.1441584
– volume: 81
  start-page: 88
  year: 2012
  ident: 10.1016/j.jhydrol.2015.04.011_b0140
  article-title: Inversion of dispersive GPR pulse propagation in waveguides with heterogeneities and rough and dipping interfaces
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2011.09.013
– volume: 71
  start-page: K19
  issue: 1
  year: 2006
  ident: 10.1016/j.jhydrol.2015.04.011_b0120
  article-title: Properties of surface waveguides derived from separate and joint inversion of dispersive TE and TM GPR data
  publication-title: Geophysics
  doi: 10.1190/1.2168011
– volume: 16
  start-page: 574
  issue: 3
  year: 1980
  ident: 10.1016/j.jhydrol.2015.04.011_b0105
  article-title: Electromagnetic determination of soil water content: measurements in coaxial transmission lines
  publication-title: Water Resour. Res.
  doi: 10.1029/WR016i003p00574
– volume: 15
  start-page: 93
  issue: 3
  year: 2010
  ident: 10.1016/j.jhydrol.2015.04.011_b0040
  article-title: Characterization of soil water content variability and soil texture using GPR groundwave techniques
  publication-title: J. Environ. Eng. Geophys. (JEEG)
  doi: 10.2113/JEEG15.3.93
– volume: 32
  year: 2006
  ident: 10.1016/j.jhydrol.2015.04.011_b0055
  article-title: Numerical modeling of ground-penetrating radar in 2-D using MATLAB
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2005.11.006
– volume: 24
  start-page: 2022
  year: 2010
  ident: 10.1016/j.jhydrol.2015.04.011_b0095
  article-title: Field observations of shallow freeze and thaw processes using high-frequency ground-penetrating radar
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7688
– volume: 43
  year: 2007
  ident: 10.1016/j.jhydrol.2015.04.011_b0110
  article-title: Imaging rainfall drainage within the Miami oolitic limestone using high-resolution time-lapse ground-penetrating radar
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004395
– volume: 197
  start-page: 316
  issue: 1-4
  year: 1997
  ident: 10.1016/j.jhydrol.2015.04.011_b0150
  article-title: Ground penetrating radar for determining volumetric soil water content; results of comparative measurements at two test sites
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(96)03244-1
– volume: 68
  start-page: 1922
  issue: 6
  year: 2003
  ident: 10.1016/j.jhydrol.2015.04.011_b0010
  article-title: Propagation of a ground-penetrating radar (GPR) pulse in a thin-surface waveguide
  publication-title: Geophysics
  doi: 10.1190/1.1635046
– volume: 61
  start-page: 683
  issue: 3
  year: 1996
  ident: 10.1016/j.jhydrol.2015.04.011_b0035
  article-title: Velocity variations and water content estimated from multi-offset ground-penetrating radar
  publication-title: Geophysics
  doi: 10.1190/1.1443996
– volume: 49
  start-page: 84808494
  year: 2013
  ident: 10.1016/j.jhydrol.2015.04.011_b0020
  article-title: Coupled hydrogeophysical inversion of time-lapse surface GPR data to estimate hydraulic properties of a layered subsurface
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR013992
– volume: 245
  start-page: 48
  year: 2001
  ident: 10.1016/j.jhydrol.2015.04.011_b0050
  article-title: Soil water content measurements at different scales: accuracy of time domain reflectometry and ground-penetrating radar
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(01)00336-5
– volume: 33
  start-page: 1867
  issue: 6
  year: 1990
  ident: 10.1016/j.jhydrol.2015.04.011_b0155
  article-title: Detecting wetting front movement in a sandy soil with ground-penetrating radar
  publication-title: Trans. Am. Soc. Agr. Eng.
  doi: 10.13031/2013.31551
– volume: 36
  start-page: L18503
  year: 2009
  ident: 10.1016/j.jhydrol.2015.04.011_b0130
  article-title: Dispersion inversion of electromagnetic pulse propagation within freezing and thawing waveguides
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2009GL039581
– volume: 44
  start-page: 2908
  issue: 10
  year: 2006
  ident: 10.1016/j.jhydrol.2015.04.011_b0115
  article-title: Properties of surface waveguides derived from inversion of fundamental and higher mode dispersive GPR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2006.877286
– volume: 50
  start-page: 2732
  issue: 3
  year: 2014
  ident: 10.1016/j.jhydrol.2015.04.011_b0160
  article-title: Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014864
– volume: 10
  start-page: 84
  year: 2011
  ident: 10.1016/j.jhydrol.2015.04.011_b0045
  article-title: Visualizing unsaturated flow phenomena using high-resolution reflection ground penetrating radar
  publication-title: Vadose Zone J.
  doi: 10.2136/vzj2009.0188
– volume: 75
  start-page: 211
  issue: 4
  year: 2010
  ident: 10.1016/j.jhydrol.2015.04.011_b0075
  article-title: Hydrologic trajectories in transient ground-penetrating radar reflection data
  publication-title: Geophysics
  doi: 10.1190/1.3463416
– year: 1961
  ident: 10.1016/j.jhydrol.2015.04.011_b0015
– ident: 10.1016/j.jhydrol.2015.04.011_b0080
  doi: 10.1190/1.1820161
– volume: 46
  start-page: W11533
  year: 2010
  ident: 10.1016/j.jhydrol.2015.04.011_b0090
  article-title: An examination of direct ground wave soil moisture monitoring over an annual cycle of soil conditions
  publication-title: Water Resour. Res.
  doi: 10.1029/2009WR008815
– volume: 294
  start-page: 251
  year: 2004
  ident: 10.1016/j.jhydrol.2015.04.011_b0070
  article-title: Including prior information in the estimation of effective soil parameters in unsaturated zone modelling
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2004.02.011
SSID ssj0000334
Score 2.2224445
Snippet •Distribution of water in precipitation-induced waveguides impacts GPR dispersion.•Dispersion can be used to resolve water content profiles of dispersive...
Surface-based ground-penetrating radar (GPR) measurements have significant potential for monitoring dynamic hydrologic processes at multiple scales in time and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 496
SubjectTerms algorithms
Dispersions
equations
Ground penetrating radar
Hydrology
Infiltration
Inversions
Mathematical analysis
Moisture content
monitoring
Shuffled-complex evolution
space and time
surveys
Water content
water distribution
Wave dispersion
Waveguide
wavelengths
Wetting
wetting front
Title Resolving precipitation induced water content profiles by inversion of dispersive GPR data: A numerical study
URI https://dx.doi.org/10.1016/j.jhydrol.2015.04.011
https://www.proquest.com/docview/1732820489
https://www.proquest.com/docview/1770303103
https://www.proquest.com/docview/1825409021
Volume 525
WOSCitedRecordID wos000355885600042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhgQviKsYNxkJ8VKl1ImdOLxVqBtM25hQJ_XNcmxHtHRp6Y31Z_CP8YmdtGWwjQdeoiqXpvH5es6J_Z3vIPQmDEmU5TELojBXAU2VCbKkrQKZZXGmE3jj0GWzieTkhPf76Wmj8bOqhVmOkqLgFxfp5L-a2u6zxobS2X8wd_2ldof9bI1ut9bsdnsjw8OE_GjpisyNGky8CHfTvnwvYLH_hwRdRKCoAw3A9-yeQRo6KJZu9gwySD0ADfGS3H5w-qUJTFJXxV4s3CLPaEOa9nJ2-3Wlp07eyaawnXOQY9CAvXre4RiqGhxDwB5obrB_V7MtAlrzuHXYquPCdPHNkXuLsuOw9uRiP29B2JpftVFHQGLX4rjyxSxkzUmLpnHA2mzDr9I03gjR_tgl7-8mIoatoXtGIO6xUsjW-_Mtte2Tz2L_7OhI9Lr93tvJ9wAakcGCve_KcgvthglLrevc7Xzq9g_X4T2KaCVBDz9_XRb27o93_lvC81voL_OZ3n10z5sKdxyAHqCGKR6iOwfGS5g_Quc1kPAWkLAHEi6BhD2QcAUknK1wDSQ8zvEaSNgCCQOQ3uMOrmGESxg9Rmf73d6Hj4FvzhFIm3POg9hwFcaKaAMLv3kWGR7mXCWKS6XbkqRE5jqNqM3ImaaKM8mTTGtJqDIKotoTtFOMC_MUYZlSxm3SJEOpKCPGvkJb90F4TlXObUTdQ7QaQaH8s0IDlZGoKIpD4QdewMCLNhV24PdQq75s4qRbrruAV-YRPv90eaWwALvu0teVOYX1z7DoJgszXswEATUsUMdOrzoH4i50_LviHJjKARI1eXaDc56ju-v_3Au0M58uzEt0Wy3ng9n0lYf0L4VKzmI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resolving+precipitation+induced+water+content+profiles+by+inversion+of+dispersive+GPR+data%3A+A+numerical+study&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Mangel%2C+Adam+R&rft.au=Moysey%2C+Stephen+M.J.&rft.au=Kruk%2C+Jan+van+der&rft.date=2015-06-01&rft.issn=0022-1694&rft.volume=525+p.496-505&rft.spage=496&rft.epage=505&rft_id=info:doi/10.1016%2Fj.jhydrol.2015.04.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon