Multi-objective optimization of empirical hydrological model for streamflow prediction

•The MODE-ACM algorithm is firstly introduced for parameter estimation of hydrologic model.•We propose an enhanced Pareto multi-objective differential algorithm EPMODE.•The performance of EPMODE and MODE-ACM is tested on five benchmark problems.•EPMODE and MODE-ACM are further applied to an artifici...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrology (Amsterdam) Vol. 511; pp. 242 - 253
Main Authors: Guo, Jun, Zhou, Jianzhong, Lu, Jiazheng, Zou, Qiang, Zhang, Huajie, Bi, Sheng
Format: Journal Article
Language:English
Published: Elsevier B.V 16.04.2014
Subjects:
ISSN:0022-1694, 1879-2707
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The MODE-ACM algorithm is firstly introduced for parameter estimation of hydrologic model.•We propose an enhanced Pareto multi-objective differential algorithm EPMODE.•The performance of EPMODE and MODE-ACM is tested on five benchmark problems.•EPMODE and MODE-ACM are further applied to an artificial neural network model for monthly streamflow forecasting.•The results of EPMODE and MODE-ACM are compared with those of NSGA-II and SPEA2. Traditional calibration of hydrological models is performed with a single objective function. Practical experience with the calibration of hydrologic models reveals that single objective functions are often inadequate to properly measure all of the characteristics of the hydrologic system. To circumvent this problem, in recent years, a lot of studies have looked into the automatic calibration of hydrological models with multi-objective functions. In this paper, the multi-objective evolution algorithm MODE-ACM is introduced to solve the multi-objective optimization of hydrologic models. Moreover, to improve the performance of the MODE-ACM, an Enhanced Pareto Multi-Objective Differential Evolution algorithm named EPMODE is proposed in this research. The efficacy of the MODE-ACM and EPMODE are compared with two state-of-the-art algorithms NSGA-II and SPEA2 on two case studies. Five test problems are used as the first case study to generate the true Pareto front. Then this approach is tested on a typical empirical hydrological model for monthly streamflow forecasting. The results of these case studies show that the EPMODE, as well as MODE-ACM, is effective in solving multi-objective problems and has great potential as an efficient and reliable algorithm for water resources applications.
AbstractList Traditional calibration of hydrological models is performed with a single objective function. Practical experience with the calibration of hydrologic models reveals that single objective functions are often inadequate to properly measure all of the characteristics of the hydrologic system. To circumvent this problem, in recent years, a lot of studies have looked into the automatic calibration of hydrological models with multi-objective functions. In this paper, the multi-objective evolution algorithm MODE-ACM is introduced to solve the multi-objective optimization of hydrologic models. Moreover, to improve the performance of the MODE-ACM, an Enhanced Pareto Multi-Objective Differential Evolution algorithm named EPMODE is proposed in this research. The efficacy of the MODE-ACM and EPMODE are compared with two state-of-the-art algorithms NSGA-II and SPEA2 on two case studies. Five test problems are used as the first case study to generate the true Pareto front. Then this approach is tested on a typical empirical hydrological model for monthly streamflow forecasting. The results of these case studies show that the EPMODE, as well as MODE-ACM, is effective in solving multi-objective problems and has great potential as an efficient and reliable algorithm for water resources applications.
•The MODE-ACM algorithm is firstly introduced for parameter estimation of hydrologic model.•We propose an enhanced Pareto multi-objective differential algorithm EPMODE.•The performance of EPMODE and MODE-ACM is tested on five benchmark problems.•EPMODE and MODE-ACM are further applied to an artificial neural network model for monthly streamflow forecasting.•The results of EPMODE and MODE-ACM are compared with those of NSGA-II and SPEA2. Traditional calibration of hydrological models is performed with a single objective function. Practical experience with the calibration of hydrologic models reveals that single objective functions are often inadequate to properly measure all of the characteristics of the hydrologic system. To circumvent this problem, in recent years, a lot of studies have looked into the automatic calibration of hydrological models with multi-objective functions. In this paper, the multi-objective evolution algorithm MODE-ACM is introduced to solve the multi-objective optimization of hydrologic models. Moreover, to improve the performance of the MODE-ACM, an Enhanced Pareto Multi-Objective Differential Evolution algorithm named EPMODE is proposed in this research. The efficacy of the MODE-ACM and EPMODE are compared with two state-of-the-art algorithms NSGA-II and SPEA2 on two case studies. Five test problems are used as the first case study to generate the true Pareto front. Then this approach is tested on a typical empirical hydrological model for monthly streamflow forecasting. The results of these case studies show that the EPMODE, as well as MODE-ACM, is effective in solving multi-objective problems and has great potential as an efficient and reliable algorithm for water resources applications.
Author Lu, Jiazheng
Zhou, Jianzhong
Bi, Sheng
Zhang, Huajie
Guo, Jun
Zou, Qiang
Author_xml – sequence: 1
  givenname: Jun
  surname: Guo
  fullname: Guo, Jun
  email: guojunhust@gmail.com, guojunhust@126.com, guo@hust.edu.cn
  organization: State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China
– sequence: 2
  givenname: Jianzhong
  surname: Zhou
  fullname: Zhou, Jianzhong
  organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Jiazheng
  surname: Lu
  fullname: Lu, Jiazheng
  organization: State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China
– sequence: 4
  givenname: Qiang
  surname: Zou
  fullname: Zou, Qiang
  organization: Changjiang Water Resources Commission, Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China
– sequence: 5
  givenname: Huajie
  surname: Zhang
  fullname: Zhang, Huajie
  organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 6
  givenname: Sheng
  surname: Bi
  fullname: Bi, Sheng
  organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNqNkcFu3CAURVGVSJ0k_YRKXmZjB4zBRllUVdSklVJlE3WLMDwaLGwcYFJNvz5MJqtupmwQ0j0PvXvO0MkSFkDoM8ENwYRfTc30tDMx-KbFpGswaXDXf0AbMvSibnvcn6ANxm1bEy66j-gspQmXQ2m3Qb9-bn12dRgn0Nm9QBXW7Gb3V2UXlirYCubVRaeVrw5_hN9vjzkY8JUNsUo5gpqtD3-qNYJxek9eoFOrfIJP7_c5erz99njzvb5_uPtx8_W-Vh0luWaaas0EYUzp0VAFfCAG9AgGrOkp40oJC6PVvWHUmrJd2wKjdBzFyLGg5-jyMHaN4XkLKcvZJQ3eqwXCNkkytKwjHeX0eJRzMQylFfE_0Y6IoW95ibJDVMeQUgQr1-hmFXeSYLmXIyf5Lkfu5UhMZJFTuOt_OO3yW-c5KueP0l8ONJRqXxxEmbSDRZf2Y9EoTXBHJrwC_hmzVw
CitedBy_id crossref_primary_10_1007_s11269_017_1862_8
crossref_primary_10_1061__ASCE_HE_1943_5584_0001591
crossref_primary_10_1016_j_jhydrol_2023_129992
crossref_primary_10_1109_ACCESS_2021_3070071
crossref_primary_10_1016_j_envsoft_2014_08_022
crossref_primary_10_1016_j_jhydrol_2019_05_041
crossref_primary_10_3390_w9070495
crossref_primary_10_1080_02626667_2017_1388917
crossref_primary_10_1016_j_ecolmodel_2025_111099
crossref_primary_10_1029_2020WR027309
crossref_primary_10_1155_2020_8594727
crossref_primary_10_1016_j_envsci_2022_05_021
crossref_primary_10_1007_s11269_024_03953_2
crossref_primary_10_1016_j_jenvman_2022_116716
crossref_primary_10_1007_s00500_022_07097_6
crossref_primary_10_1061__ASCE_HE_1943_5584_0001282
crossref_primary_10_1007_s10333_017_0593_z
crossref_primary_10_1016_j_jhydrol_2018_07_056
crossref_primary_10_1016_j_rse_2022_113030
crossref_primary_10_1007_s10596_019_09870_3
crossref_primary_10_1061_JHYEFF_HEENG_5935
crossref_primary_10_1061__ASCE_WR_1943_5452_0000534
crossref_primary_10_1016_j_jhydrol_2018_12_010
crossref_primary_10_1016_j_jhydrol_2019_06_065
crossref_primary_10_3390_w14142211
crossref_primary_10_1016_j_asoc_2019_105589
crossref_primary_10_1061__ASCE_HE_1943_5584_0001975
Cites_doi 10.1002/hyp.7528
10.5194/hess-5-13-2001
10.1061/(ASCE)HE.1943-5584.0000053
10.1029/1999JD900154
10.1023/A:1008202821328
10.1016/j.camwa.2008.10.009
10.1016/j.advengsoft.2008.08.002
10.1016/j.enconman.2009.10.036
10.1016/j.cor.2009.03.009
10.1016/S0022-1694(97)00107-8
10.1061/(ASCE)0733-9496(2004)130:2(140)
10.1007/11539902_145
10.1029/2007WR006734
10.1002/hyp.6571
10.1109/TEVC.2003.810758
10.1016/0022-1694(70)90255-6
10.1162/106365602760234108
10.1029/2002WR001746
10.1162/evco.2004.12.1.77
10.1162/106365600568202
10.1029/2005WR004528
10.1016/j.engappai.2010.04.003
10.1016/j.jhydrol.2003.12.010
10.1016/S0309-1708(01)00053-7
10.1002/hyp.7461
10.1016/S0022-1694(02)00112-9
10.1029/2000WR900207
10.1175/1525-7541(2002)003<0181:CALSMO>2.0.CO;2
10.1016/j.jhydrol.2008.07.040
10.1623/hysj.52.3.397
10.1007/s11269-013-0324-1
10.1029/2002WR001483
10.1109/CEC.2002.1004404
10.1016/j.jhydrol.2009.06.019
10.1029/2004WR003041
10.1029/2012WR012005
10.1029/97WR03495
10.1109/CEC.2010.5586354
10.1109/4235.996017
10.1016/j.advengsoft.2005.11.002
10.1109/4235.797969
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
7QH
7ST
7TG
7UA
C1K
F1W
H96
KL.
L.G
SOI
8FD
FR3
KR7
7S9
L.6
DOI 10.1016/j.jhydrol.2014.01.047
DatabaseName CrossRef
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Technology Research Database
AGRICOLA

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1879-2707
EndPage 253
ExternalDocumentID 10_1016_j_jhydrol_2014_01_047
S0022169414000699
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACLVX
ACNCT
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMA
IHE
IMUCA
J1W
K-O
KOM
LW9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSA
SSE
SSZ
T5K
TN5
Y6R
ZCA
ZMT
~02
~G-
~KM
29K
6TJ
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABGRD
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
D-I
EFKBS
FA8
FEDTE
FGOYB
G-2
HLV
HVGLF
HZ~
H~9
R2-
SEP
SEW
UQL
VOH
WUQ
ZY4
~HD
7QH
7ST
7TG
7UA
C1K
F1W
H96
KL.
L.G
SOI
8FD
FR3
KR7
7S9
L.6
ID FETCH-LOGICAL-a431t-5c3cc59155acbd3ae681decbedefd7356aa9febfc7d53fd01422e533bb9b6093
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335274900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1694
IngestDate Sun Nov 09 12:31:01 EST 2025
Sun Sep 28 11:17:53 EDT 2025
Tue Oct 07 09:55:05 EDT 2025
Tue Nov 18 21:51:28 EST 2025
Sat Nov 29 07:26:33 EST 2025
Fri Feb 23 02:39:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimization
Streamflow forecasting
Model calibration
Hydrological model
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a431t-5c3cc59155acbd3ae681decbedefd7356aa9febfc7d53fd01422e533bb9b6093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1664198726
PQPubID 23462
PageCount 12
ParticipantIDs proquest_miscellaneous_1825414363
proquest_miscellaneous_1669880039
proquest_miscellaneous_1664198726
crossref_primary_10_1016_j_jhydrol_2014_01_047
crossref_citationtrail_10_1016_j_jhydrol_2014_01_047
elsevier_sciencedirect_doi_10_1016_j_jhydrol_2014_01_047
PublicationCentury 2000
PublicationDate 2014-04-16
PublicationDateYYYYMMDD 2014-04-16
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-16
  day: 16
PublicationDecade 2010
PublicationTitle Journal of hydrology (Amsterdam)
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kisi (b0100) 2009; 14
Zhang, Srinivasan, Liew (b0230) 2010; 24
Kisi (b0095) 2009; 23
Gupta, Bastidas, Sorooshian, Shuttleworth, Yang (b0065) 1999; 104
Zitzler, Thiele (b0245) 1999; 3
Laumanns, Thiele, Deb, Zitzler (b0105) 2002; 10
Vrugt, Gupta, Bastidas, Bouten, Sorooshian (b0190) 2003; 39
Sivakumar, Jayawardena, Fernando (b0165) 2002; 265
Gupta, Sorooshian, Yapo (b0070) 1998; 34
Zitzler, Deb, Thiele (b0235) 2000; 8
Gill, Kaheil, Khalil, McKee, Bastidas (b0055) 2006; 42
Storn, R., Price, K., 1995. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, ICSI, Berkeley, USA.
Demirel, Venancio, Kahya (b0040) 2009; 40
Price, Purucker, Kraemer, Babendreier (b0135) 2012; 48
Khu, Madsen (b0090) 2005; 41
Schott, J.R., 1995. Fault tolerant design using single and multicriteria genetic algorithm optimization [thesis]. Mass: Massachusetts Institute of Technology.
Wagener, Boyle, Lees, Wheater, Gupta, Sorooshian (b0195) 2001; 5
Madavan, N.K., 2002. Multiobjective optimization using a Pareto differential evolution approach. In: Congress on Evolutionary Computation (CEC’2002), IEEE Service Center pp. 1145–1150.
Cheng, Xie, Chau, Layeghifard (b0015) 2008; 361
Yang, Zhou, Liu, Li (b0215) 2009; 57
Nayak, Sudheer, Rangan, Ramasastri (b0125) 2004; 291
Cheng, Lin, Sun, Chau (b0010) 2005; 3612
Storn, Price (b0175) 1997; 11
Zeng, Kang, Ding (b0225) 2004; 12
Deb, Pratap, Agarwal, Meyarivan (b0035) 2002; 6
Kerh, Lee (b0085) 2006; 37
de Vos, Rientjes (b0030) 2008; 44
Tang, Reed, Wagener (b0180) 2005; 2
Xia, Pittman, Gupta, Leplastrier, Henderson-Sellers, Bastidas (b0210) 2002; 3
Islam, Sivakumar (b0075) 2002; 25
Qin, Zhou, Lu, Wang, Zhang (b0140) 2010; 51
Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland.
Leplastrier, Pitman, Gupta, Xia (b0110) 2002; 107
Durillo, J.J., Nebro, A.J., Alba, E., 2010. The jMetal framework for multi-objective optimization: design and architecture. In: Congress on Evolutionary Computation (CEC’2010), IEEE Service Center pp. 4138–4325.
Gao, Wang (b0050) 2010; 37
Nash, Sutcliffe (b0120) 1970; 10
Wu, Chau (b0205) 2010; 23
Boyle, Gupta, Sorooshian (b0005) 2000; 36
Guo, Zhou, Zou, Liu, Song (b0060) 2013; 27
Conover (b0020) 1999
Nebro, Durillo, Garcia-Nieto, Coello, Luna, Alba (b0130) 2009
Wang, Chau, Cheng, Qiu (b0200) 2009; 374
Robic, Filipic (b0155) 2005
Van Veldhuizen, D.A., Lamont, G.B., 1998. Multiobjective evolutionary algorithm research: a history and analysis, Tech. Rep. TR-98-03, Dep. of Electr. Comput. Eng., Grad. Sch. of Eng., Air Force Inst. Of Technol., Wright-Patterson Air Force Base, Ohio.
Karamouz, Razavi, Araghinejad (b0080) 2008; 22
de Vos, Rientjes (b0025) 2007; 52
Yapo, Gupta, Sorooshian (b0220) 1998; 204
Reed, Minsker (b0145) 2004; 130
Zitzler, Thiele, Laumanns, Fonseca, Fonseca (b0250) 2003; 7
Reed, Minsker, Goldberg (b0150) 2003; 39
Kerh (10.1016/j.jhydrol.2014.01.047_b0085) 2006; 37
Deb (10.1016/j.jhydrol.2014.01.047_b0035) 2002; 6
Gao (10.1016/j.jhydrol.2014.01.047_b0050) 2010; 37
Zitzler (10.1016/j.jhydrol.2014.01.047_b0250) 2003; 7
Wu (10.1016/j.jhydrol.2014.01.047_b0205) 2010; 23
Tang (10.1016/j.jhydrol.2014.01.047_b0180) 2005; 2
Zeng (10.1016/j.jhydrol.2014.01.047_b0225) 2004; 12
Zhang (10.1016/j.jhydrol.2014.01.047_b0230) 2010; 24
Leplastrier (10.1016/j.jhydrol.2014.01.047_b0110) 2002; 107
Nash (10.1016/j.jhydrol.2014.01.047_b0120) 1970; 10
Vrugt (10.1016/j.jhydrol.2014.01.047_b0190) 2003; 39
10.1016/j.jhydrol.2014.01.047_b0185
Yang (10.1016/j.jhydrol.2014.01.047_b0215) 2009; 57
Zitzler (10.1016/j.jhydrol.2014.01.047_b0245) 1999; 3
Cheng (10.1016/j.jhydrol.2014.01.047_b0015) 2008; 361
Gupta (10.1016/j.jhydrol.2014.01.047_b0070) 1998; 34
de Vos (10.1016/j.jhydrol.2014.01.047_b0025) 2007; 52
Gill (10.1016/j.jhydrol.2014.01.047_b0055) 2006; 42
Price (10.1016/j.jhydrol.2014.01.047_b0135) 2012; 48
Demirel (10.1016/j.jhydrol.2014.01.047_b0040) 2009; 40
Robic (10.1016/j.jhydrol.2014.01.047_b0155) 2005
Karamouz (10.1016/j.jhydrol.2014.01.047_b0080) 2008; 22
Yapo (10.1016/j.jhydrol.2014.01.047_b0220) 1998; 204
Reed (10.1016/j.jhydrol.2014.01.047_b0150) 2003; 39
Storn (10.1016/j.jhydrol.2014.01.047_b0175) 1997; 11
10.1016/j.jhydrol.2014.01.047_b0170
Conover (10.1016/j.jhydrol.2014.01.047_b0020) 1999
Boyle (10.1016/j.jhydrol.2014.01.047_b0005) 2000; 36
Qin (10.1016/j.jhydrol.2014.01.047_b0140) 2010; 51
Nebro (10.1016/j.jhydrol.2014.01.047_b0130) 2009
Laumanns (10.1016/j.jhydrol.2014.01.047_b0105) 2002; 10
Guo (10.1016/j.jhydrol.2014.01.047_b0060) 2013; 27
Sivakumar (10.1016/j.jhydrol.2014.01.047_b0165) 2002; 265
Khu (10.1016/j.jhydrol.2014.01.047_b0090) 2005; 41
Wagener (10.1016/j.jhydrol.2014.01.047_b0195) 2001; 5
Kisi (10.1016/j.jhydrol.2014.01.047_b0100) 2009; 14
Islam (10.1016/j.jhydrol.2014.01.047_b0075) 2002; 25
Kisi (10.1016/j.jhydrol.2014.01.047_b0095) 2009; 23
10.1016/j.jhydrol.2014.01.047_b0240
Gupta (10.1016/j.jhydrol.2014.01.047_b0065) 1999; 104
Nayak (10.1016/j.jhydrol.2014.01.047_b0125) 2004; 291
Reed (10.1016/j.jhydrol.2014.01.047_b0145) 2004; 130
10.1016/j.jhydrol.2014.01.047_b0045
10.1016/j.jhydrol.2014.01.047_b0160
Zitzler (10.1016/j.jhydrol.2014.01.047_b0235) 2000; 8
Cheng (10.1016/j.jhydrol.2014.01.047_b0010) 2005; 3612
de Vos (10.1016/j.jhydrol.2014.01.047_b0030) 2008; 44
10.1016/j.jhydrol.2014.01.047_b0115
Wang (10.1016/j.jhydrol.2014.01.047_b0200) 2009; 374
Xia (10.1016/j.jhydrol.2014.01.047_b0210) 2002; 3
References_xml – volume: 7
  start-page: 117
  year: 2003
  end-page: 132
  ident: b0250
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE T. Evol. Comput.
– reference: Schott, J.R., 1995. Fault tolerant design using single and multicriteria genetic algorithm optimization [thesis]. Mass: Massachusetts Institute of Technology.
– volume: 3612
  start-page: 1152
  year: 2005
  end-page: 1161
  ident: b0010
  article-title: Long-term prediction of discharges in manwan hydropower using adaptive-network-based fuzzy inference systems models
  publication-title: Lect. Notes Comput. Sci.
– volume: 37
  start-page: 50
  year: 2010
  end-page: 61
  ident: b0050
  article-title: WBMOAIS: a novel artificial immune system for multiobjective optimization
  publication-title: Comput. Oper. Res.
– volume: 107
  start-page: 4443
  year: 2002
  ident: b0110
  article-title: Exploring the relationship between complexity and performance in a land surface model using the multi-criteria method
  publication-title: J. Geophys. Res.
– volume: 10
  start-page: 263
  year: 2002
  end-page: 282
  ident: b0105
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evol. Comput.
– volume: 3
  start-page: 257
  year: 1999
  end-page: 271
  ident: b0245
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE T. Evol. Comput.
– volume: 57
  start-page: 1995
  year: 2009
  end-page: 2000
  ident: b0215
  article-title: A novel strategy of pareto-optimal solution searching in multi-objective particle swarm optimization (MOPSO)
  publication-title: Comput. Math. Appl.
– volume: 44
  start-page: W08434
  year: 2008
  ident: b0030
  article-title: Multiobjective training of artificial neural networks for rainfall-runoff modeling
  publication-title: Water Resour. Res.
– volume: 36
  start-page: 3663
  year: 2000
  end-page: 3674
  ident: b0005
  article-title: Toward improved calibration of hydrological models: combining the strengths of manual and automatic methods
  publication-title: Water Resour. Res.
– volume: 12
  start-page: 77
  year: 2004
  end-page: 98
  ident: b0225
  article-title: An orthogonal multiobjective evolutionary algorithm for multiobjective optimization problems with constraints
  publication-title: Evol. Comput.
– volume: 8
  start-page: 173
  year: 2000
  end-page: 195
  ident: b0235
  article-title: Comparison of multiobjective evolutionary algorithms: empirical results
  publication-title: Evol. Comput.
– volume: 42
  start-page: W07417
  year: 2006
  ident: b0055
  article-title: Multiobjective particle swarm optimization for parameter estimation in hydrology
  publication-title: Water Resour. Res.
– volume: 104
  start-page: 19491
  year: 1999
  end-page: 19503
  ident: b0065
  article-title: Parameter estimation of a land surface scheme using multi-criteria methods
  publication-title: J. Geophys. Res.
– volume: 10
  start-page: 282
  year: 1970
  end-page: 290
  ident: b0120
  article-title: River flow forecasting through conceptual models. Part 1: a discussion of principles
  publication-title: J. Hydrol.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0175
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous space
  publication-title: J. Global Optim.
– start-page: 66
  year: 2009
  end-page: 73
  ident: b0130
  article-title: SMPSO: a new PSO-based metaheuristic for multi-objective optimization
  publication-title: 2009 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making
– volume: 204
  start-page: 83
  year: 1998
  end-page: 97
  ident: b0220
  article-title: Multi-objective global optimization for hydrologic models
  publication-title: J. Hydrol.
– volume: 41
  start-page: W03004
  year: 2005
  ident: b0090
  article-title: Multiobjective calibration with Pareto preference ordering: an application to rainfall-runoff model calibration
  publication-title: Water Resour. Res.
– volume: 40
  start-page: 467
  year: 2009
  end-page: 473
  ident: b0040
  article-title: Flow forecast by SWAT model and ANN in Pracana basin
  publication-title: Portugal Adv. Eng. Softw.
– volume: 22
  start-page: 229
  year: 2008
  end-page: 241
  ident: b0080
  article-title: Long-lead seasonal rainfall forecasting using time-delay recurrent neural networks: a case study
  publication-title: Hydrol. Process.
– volume: 3
  start-page: 181
  year: 2002
  end-page: 194
  ident: b0210
  article-title: Calibrating a land surface model of varying complexity using multi-criteria methods and the Cabauw dataset
  publication-title: J. Hydrometeorol.
– volume: 265
  start-page: 225
  year: 2002
  end-page: 245
  ident: b0165
  article-title: River flow forecasting: use of phase–space reconstruction and artificial neural networks approaches
  publication-title: J. Hydrol.
– volume: 130
  start-page: 140
  year: 2004
  end-page: 149
  ident: b0145
  article-title: Striking the balance: long-term groundwater monitoring design for conflicting objectives
  publication-title: J. Water Res. Pl.-ASCE
– volume: 52
  start-page: 397
  year: 2007
  end-page: 413
  ident: b0025
  article-title: Multi-objective performance comparison of an artificial neural network and a conceptual rainfall-runoff model
  publication-title: Hydrol. Sci. J.
– volume: 2
  start-page: 2465
  year: 2005
  end-page: 2520
  ident: b0180
  article-title: How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 27
  start-page: 2923
  year: 2013
  end-page: 2946
  ident: b0060
  article-title: A novel multi-objective shuffled complex differential evolution algorithm with application to hydrological model parameter optimization
  publication-title: Water Res. Manage.
– volume: 25
  start-page: 179
  year: 2002
  end-page: 190
  ident: b0075
  article-title: Characterization and prediction of runoff dynamics: a nonlinear dynamical view
  publication-title: Adv. Water Resour.
– volume: 23
  start-page: 3583
  year: 2009
  end-page: 3597
  ident: b0095
  article-title: Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting
  publication-title: Hydrol. Process.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: b0035
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE T. Evol. Comput.
– volume: 48
  start-page: W10542
  year: 2012
  ident: b0135
  article-title: Tradeoffs among watershed model calibration targets for parameter estimation
  publication-title: Water Resour. Res.
– volume: 23
  start-page: 1350
  year: 2010
  end-page: 1367
  ident: b0205
  article-title: Data-driven models for monthly streamflow time series prediction
  publication-title: Eng. Appl. Artif. Intel.
– reference: Madavan, N.K., 2002. Multiobjective optimization using a Pareto differential evolution approach. In: Congress on Evolutionary Computation (CEC’2002), IEEE Service Center pp. 1145–1150.
– volume: 291
  start-page: 52
  year: 2004
  end-page: 66
  ident: b0125
  article-title: A neuro-fuzzy computing technique for modeling hydrological time series
  publication-title: J. Hydrol.
– volume: 361
  start-page: 118
  year: 2008
  end-page: 130
  ident: b0015
  article-title: A new indirect multi-step-ahead prediction model for a long-term hydrologic prediction
  publication-title: J. Hydrol.
– volume: 51
  start-page: 788
  year: 2010
  end-page: 794
  ident: b0140
  article-title: Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling
  publication-title: Energ. Convers. Manage.
– volume: 24
  start-page: 955
  year: 2010
  end-page: 969
  ident: b0230
  article-title: On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model
  publication-title: Hydrol. Process.
– start-page: 520
  year: 2005
  end-page: 533
  ident: b0155
  article-title: DEMO: differential evolution for multiobjective optimization
  publication-title: Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization
– year: 1999
  ident: b0020
  article-title: Practical Nonparametric Statistics
– reference: Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland.
– volume: 37
  start-page: 533
  year: 2006
  end-page: 543
  ident: b0085
  article-title: Neural networks forecasting of flood discharge at an unmeasured station using river upstream information
  publication-title: Adv. Eng. Softw.
– reference: Storn, R., Price, K., 1995. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, ICSI, Berkeley, USA.
– volume: 34
  start-page: 751
  year: 1998
  end-page: 763
  ident: b0070
  article-title: Towards improved calibration of hydrologic models: multiple and noncommensurable measures of information
  publication-title: Water Resour. Res.
– reference: Van Veldhuizen, D.A., Lamont, G.B., 1998. Multiobjective evolutionary algorithm research: a history and analysis, Tech. Rep. TR-98-03, Dep. of Electr. Comput. Eng., Grad. Sch. of Eng., Air Force Inst. Of Technol., Wright-Patterson Air Force Base, Ohio.
– volume: 39
  start-page: 1196
  year: 2003
  ident: b0150
  article-title: Simplifying multiobjective optimization: an automated design methodology for the nondominated sorted genetic algorithm-II
  publication-title: Water Resour. Res.
– volume: 5
  start-page: 13
  year: 2001
  end-page: 26
  ident: b0195
  article-title: A framework for development and application of hydrological models
  publication-title: Hydrol. Earth Syst. Sci.
– reference: Durillo, J.J., Nebro, A.J., Alba, E., 2010. The jMetal framework for multi-objective optimization: design and architecture. In: Congress on Evolutionary Computation (CEC’2010), IEEE Service Center pp. 4138–4325.
– volume: 374
  start-page: 294
  year: 2009
  end-page: 306
  ident: b0200
  article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
  publication-title: J. Hydrol.
– volume: 39
  start-page: 1214
  year: 2003
  ident: b0190
  article-title: Effective and efficient algorithm for multiobjective optimization of hydrologic models
  publication-title: Water Resour. Res.
– volume: 14
  start-page: 773
  year: 2009
  end-page: 782
  ident: b0100
  article-title: Neural networks and wavelet conjunction model for intermittent Streamflow Forecasting
  publication-title: J. Hydrol. Eng.
– volume: 24
  start-page: 955
  year: 2010
  ident: 10.1016/j.jhydrol.2014.01.047_b0230
  article-title: On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7528
– year: 1999
  ident: 10.1016/j.jhydrol.2014.01.047_b0020
– volume: 107
  start-page: 4443
  year: 2002
  ident: 10.1016/j.jhydrol.2014.01.047_b0110
  article-title: Exploring the relationship between complexity and performance in a land surface model using the multi-criteria method
  publication-title: J. Geophys. Res.
– volume: 2
  start-page: 2465
  year: 2005
  ident: 10.1016/j.jhydrol.2014.01.047_b0180
  article-title: How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration
  publication-title: Hydrol. Earth Syst. Sci. Discuss.
– volume: 5
  start-page: 13
  year: 2001
  ident: 10.1016/j.jhydrol.2014.01.047_b0195
  article-title: A framework for development and application of hydrological models
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-5-13-2001
– volume: 14
  start-page: 773
  year: 2009
  ident: 10.1016/j.jhydrol.2014.01.047_b0100
  article-title: Neural networks and wavelet conjunction model for intermittent Streamflow Forecasting
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0000053
– volume: 104
  start-page: 19491
  year: 1999
  ident: 10.1016/j.jhydrol.2014.01.047_b0065
  article-title: Parameter estimation of a land surface scheme using multi-criteria methods
  publication-title: J. Geophys. Res.
  doi: 10.1029/1999JD900154
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.jhydrol.2014.01.047_b0175
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous space
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008202821328
– volume: 57
  start-page: 1995
  year: 2009
  ident: 10.1016/j.jhydrol.2014.01.047_b0215
  article-title: A novel strategy of pareto-optimal solution searching in multi-objective particle swarm optimization (MOPSO)
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.10.009
– volume: 40
  start-page: 467
  year: 2009
  ident: 10.1016/j.jhydrol.2014.01.047_b0040
  article-title: Flow forecast by SWAT model and ANN in Pracana basin
  publication-title: Portugal Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2008.08.002
– volume: 51
  start-page: 788
  year: 2010
  ident: 10.1016/j.jhydrol.2014.01.047_b0140
  article-title: Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling
  publication-title: Energ. Convers. Manage.
  doi: 10.1016/j.enconman.2009.10.036
– volume: 37
  start-page: 50
  year: 2010
  ident: 10.1016/j.jhydrol.2014.01.047_b0050
  article-title: WBMOAIS: a novel artificial immune system for multiobjective optimization
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2009.03.009
– volume: 204
  start-page: 83
  year: 1998
  ident: 10.1016/j.jhydrol.2014.01.047_b0220
  article-title: Multi-objective global optimization for hydrologic models
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(97)00107-8
– volume: 130
  start-page: 140
  year: 2004
  ident: 10.1016/j.jhydrol.2014.01.047_b0145
  article-title: Striking the balance: long-term groundwater monitoring design for conflicting objectives
  publication-title: J. Water Res. Pl.-ASCE
  doi: 10.1061/(ASCE)0733-9496(2004)130:2(140)
– volume: 3612
  start-page: 1152
  year: 2005
  ident: 10.1016/j.jhydrol.2014.01.047_b0010
  article-title: Long-term prediction of discharges in manwan hydropower using adaptive-network-based fuzzy inference systems models
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/11539902_145
– volume: 44
  start-page: W08434
  year: 2008
  ident: 10.1016/j.jhydrol.2014.01.047_b0030
  article-title: Multiobjective training of artificial neural networks for rainfall-runoff modeling
  publication-title: Water Resour. Res.
  doi: 10.1029/2007WR006734
– volume: 22
  start-page: 229
  year: 2008
  ident: 10.1016/j.jhydrol.2014.01.047_b0080
  article-title: Long-lead seasonal rainfall forecasting using time-delay recurrent neural networks: a case study
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.6571
– volume: 7
  start-page: 117
  year: 2003
  ident: 10.1016/j.jhydrol.2014.01.047_b0250
  article-title: Performance assessment of multiobjective optimizers: an analysis and review
  publication-title: IEEE T. Evol. Comput.
  doi: 10.1109/TEVC.2003.810758
– volume: 10
  start-page: 282
  year: 1970
  ident: 10.1016/j.jhydrol.2014.01.047_b0120
  article-title: River flow forecasting through conceptual models. Part 1: a discussion of principles
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(70)90255-6
– volume: 10
  start-page: 263
  year: 2002
  ident: 10.1016/j.jhydrol.2014.01.047_b0105
  article-title: Combining convergence and diversity in evolutionary multiobjective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/106365602760234108
– volume: 39
  start-page: 1214
  year: 2003
  ident: 10.1016/j.jhydrol.2014.01.047_b0190
  article-title: Effective and efficient algorithm for multiobjective optimization of hydrologic models
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001746
– volume: 12
  start-page: 77
  year: 2004
  ident: 10.1016/j.jhydrol.2014.01.047_b0225
  article-title: An orthogonal multiobjective evolutionary algorithm for multiobjective optimization problems with constraints
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2004.12.1.77
– volume: 8
  start-page: 173
  year: 2000
  ident: 10.1016/j.jhydrol.2014.01.047_b0235
  article-title: Comparison of multiobjective evolutionary algorithms: empirical results
  publication-title: Evol. Comput.
  doi: 10.1162/106365600568202
– ident: 10.1016/j.jhydrol.2014.01.047_b0240
– volume: 42
  start-page: W07417
  year: 2006
  ident: 10.1016/j.jhydrol.2014.01.047_b0055
  article-title: Multiobjective particle swarm optimization for parameter estimation in hydrology
  publication-title: Water Resour. Res.
  doi: 10.1029/2005WR004528
– volume: 23
  start-page: 1350
  year: 2010
  ident: 10.1016/j.jhydrol.2014.01.047_b0205
  article-title: Data-driven models for monthly streamflow time series prediction
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2010.04.003
– volume: 291
  start-page: 52
  year: 2004
  ident: 10.1016/j.jhydrol.2014.01.047_b0125
  article-title: A neuro-fuzzy computing technique for modeling hydrological time series
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2003.12.010
– volume: 25
  start-page: 179
  year: 2002
  ident: 10.1016/j.jhydrol.2014.01.047_b0075
  article-title: Characterization and prediction of runoff dynamics: a nonlinear dynamical view
  publication-title: Adv. Water Resour.
  doi: 10.1016/S0309-1708(01)00053-7
– start-page: 520
  year: 2005
  ident: 10.1016/j.jhydrol.2014.01.047_b0155
  article-title: DEMO: differential evolution for multiobjective optimization
– volume: 23
  start-page: 3583
  year: 2009
  ident: 10.1016/j.jhydrol.2014.01.047_b0095
  article-title: Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting
  publication-title: Hydrol. Process.
  doi: 10.1002/hyp.7461
– volume: 265
  start-page: 225
  year: 2002
  ident: 10.1016/j.jhydrol.2014.01.047_b0165
  article-title: River flow forecasting: use of phase–space reconstruction and artificial neural networks approaches
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00112-9
– volume: 36
  start-page: 3663
  year: 2000
  ident: 10.1016/j.jhydrol.2014.01.047_b0005
  article-title: Toward improved calibration of hydrological models: combining the strengths of manual and automatic methods
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900207
– volume: 3
  start-page: 181
  year: 2002
  ident: 10.1016/j.jhydrol.2014.01.047_b0210
  article-title: Calibrating a land surface model of varying complexity using multi-criteria methods and the Cabauw dataset
  publication-title: J. Hydrometeorol.
  doi: 10.1175/1525-7541(2002)003<0181:CALSMO>2.0.CO;2
– volume: 361
  start-page: 118
  year: 2008
  ident: 10.1016/j.jhydrol.2014.01.047_b0015
  article-title: A new indirect multi-step-ahead prediction model for a long-term hydrologic prediction
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.07.040
– volume: 52
  start-page: 397
  year: 2007
  ident: 10.1016/j.jhydrol.2014.01.047_b0025
  article-title: Multi-objective performance comparison of an artificial neural network and a conceptual rainfall-runoff model
  publication-title: Hydrol. Sci. J.
  doi: 10.1623/hysj.52.3.397
– start-page: 66
  year: 2009
  ident: 10.1016/j.jhydrol.2014.01.047_b0130
  article-title: SMPSO: a new PSO-based metaheuristic for multi-objective optimization
– volume: 27
  start-page: 2923
  year: 2013
  ident: 10.1016/j.jhydrol.2014.01.047_b0060
  article-title: A novel multi-objective shuffled complex differential evolution algorithm with application to hydrological model parameter optimization
  publication-title: Water Res. Manage.
  doi: 10.1007/s11269-013-0324-1
– volume: 39
  start-page: 1196
  year: 2003
  ident: 10.1016/j.jhydrol.2014.01.047_b0150
  article-title: Simplifying multiobjective optimization: an automated design methodology for the nondominated sorted genetic algorithm-II
  publication-title: Water Resour. Res.
  doi: 10.1029/2002WR001483
– ident: 10.1016/j.jhydrol.2014.01.047_b0115
  doi: 10.1109/CEC.2002.1004404
– ident: 10.1016/j.jhydrol.2014.01.047_b0160
– volume: 374
  start-page: 294
  year: 2009
  ident: 10.1016/j.jhydrol.2014.01.047_b0200
  article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2009.06.019
– volume: 41
  start-page: W03004
  year: 2005
  ident: 10.1016/j.jhydrol.2014.01.047_b0090
  article-title: Multiobjective calibration with Pareto preference ordering: an application to rainfall-runoff model calibration
  publication-title: Water Resour. Res.
  doi: 10.1029/2004WR003041
– volume: 48
  start-page: W10542
  year: 2012
  ident: 10.1016/j.jhydrol.2014.01.047_b0135
  article-title: Tradeoffs among watershed model calibration targets for parameter estimation
  publication-title: Water Resour. Res.
  doi: 10.1029/2012WR012005
– ident: 10.1016/j.jhydrol.2014.01.047_b0185
– volume: 34
  start-page: 751
  year: 1998
  ident: 10.1016/j.jhydrol.2014.01.047_b0070
  article-title: Towards improved calibration of hydrologic models: multiple and noncommensurable measures of information
  publication-title: Water Resour. Res.
  doi: 10.1029/97WR03495
– ident: 10.1016/j.jhydrol.2014.01.047_b0045
  doi: 10.1109/CEC.2010.5586354
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.jhydrol.2014.01.047_b0035
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE T. Evol. Comput.
  doi: 10.1109/4235.996017
– ident: 10.1016/j.jhydrol.2014.01.047_b0170
– volume: 37
  start-page: 533
  year: 2006
  ident: 10.1016/j.jhydrol.2014.01.047_b0085
  article-title: Neural networks forecasting of flood discharge at an unmeasured station using river upstream information
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2005.11.002
– volume: 3
  start-page: 257
  year: 1999
  ident: 10.1016/j.jhydrol.2014.01.047_b0245
  article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach
  publication-title: IEEE T. Evol. Comput.
  doi: 10.1109/4235.797969
SSID ssj0000334
Score 2.2789183
Snippet •The MODE-ACM algorithm is firstly introduced for parameter estimation of hydrologic model.•We propose an enhanced Pareto multi-objective differential...
Traditional calibration of hydrological models is performed with a single objective function. Practical experience with the calibration of hydrologic models...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 242
SubjectTerms Algorithms
Calibration
case studies
Effectiveness
Empirical analysis
Evolutionary algorithms
hydrologic models
Hydrological model
Hydrology
Mathematical models
Model calibration
Multi-objective optimization
Optimization
Pareto optimality
prediction
stream flow
Streamflow forecasting
Title Multi-objective optimization of empirical hydrological model for streamflow prediction
URI https://dx.doi.org/10.1016/j.jhydrol.2014.01.047
https://www.proquest.com/docview/1664198726
https://www.proquest.com/docview/1669880039
https://www.proquest.com/docview/1825414363
Volume 511
WOSCitedRecordID wos000335274900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2707
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000334
  issn: 0022-1694
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3di9NAEF9qT9AX8RPPU4ngm6Qm2WSTPBY5T0UOhXKUewnZL9vSJqXXnHf3R_g3O5PdJKXVOxV8CWHZTcLOLzOzszO_JeS14JQyIQM3D1XshrGOXPBCcld4oQB7k2hd756ffI6Pj5PxOP3S6_1oamHO53FRJBcX6fK_ihraQNhYOvsX4m4fCg1wD0KHK4gdrn8k-Lqk1i35zKiyNyUohYWttkTXUC2WU8MLMrmUq1b31Ufi1EmHWD6SL_S8_I4MAnIqWtntOrHNI-qcgeECWRckQqwNLxxVZmunakF4OimrugmAeTUpreXEnKCm-WqiutZT0_sr9P62GaLw68wWU0Fp4mY7tTNtHYHPzBHHA2XUbxKnWCEXb-rnyGpjq2ENGZc11oFhGt6xAyYkMRvMzDRgCl9Y07Maes8tim3csQ7wU2C1idTN6S2yF8RRmvTJ3vDj4fhTZ9spDRv-eRzQ1YS9_eXLfuftbNn92pkZ3Sf3rACdoUHPA9JTxUNy50hZ_vJH5GQLRc4mipxSOy2KnE0UOTWKHECR06HI6VD0mIzeH47efXDtERzw71J_7UaCChHhGQK54JLmisH6RgmupNIyphHL81QrrkUsI6qlhxFFBSsIzlPOvJQ-If2iLNRT4ohI5lpyDLGJUCgvj5mveAjeuNaeYGyfhM1MZcLS0-MpKfOsyUOcZXaCM5zgzPMzmOB9MmiHLQ0_y00DkkYMmXUyjfOYAXZuGvqqEVsGShh31vJCldVZ5jMWYvQuYNf2ScFYejS9pg_Ga2AFw-izf__MA3K3-wmfk_56VakX5LY4X0_PVi8ton8CGmDNTg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+empirical+hydrological+model+for+streamflow+prediction&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Guo%2C+Jun&rft.au=Zhou%2C+Jianzhong&rft.au=Lu%2C+Jiazheng&rft.au=Zou%2C+Qiang&rft.date=2014-04-16&rft.pub=Elsevier+B.V&rft.issn=0022-1694&rft.eissn=1879-2707&rft.volume=511&rft.spage=242&rft.epage=253&rft_id=info:doi/10.1016%2Fj.jhydrol.2014.01.047&rft.externalDocID=S0022169414000699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon