Multi-objective optimization of empirical hydrological model for streamflow prediction
•The MODE-ACM algorithm is firstly introduced for parameter estimation of hydrologic model.•We propose an enhanced Pareto multi-objective differential algorithm EPMODE.•The performance of EPMODE and MODE-ACM is tested on five benchmark problems.•EPMODE and MODE-ACM are further applied to an artifici...
Uloženo v:
| Vydáno v: | Journal of hydrology (Amsterdam) Ročník 511; s. 242 - 253 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
16.04.2014
|
| Témata: | |
| ISSN: | 0022-1694, 1879-2707 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •The MODE-ACM algorithm is firstly introduced for parameter estimation of hydrologic model.•We propose an enhanced Pareto multi-objective differential algorithm EPMODE.•The performance of EPMODE and MODE-ACM is tested on five benchmark problems.•EPMODE and MODE-ACM are further applied to an artificial neural network model for monthly streamflow forecasting.•The results of EPMODE and MODE-ACM are compared with those of NSGA-II and SPEA2.
Traditional calibration of hydrological models is performed with a single objective function. Practical experience with the calibration of hydrologic models reveals that single objective functions are often inadequate to properly measure all of the characteristics of the hydrologic system. To circumvent this problem, in recent years, a lot of studies have looked into the automatic calibration of hydrological models with multi-objective functions. In this paper, the multi-objective evolution algorithm MODE-ACM is introduced to solve the multi-objective optimization of hydrologic models. Moreover, to improve the performance of the MODE-ACM, an Enhanced Pareto Multi-Objective Differential Evolution algorithm named EPMODE is proposed in this research. The efficacy of the MODE-ACM and EPMODE are compared with two state-of-the-art algorithms NSGA-II and SPEA2 on two case studies. Five test problems are used as the first case study to generate the true Pareto front. Then this approach is tested on a typical empirical hydrological model for monthly streamflow forecasting. The results of these case studies show that the EPMODE, as well as MODE-ACM, is effective in solving multi-objective problems and has great potential as an efficient and reliable algorithm for water resources applications. |
|---|---|
| AbstractList | Traditional calibration of hydrological models is performed with a single objective function. Practical experience with the calibration of hydrologic models reveals that single objective functions are often inadequate to properly measure all of the characteristics of the hydrologic system. To circumvent this problem, in recent years, a lot of studies have looked into the automatic calibration of hydrological models with multi-objective functions. In this paper, the multi-objective evolution algorithm MODE-ACM is introduced to solve the multi-objective optimization of hydrologic models. Moreover, to improve the performance of the MODE-ACM, an Enhanced Pareto Multi-Objective Differential Evolution algorithm named EPMODE is proposed in this research. The efficacy of the MODE-ACM and EPMODE are compared with two state-of-the-art algorithms NSGA-II and SPEA2 on two case studies. Five test problems are used as the first case study to generate the true Pareto front. Then this approach is tested on a typical empirical hydrological model for monthly streamflow forecasting. The results of these case studies show that the EPMODE, as well as MODE-ACM, is effective in solving multi-objective problems and has great potential as an efficient and reliable algorithm for water resources applications. •The MODE-ACM algorithm is firstly introduced for parameter estimation of hydrologic model.•We propose an enhanced Pareto multi-objective differential algorithm EPMODE.•The performance of EPMODE and MODE-ACM is tested on five benchmark problems.•EPMODE and MODE-ACM are further applied to an artificial neural network model for monthly streamflow forecasting.•The results of EPMODE and MODE-ACM are compared with those of NSGA-II and SPEA2. Traditional calibration of hydrological models is performed with a single objective function. Practical experience with the calibration of hydrologic models reveals that single objective functions are often inadequate to properly measure all of the characteristics of the hydrologic system. To circumvent this problem, in recent years, a lot of studies have looked into the automatic calibration of hydrological models with multi-objective functions. In this paper, the multi-objective evolution algorithm MODE-ACM is introduced to solve the multi-objective optimization of hydrologic models. Moreover, to improve the performance of the MODE-ACM, an Enhanced Pareto Multi-Objective Differential Evolution algorithm named EPMODE is proposed in this research. The efficacy of the MODE-ACM and EPMODE are compared with two state-of-the-art algorithms NSGA-II and SPEA2 on two case studies. Five test problems are used as the first case study to generate the true Pareto front. Then this approach is tested on a typical empirical hydrological model for monthly streamflow forecasting. The results of these case studies show that the EPMODE, as well as MODE-ACM, is effective in solving multi-objective problems and has great potential as an efficient and reliable algorithm for water resources applications. |
| Author | Lu, Jiazheng Zhou, Jianzhong Bi, Sheng Zhang, Huajie Guo, Jun Zou, Qiang |
| Author_xml | – sequence: 1 givenname: Jun surname: Guo fullname: Guo, Jun email: guojunhust@gmail.com, guojunhust@126.com, guo@hust.edu.cn organization: State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China – sequence: 2 givenname: Jianzhong surname: Zhou fullname: Zhou, Jianzhong organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 3 givenname: Jiazheng surname: Lu fullname: Lu, Jiazheng organization: State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China – sequence: 4 givenname: Qiang surname: Zou fullname: Zou, Qiang organization: Changjiang Water Resources Commission, Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China – sequence: 5 givenname: Huajie surname: Zhang fullname: Zhang, Huajie organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 6 givenname: Sheng surname: Bi fullname: Bi, Sheng organization: School of Hydropower and Information Engineering, Huazhong University of Science and Technology, Wuhan 430074, China |
| BookMark | eNqNkcFu3CAURVGVSJ0k_YRKXmZjB4zBRllUVdSklVJlE3WLMDwaLGwcYFJNvz5MJqtupmwQ0j0PvXvO0MkSFkDoM8ENwYRfTc30tDMx-KbFpGswaXDXf0AbMvSibnvcn6ANxm1bEy66j-gspQmXQ2m3Qb9-bn12dRgn0Nm9QBXW7Gb3V2UXlirYCubVRaeVrw5_hN9vjzkY8JUNsUo5gpqtD3-qNYJxek9eoFOrfIJP7_c5erz99njzvb5_uPtx8_W-Vh0luWaaas0EYUzp0VAFfCAG9AgGrOkp40oJC6PVvWHUmrJd2wKjdBzFyLGg5-jyMHaN4XkLKcvZJQ3eqwXCNkkytKwjHeX0eJRzMQylFfE_0Y6IoW95ibJDVMeQUgQr1-hmFXeSYLmXIyf5Lkfu5UhMZJFTuOt_OO3yW-c5KueP0l8ONJRqXxxEmbSDRZf2Y9EoTXBHJrwC_hmzVw |
| CitedBy_id | crossref_primary_10_1007_s11269_017_1862_8 crossref_primary_10_1061__ASCE_HE_1943_5584_0001591 crossref_primary_10_1016_j_jhydrol_2023_129992 crossref_primary_10_1109_ACCESS_2021_3070071 crossref_primary_10_1016_j_envsoft_2014_08_022 crossref_primary_10_1016_j_jhydrol_2019_05_041 crossref_primary_10_3390_w9070495 crossref_primary_10_1080_02626667_2017_1388917 crossref_primary_10_1016_j_ecolmodel_2025_111099 crossref_primary_10_1029_2020WR027309 crossref_primary_10_1155_2020_8594727 crossref_primary_10_1016_j_envsci_2022_05_021 crossref_primary_10_1007_s11269_024_03953_2 crossref_primary_10_1016_j_jenvman_2022_116716 crossref_primary_10_1007_s00500_022_07097_6 crossref_primary_10_1061__ASCE_HE_1943_5584_0001282 crossref_primary_10_1007_s10333_017_0593_z crossref_primary_10_1016_j_jhydrol_2018_07_056 crossref_primary_10_1016_j_rse_2022_113030 crossref_primary_10_1007_s10596_019_09870_3 crossref_primary_10_1061_JHYEFF_HEENG_5935 crossref_primary_10_1061__ASCE_WR_1943_5452_0000534 crossref_primary_10_1016_j_jhydrol_2018_12_010 crossref_primary_10_1016_j_jhydrol_2019_06_065 crossref_primary_10_3390_w14142211 crossref_primary_10_1016_j_asoc_2019_105589 crossref_primary_10_1061__ASCE_HE_1943_5584_0001975 |
| Cites_doi | 10.1002/hyp.7528 10.5194/hess-5-13-2001 10.1061/(ASCE)HE.1943-5584.0000053 10.1029/1999JD900154 10.1023/A:1008202821328 10.1016/j.camwa.2008.10.009 10.1016/j.advengsoft.2008.08.002 10.1016/j.enconman.2009.10.036 10.1016/j.cor.2009.03.009 10.1016/S0022-1694(97)00107-8 10.1061/(ASCE)0733-9496(2004)130:2(140) 10.1007/11539902_145 10.1029/2007WR006734 10.1002/hyp.6571 10.1109/TEVC.2003.810758 10.1016/0022-1694(70)90255-6 10.1162/106365602760234108 10.1029/2002WR001746 10.1162/evco.2004.12.1.77 10.1162/106365600568202 10.1029/2005WR004528 10.1016/j.engappai.2010.04.003 10.1016/j.jhydrol.2003.12.010 10.1016/S0309-1708(01)00053-7 10.1002/hyp.7461 10.1016/S0022-1694(02)00112-9 10.1029/2000WR900207 10.1175/1525-7541(2002)003<0181:CALSMO>2.0.CO;2 10.1016/j.jhydrol.2008.07.040 10.1623/hysj.52.3.397 10.1007/s11269-013-0324-1 10.1029/2002WR001483 10.1109/CEC.2002.1004404 10.1016/j.jhydrol.2009.06.019 10.1029/2004WR003041 10.1029/2012WR012005 10.1029/97WR03495 10.1109/CEC.2010.5586354 10.1109/4235.996017 10.1016/j.advengsoft.2005.11.002 10.1109/4235.797969 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier B.V. |
| Copyright_xml | – notice: 2014 Elsevier B.V. |
| DBID | AAYXX CITATION 7QH 7ST 7TG 7UA C1K F1W H96 KL. L.G SOI 8FD FR3 KR7 7S9 L.6 |
| DOI | 10.1016/j.jhydrol.2014.01.047 |
| DatabaseName | CrossRef Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Technology Research Database AGRICOLA Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1879-2707 |
| EndPage | 253 |
| ExternalDocumentID | 10_1016_j_jhydrol_2014_01_047 S0022169414000699 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACIUM ACLVX ACNCT ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA HMA IHE IMUCA J1W K-O KOM LW9 LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SAB SCC SDF SDG SDP SES SPC SPCBC SPD SSA SSE SSZ T5K TN5 Y6R ZCA ZMT ~02 ~G- ~KM 29K 6TJ 9DU AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABGRD ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION D-I EFKBS FA8 FEDTE FGOYB G-2 HLV HVGLF HZ~ H~9 R2- SEP SEW UQL VOH WUQ ZY4 ~HD 7QH 7ST 7TG 7UA C1K F1W H96 KL. L.G SOI 8FD FR3 KR7 7S9 L.6 |
| ID | FETCH-LOGICAL-a431t-5c3cc59155acbd3ae681decbedefd7356aa9febfc7d53fd01422e533bb9b6093 |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000335274900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1694 |
| IngestDate | Sun Nov 09 12:31:01 EST 2025 Sun Sep 28 11:17:53 EDT 2025 Tue Oct 07 09:55:05 EDT 2025 Tue Nov 18 21:51:28 EST 2025 Sat Nov 29 07:26:33 EST 2025 Fri Feb 23 02:39:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective optimization Streamflow forecasting Model calibration Hydrological model |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a431t-5c3cc59155acbd3ae681decbedefd7356aa9febfc7d53fd01422e533bb9b6093 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1664198726 |
| PQPubID | 23462 |
| PageCount | 12 |
| ParticipantIDs | proquest_miscellaneous_1825414363 proquest_miscellaneous_1669880039 proquest_miscellaneous_1664198726 crossref_primary_10_1016_j_jhydrol_2014_01_047 crossref_citationtrail_10_1016_j_jhydrol_2014_01_047 elsevier_sciencedirect_doi_10_1016_j_jhydrol_2014_01_047 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-16 |
| PublicationDateYYYYMMDD | 2014-04-16 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-16 day: 16 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of hydrology (Amsterdam) |
| PublicationYear | 2014 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kisi (b0100) 2009; 14 Zhang, Srinivasan, Liew (b0230) 2010; 24 Kisi (b0095) 2009; 23 Gupta, Bastidas, Sorooshian, Shuttleworth, Yang (b0065) 1999; 104 Zitzler, Thiele (b0245) 1999; 3 Laumanns, Thiele, Deb, Zitzler (b0105) 2002; 10 Vrugt, Gupta, Bastidas, Bouten, Sorooshian (b0190) 2003; 39 Sivakumar, Jayawardena, Fernando (b0165) 2002; 265 Gupta, Sorooshian, Yapo (b0070) 1998; 34 Zitzler, Deb, Thiele (b0235) 2000; 8 Gill, Kaheil, Khalil, McKee, Bastidas (b0055) 2006; 42 Storn, R., Price, K., 1995. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, ICSI, Berkeley, USA. Demirel, Venancio, Kahya (b0040) 2009; 40 Price, Purucker, Kraemer, Babendreier (b0135) 2012; 48 Khu, Madsen (b0090) 2005; 41 Schott, J.R., 1995. Fault tolerant design using single and multicriteria genetic algorithm optimization [thesis]. Mass: Massachusetts Institute of Technology. Wagener, Boyle, Lees, Wheater, Gupta, Sorooshian (b0195) 2001; 5 Madavan, N.K., 2002. Multiobjective optimization using a Pareto differential evolution approach. In: Congress on Evolutionary Computation (CEC’2002), IEEE Service Center pp. 1145–1150. Cheng, Xie, Chau, Layeghifard (b0015) 2008; 361 Yang, Zhou, Liu, Li (b0215) 2009; 57 Nayak, Sudheer, Rangan, Ramasastri (b0125) 2004; 291 Cheng, Lin, Sun, Chau (b0010) 2005; 3612 Storn, Price (b0175) 1997; 11 Zeng, Kang, Ding (b0225) 2004; 12 Deb, Pratap, Agarwal, Meyarivan (b0035) 2002; 6 Kerh, Lee (b0085) 2006; 37 de Vos, Rientjes (b0030) 2008; 44 Tang, Reed, Wagener (b0180) 2005; 2 Xia, Pittman, Gupta, Leplastrier, Henderson-Sellers, Bastidas (b0210) 2002; 3 Islam, Sivakumar (b0075) 2002; 25 Qin, Zhou, Lu, Wang, Zhang (b0140) 2010; 51 Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland. Leplastrier, Pitman, Gupta, Xia (b0110) 2002; 107 Durillo, J.J., Nebro, A.J., Alba, E., 2010. The jMetal framework for multi-objective optimization: design and architecture. In: Congress on Evolutionary Computation (CEC’2010), IEEE Service Center pp. 4138–4325. Gao, Wang (b0050) 2010; 37 Nash, Sutcliffe (b0120) 1970; 10 Wu, Chau (b0205) 2010; 23 Boyle, Gupta, Sorooshian (b0005) 2000; 36 Guo, Zhou, Zou, Liu, Song (b0060) 2013; 27 Conover (b0020) 1999 Nebro, Durillo, Garcia-Nieto, Coello, Luna, Alba (b0130) 2009 Wang, Chau, Cheng, Qiu (b0200) 2009; 374 Robic, Filipic (b0155) 2005 Van Veldhuizen, D.A., Lamont, G.B., 1998. Multiobjective evolutionary algorithm research: a history and analysis, Tech. Rep. TR-98-03, Dep. of Electr. Comput. Eng., Grad. Sch. of Eng., Air Force Inst. Of Technol., Wright-Patterson Air Force Base, Ohio. Karamouz, Razavi, Araghinejad (b0080) 2008; 22 de Vos, Rientjes (b0025) 2007; 52 Yapo, Gupta, Sorooshian (b0220) 1998; 204 Reed, Minsker (b0145) 2004; 130 Zitzler, Thiele, Laumanns, Fonseca, Fonseca (b0250) 2003; 7 Reed, Minsker, Goldberg (b0150) 2003; 39 Kerh (10.1016/j.jhydrol.2014.01.047_b0085) 2006; 37 Deb (10.1016/j.jhydrol.2014.01.047_b0035) 2002; 6 Gao (10.1016/j.jhydrol.2014.01.047_b0050) 2010; 37 Zitzler (10.1016/j.jhydrol.2014.01.047_b0250) 2003; 7 Wu (10.1016/j.jhydrol.2014.01.047_b0205) 2010; 23 Tang (10.1016/j.jhydrol.2014.01.047_b0180) 2005; 2 Zeng (10.1016/j.jhydrol.2014.01.047_b0225) 2004; 12 Zhang (10.1016/j.jhydrol.2014.01.047_b0230) 2010; 24 Leplastrier (10.1016/j.jhydrol.2014.01.047_b0110) 2002; 107 Nash (10.1016/j.jhydrol.2014.01.047_b0120) 1970; 10 Vrugt (10.1016/j.jhydrol.2014.01.047_b0190) 2003; 39 10.1016/j.jhydrol.2014.01.047_b0185 Yang (10.1016/j.jhydrol.2014.01.047_b0215) 2009; 57 Zitzler (10.1016/j.jhydrol.2014.01.047_b0245) 1999; 3 Cheng (10.1016/j.jhydrol.2014.01.047_b0015) 2008; 361 Gupta (10.1016/j.jhydrol.2014.01.047_b0070) 1998; 34 de Vos (10.1016/j.jhydrol.2014.01.047_b0025) 2007; 52 Gill (10.1016/j.jhydrol.2014.01.047_b0055) 2006; 42 Price (10.1016/j.jhydrol.2014.01.047_b0135) 2012; 48 Demirel (10.1016/j.jhydrol.2014.01.047_b0040) 2009; 40 Robic (10.1016/j.jhydrol.2014.01.047_b0155) 2005 Karamouz (10.1016/j.jhydrol.2014.01.047_b0080) 2008; 22 Yapo (10.1016/j.jhydrol.2014.01.047_b0220) 1998; 204 Reed (10.1016/j.jhydrol.2014.01.047_b0150) 2003; 39 Storn (10.1016/j.jhydrol.2014.01.047_b0175) 1997; 11 10.1016/j.jhydrol.2014.01.047_b0170 Conover (10.1016/j.jhydrol.2014.01.047_b0020) 1999 Boyle (10.1016/j.jhydrol.2014.01.047_b0005) 2000; 36 Qin (10.1016/j.jhydrol.2014.01.047_b0140) 2010; 51 Nebro (10.1016/j.jhydrol.2014.01.047_b0130) 2009 Laumanns (10.1016/j.jhydrol.2014.01.047_b0105) 2002; 10 Guo (10.1016/j.jhydrol.2014.01.047_b0060) 2013; 27 Sivakumar (10.1016/j.jhydrol.2014.01.047_b0165) 2002; 265 Khu (10.1016/j.jhydrol.2014.01.047_b0090) 2005; 41 Wagener (10.1016/j.jhydrol.2014.01.047_b0195) 2001; 5 Kisi (10.1016/j.jhydrol.2014.01.047_b0100) 2009; 14 Islam (10.1016/j.jhydrol.2014.01.047_b0075) 2002; 25 Kisi (10.1016/j.jhydrol.2014.01.047_b0095) 2009; 23 10.1016/j.jhydrol.2014.01.047_b0240 Gupta (10.1016/j.jhydrol.2014.01.047_b0065) 1999; 104 Nayak (10.1016/j.jhydrol.2014.01.047_b0125) 2004; 291 Reed (10.1016/j.jhydrol.2014.01.047_b0145) 2004; 130 10.1016/j.jhydrol.2014.01.047_b0045 10.1016/j.jhydrol.2014.01.047_b0160 Zitzler (10.1016/j.jhydrol.2014.01.047_b0235) 2000; 8 Cheng (10.1016/j.jhydrol.2014.01.047_b0010) 2005; 3612 de Vos (10.1016/j.jhydrol.2014.01.047_b0030) 2008; 44 10.1016/j.jhydrol.2014.01.047_b0115 Wang (10.1016/j.jhydrol.2014.01.047_b0200) 2009; 374 Xia (10.1016/j.jhydrol.2014.01.047_b0210) 2002; 3 |
| References_xml | – volume: 7 start-page: 117 year: 2003 end-page: 132 ident: b0250 article-title: Performance assessment of multiobjective optimizers: an analysis and review publication-title: IEEE T. Evol. Comput. – reference: Schott, J.R., 1995. Fault tolerant design using single and multicriteria genetic algorithm optimization [thesis]. Mass: Massachusetts Institute of Technology. – volume: 3612 start-page: 1152 year: 2005 end-page: 1161 ident: b0010 article-title: Long-term prediction of discharges in manwan hydropower using adaptive-network-based fuzzy inference systems models publication-title: Lect. Notes Comput. Sci. – volume: 37 start-page: 50 year: 2010 end-page: 61 ident: b0050 article-title: WBMOAIS: a novel artificial immune system for multiobjective optimization publication-title: Comput. Oper. Res. – volume: 107 start-page: 4443 year: 2002 ident: b0110 article-title: Exploring the relationship between complexity and performance in a land surface model using the multi-criteria method publication-title: J. Geophys. Res. – volume: 10 start-page: 263 year: 2002 end-page: 282 ident: b0105 article-title: Combining convergence and diversity in evolutionary multiobjective optimization publication-title: Evol. Comput. – volume: 3 start-page: 257 year: 1999 end-page: 271 ident: b0245 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE T. Evol. Comput. – volume: 57 start-page: 1995 year: 2009 end-page: 2000 ident: b0215 article-title: A novel strategy of pareto-optimal solution searching in multi-objective particle swarm optimization (MOPSO) publication-title: Comput. Math. Appl. – volume: 44 start-page: W08434 year: 2008 ident: b0030 article-title: Multiobjective training of artificial neural networks for rainfall-runoff modeling publication-title: Water Resour. Res. – volume: 36 start-page: 3663 year: 2000 end-page: 3674 ident: b0005 article-title: Toward improved calibration of hydrological models: combining the strengths of manual and automatic methods publication-title: Water Resour. Res. – volume: 12 start-page: 77 year: 2004 end-page: 98 ident: b0225 article-title: An orthogonal multiobjective evolutionary algorithm for multiobjective optimization problems with constraints publication-title: Evol. Comput. – volume: 8 start-page: 173 year: 2000 end-page: 195 ident: b0235 article-title: Comparison of multiobjective evolutionary algorithms: empirical results publication-title: Evol. Comput. – volume: 42 start-page: W07417 year: 2006 ident: b0055 article-title: Multiobjective particle swarm optimization for parameter estimation in hydrology publication-title: Water Resour. Res. – volume: 104 start-page: 19491 year: 1999 end-page: 19503 ident: b0065 article-title: Parameter estimation of a land surface scheme using multi-criteria methods publication-title: J. Geophys. Res. – volume: 10 start-page: 282 year: 1970 end-page: 290 ident: b0120 article-title: River flow forecasting through conceptual models. Part 1: a discussion of principles publication-title: J. Hydrol. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0175 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous space publication-title: J. Global Optim. – start-page: 66 year: 2009 end-page: 73 ident: b0130 article-title: SMPSO: a new PSO-based metaheuristic for multi-objective optimization publication-title: 2009 IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making – volume: 204 start-page: 83 year: 1998 end-page: 97 ident: b0220 article-title: Multi-objective global optimization for hydrologic models publication-title: J. Hydrol. – volume: 41 start-page: W03004 year: 2005 ident: b0090 article-title: Multiobjective calibration with Pareto preference ordering: an application to rainfall-runoff model calibration publication-title: Water Resour. Res. – volume: 40 start-page: 467 year: 2009 end-page: 473 ident: b0040 article-title: Flow forecast by SWAT model and ANN in Pracana basin publication-title: Portugal Adv. Eng. Softw. – volume: 22 start-page: 229 year: 2008 end-page: 241 ident: b0080 article-title: Long-lead seasonal rainfall forecasting using time-delay recurrent neural networks: a case study publication-title: Hydrol. Process. – volume: 3 start-page: 181 year: 2002 end-page: 194 ident: b0210 article-title: Calibrating a land surface model of varying complexity using multi-criteria methods and the Cabauw dataset publication-title: J. Hydrometeorol. – volume: 265 start-page: 225 year: 2002 end-page: 245 ident: b0165 article-title: River flow forecasting: use of phase–space reconstruction and artificial neural networks approaches publication-title: J. Hydrol. – volume: 130 start-page: 140 year: 2004 end-page: 149 ident: b0145 article-title: Striking the balance: long-term groundwater monitoring design for conflicting objectives publication-title: J. Water Res. Pl.-ASCE – volume: 52 start-page: 397 year: 2007 end-page: 413 ident: b0025 article-title: Multi-objective performance comparison of an artificial neural network and a conceptual rainfall-runoff model publication-title: Hydrol. Sci. J. – volume: 2 start-page: 2465 year: 2005 end-page: 2520 ident: b0180 article-title: How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 27 start-page: 2923 year: 2013 end-page: 2946 ident: b0060 article-title: A novel multi-objective shuffled complex differential evolution algorithm with application to hydrological model parameter optimization publication-title: Water Res. Manage. – volume: 25 start-page: 179 year: 2002 end-page: 190 ident: b0075 article-title: Characterization and prediction of runoff dynamics: a nonlinear dynamical view publication-title: Adv. Water Resour. – volume: 23 start-page: 3583 year: 2009 end-page: 3597 ident: b0095 article-title: Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting publication-title: Hydrol. Process. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: b0035 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE T. Evol. Comput. – volume: 48 start-page: W10542 year: 2012 ident: b0135 article-title: Tradeoffs among watershed model calibration targets for parameter estimation publication-title: Water Resour. Res. – volume: 23 start-page: 1350 year: 2010 end-page: 1367 ident: b0205 article-title: Data-driven models for monthly streamflow time series prediction publication-title: Eng. Appl. Artif. Intel. – reference: Madavan, N.K., 2002. Multiobjective optimization using a Pareto differential evolution approach. In: Congress on Evolutionary Computation (CEC’2002), IEEE Service Center pp. 1145–1150. – volume: 291 start-page: 52 year: 2004 end-page: 66 ident: b0125 article-title: A neuro-fuzzy computing technique for modeling hydrological time series publication-title: J. Hydrol. – volume: 361 start-page: 118 year: 2008 end-page: 130 ident: b0015 article-title: A new indirect multi-step-ahead prediction model for a long-term hydrologic prediction publication-title: J. Hydrol. – volume: 51 start-page: 788 year: 2010 end-page: 794 ident: b0140 article-title: Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling publication-title: Energ. Convers. Manage. – volume: 24 start-page: 955 year: 2010 end-page: 969 ident: b0230 article-title: On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model publication-title: Hydrol. Process. – start-page: 520 year: 2005 end-page: 533 ident: b0155 article-title: DEMO: differential evolution for multiobjective optimization publication-title: Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization – year: 1999 ident: b0020 article-title: Practical Nonparametric Statistics – reference: Zitzler, E., Laumanns, M., Thiele, L., 2001. SPEA2: Improving the strength Pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland. – volume: 37 start-page: 533 year: 2006 end-page: 543 ident: b0085 article-title: Neural networks forecasting of flood discharge at an unmeasured station using river upstream information publication-title: Adv. Eng. Softw. – reference: Storn, R., Price, K., 1995. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical Report TR-95-012, ICSI, Berkeley, USA. – volume: 34 start-page: 751 year: 1998 end-page: 763 ident: b0070 article-title: Towards improved calibration of hydrologic models: multiple and noncommensurable measures of information publication-title: Water Resour. Res. – reference: Van Veldhuizen, D.A., Lamont, G.B., 1998. Multiobjective evolutionary algorithm research: a history and analysis, Tech. Rep. TR-98-03, Dep. of Electr. Comput. Eng., Grad. Sch. of Eng., Air Force Inst. Of Technol., Wright-Patterson Air Force Base, Ohio. – volume: 39 start-page: 1196 year: 2003 ident: b0150 article-title: Simplifying multiobjective optimization: an automated design methodology for the nondominated sorted genetic algorithm-II publication-title: Water Resour. Res. – volume: 5 start-page: 13 year: 2001 end-page: 26 ident: b0195 article-title: A framework for development and application of hydrological models publication-title: Hydrol. Earth Syst. Sci. – reference: Durillo, J.J., Nebro, A.J., Alba, E., 2010. The jMetal framework for multi-objective optimization: design and architecture. In: Congress on Evolutionary Computation (CEC’2010), IEEE Service Center pp. 4138–4325. – volume: 374 start-page: 294 year: 2009 end-page: 306 ident: b0200 article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series publication-title: J. Hydrol. – volume: 39 start-page: 1214 year: 2003 ident: b0190 article-title: Effective and efficient algorithm for multiobjective optimization of hydrologic models publication-title: Water Resour. Res. – volume: 14 start-page: 773 year: 2009 end-page: 782 ident: b0100 article-title: Neural networks and wavelet conjunction model for intermittent Streamflow Forecasting publication-title: J. Hydrol. Eng. – volume: 24 start-page: 955 year: 2010 ident: 10.1016/j.jhydrol.2014.01.047_b0230 article-title: On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model publication-title: Hydrol. Process. doi: 10.1002/hyp.7528 – year: 1999 ident: 10.1016/j.jhydrol.2014.01.047_b0020 – volume: 107 start-page: 4443 year: 2002 ident: 10.1016/j.jhydrol.2014.01.047_b0110 article-title: Exploring the relationship between complexity and performance in a land surface model using the multi-criteria method publication-title: J. Geophys. Res. – volume: 2 start-page: 2465 year: 2005 ident: 10.1016/j.jhydrol.2014.01.047_b0180 article-title: How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration publication-title: Hydrol. Earth Syst. Sci. Discuss. – volume: 5 start-page: 13 year: 2001 ident: 10.1016/j.jhydrol.2014.01.047_b0195 article-title: A framework for development and application of hydrological models publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-5-13-2001 – volume: 14 start-page: 773 year: 2009 ident: 10.1016/j.jhydrol.2014.01.047_b0100 article-title: Neural networks and wavelet conjunction model for intermittent Streamflow Forecasting publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)HE.1943-5584.0000053 – volume: 104 start-page: 19491 year: 1999 ident: 10.1016/j.jhydrol.2014.01.047_b0065 article-title: Parameter estimation of a land surface scheme using multi-criteria methods publication-title: J. Geophys. Res. doi: 10.1029/1999JD900154 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.jhydrol.2014.01.047_b0175 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous space publication-title: J. Global Optim. doi: 10.1023/A:1008202821328 – volume: 57 start-page: 1995 year: 2009 ident: 10.1016/j.jhydrol.2014.01.047_b0215 article-title: A novel strategy of pareto-optimal solution searching in multi-objective particle swarm optimization (MOPSO) publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.10.009 – volume: 40 start-page: 467 year: 2009 ident: 10.1016/j.jhydrol.2014.01.047_b0040 article-title: Flow forecast by SWAT model and ANN in Pracana basin publication-title: Portugal Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2008.08.002 – volume: 51 start-page: 788 year: 2010 ident: 10.1016/j.jhydrol.2014.01.047_b0140 article-title: Multi-objective differential evolution with adaptive Cauchy mutation for short-term multi-objective optimal hydro-thermal scheduling publication-title: Energ. Convers. Manage. doi: 10.1016/j.enconman.2009.10.036 – volume: 37 start-page: 50 year: 2010 ident: 10.1016/j.jhydrol.2014.01.047_b0050 article-title: WBMOAIS: a novel artificial immune system for multiobjective optimization publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2009.03.009 – volume: 204 start-page: 83 year: 1998 ident: 10.1016/j.jhydrol.2014.01.047_b0220 article-title: Multi-objective global optimization for hydrologic models publication-title: J. Hydrol. doi: 10.1016/S0022-1694(97)00107-8 – volume: 130 start-page: 140 year: 2004 ident: 10.1016/j.jhydrol.2014.01.047_b0145 article-title: Striking the balance: long-term groundwater monitoring design for conflicting objectives publication-title: J. Water Res. Pl.-ASCE doi: 10.1061/(ASCE)0733-9496(2004)130:2(140) – volume: 3612 start-page: 1152 year: 2005 ident: 10.1016/j.jhydrol.2014.01.047_b0010 article-title: Long-term prediction of discharges in manwan hydropower using adaptive-network-based fuzzy inference systems models publication-title: Lect. Notes Comput. Sci. doi: 10.1007/11539902_145 – volume: 44 start-page: W08434 year: 2008 ident: 10.1016/j.jhydrol.2014.01.047_b0030 article-title: Multiobjective training of artificial neural networks for rainfall-runoff modeling publication-title: Water Resour. Res. doi: 10.1029/2007WR006734 – volume: 22 start-page: 229 year: 2008 ident: 10.1016/j.jhydrol.2014.01.047_b0080 article-title: Long-lead seasonal rainfall forecasting using time-delay recurrent neural networks: a case study publication-title: Hydrol. Process. doi: 10.1002/hyp.6571 – volume: 7 start-page: 117 year: 2003 ident: 10.1016/j.jhydrol.2014.01.047_b0250 article-title: Performance assessment of multiobjective optimizers: an analysis and review publication-title: IEEE T. Evol. Comput. doi: 10.1109/TEVC.2003.810758 – volume: 10 start-page: 282 year: 1970 ident: 10.1016/j.jhydrol.2014.01.047_b0120 article-title: River flow forecasting through conceptual models. Part 1: a discussion of principles publication-title: J. Hydrol. doi: 10.1016/0022-1694(70)90255-6 – volume: 10 start-page: 263 year: 2002 ident: 10.1016/j.jhydrol.2014.01.047_b0105 article-title: Combining convergence and diversity in evolutionary multiobjective optimization publication-title: Evol. Comput. doi: 10.1162/106365602760234108 – volume: 39 start-page: 1214 year: 2003 ident: 10.1016/j.jhydrol.2014.01.047_b0190 article-title: Effective and efficient algorithm for multiobjective optimization of hydrologic models publication-title: Water Resour. Res. doi: 10.1029/2002WR001746 – volume: 12 start-page: 77 year: 2004 ident: 10.1016/j.jhydrol.2014.01.047_b0225 article-title: An orthogonal multiobjective evolutionary algorithm for multiobjective optimization problems with constraints publication-title: Evol. Comput. doi: 10.1162/evco.2004.12.1.77 – volume: 8 start-page: 173 year: 2000 ident: 10.1016/j.jhydrol.2014.01.047_b0235 article-title: Comparison of multiobjective evolutionary algorithms: empirical results publication-title: Evol. Comput. doi: 10.1162/106365600568202 – ident: 10.1016/j.jhydrol.2014.01.047_b0240 – volume: 42 start-page: W07417 year: 2006 ident: 10.1016/j.jhydrol.2014.01.047_b0055 article-title: Multiobjective particle swarm optimization for parameter estimation in hydrology publication-title: Water Resour. Res. doi: 10.1029/2005WR004528 – volume: 23 start-page: 1350 year: 2010 ident: 10.1016/j.jhydrol.2014.01.047_b0205 article-title: Data-driven models for monthly streamflow time series prediction publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2010.04.003 – volume: 291 start-page: 52 year: 2004 ident: 10.1016/j.jhydrol.2014.01.047_b0125 article-title: A neuro-fuzzy computing technique for modeling hydrological time series publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2003.12.010 – volume: 25 start-page: 179 year: 2002 ident: 10.1016/j.jhydrol.2014.01.047_b0075 article-title: Characterization and prediction of runoff dynamics: a nonlinear dynamical view publication-title: Adv. Water Resour. doi: 10.1016/S0309-1708(01)00053-7 – start-page: 520 year: 2005 ident: 10.1016/j.jhydrol.2014.01.047_b0155 article-title: DEMO: differential evolution for multiobjective optimization – volume: 23 start-page: 3583 year: 2009 ident: 10.1016/j.jhydrol.2014.01.047_b0095 article-title: Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting publication-title: Hydrol. Process. doi: 10.1002/hyp.7461 – volume: 265 start-page: 225 year: 2002 ident: 10.1016/j.jhydrol.2014.01.047_b0165 article-title: River flow forecasting: use of phase–space reconstruction and artificial neural networks approaches publication-title: J. Hydrol. doi: 10.1016/S0022-1694(02)00112-9 – volume: 36 start-page: 3663 year: 2000 ident: 10.1016/j.jhydrol.2014.01.047_b0005 article-title: Toward improved calibration of hydrological models: combining the strengths of manual and automatic methods publication-title: Water Resour. Res. doi: 10.1029/2000WR900207 – volume: 3 start-page: 181 year: 2002 ident: 10.1016/j.jhydrol.2014.01.047_b0210 article-title: Calibrating a land surface model of varying complexity using multi-criteria methods and the Cabauw dataset publication-title: J. Hydrometeorol. doi: 10.1175/1525-7541(2002)003<0181:CALSMO>2.0.CO;2 – volume: 361 start-page: 118 year: 2008 ident: 10.1016/j.jhydrol.2014.01.047_b0015 article-title: A new indirect multi-step-ahead prediction model for a long-term hydrologic prediction publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2008.07.040 – volume: 52 start-page: 397 year: 2007 ident: 10.1016/j.jhydrol.2014.01.047_b0025 article-title: Multi-objective performance comparison of an artificial neural network and a conceptual rainfall-runoff model publication-title: Hydrol. Sci. J. doi: 10.1623/hysj.52.3.397 – start-page: 66 year: 2009 ident: 10.1016/j.jhydrol.2014.01.047_b0130 article-title: SMPSO: a new PSO-based metaheuristic for multi-objective optimization – volume: 27 start-page: 2923 year: 2013 ident: 10.1016/j.jhydrol.2014.01.047_b0060 article-title: A novel multi-objective shuffled complex differential evolution algorithm with application to hydrological model parameter optimization publication-title: Water Res. Manage. doi: 10.1007/s11269-013-0324-1 – volume: 39 start-page: 1196 year: 2003 ident: 10.1016/j.jhydrol.2014.01.047_b0150 article-title: Simplifying multiobjective optimization: an automated design methodology for the nondominated sorted genetic algorithm-II publication-title: Water Resour. Res. doi: 10.1029/2002WR001483 – ident: 10.1016/j.jhydrol.2014.01.047_b0115 doi: 10.1109/CEC.2002.1004404 – ident: 10.1016/j.jhydrol.2014.01.047_b0160 – volume: 374 start-page: 294 year: 2009 ident: 10.1016/j.jhydrol.2014.01.047_b0200 article-title: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2009.06.019 – volume: 41 start-page: W03004 year: 2005 ident: 10.1016/j.jhydrol.2014.01.047_b0090 article-title: Multiobjective calibration with Pareto preference ordering: an application to rainfall-runoff model calibration publication-title: Water Resour. Res. doi: 10.1029/2004WR003041 – volume: 48 start-page: W10542 year: 2012 ident: 10.1016/j.jhydrol.2014.01.047_b0135 article-title: Tradeoffs among watershed model calibration targets for parameter estimation publication-title: Water Resour. Res. doi: 10.1029/2012WR012005 – ident: 10.1016/j.jhydrol.2014.01.047_b0185 – volume: 34 start-page: 751 year: 1998 ident: 10.1016/j.jhydrol.2014.01.047_b0070 article-title: Towards improved calibration of hydrologic models: multiple and noncommensurable measures of information publication-title: Water Resour. Res. doi: 10.1029/97WR03495 – ident: 10.1016/j.jhydrol.2014.01.047_b0045 doi: 10.1109/CEC.2010.5586354 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.jhydrol.2014.01.047_b0035 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE T. Evol. Comput. doi: 10.1109/4235.996017 – ident: 10.1016/j.jhydrol.2014.01.047_b0170 – volume: 37 start-page: 533 year: 2006 ident: 10.1016/j.jhydrol.2014.01.047_b0085 article-title: Neural networks forecasting of flood discharge at an unmeasured station using river upstream information publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2005.11.002 – volume: 3 start-page: 257 year: 1999 ident: 10.1016/j.jhydrol.2014.01.047_b0245 article-title: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach publication-title: IEEE T. Evol. Comput. doi: 10.1109/4235.797969 |
| SSID | ssj0000334 |
| Score | 2.2790143 |
| Snippet | •The MODE-ACM algorithm is firstly introduced for parameter estimation of hydrologic model.•We propose an enhanced Pareto multi-objective differential... Traditional calibration of hydrological models is performed with a single objective function. Practical experience with the calibration of hydrologic models... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 242 |
| SubjectTerms | Algorithms Calibration case studies Effectiveness Empirical analysis Evolutionary algorithms hydrologic models Hydrological model Hydrology Mathematical models Model calibration Multi-objective optimization Optimization Pareto optimality prediction stream flow Streamflow forecasting |
| Title | Multi-objective optimization of empirical hydrological model for streamflow prediction |
| URI | https://dx.doi.org/10.1016/j.jhydrol.2014.01.047 https://www.proquest.com/docview/1664198726 https://www.proquest.com/docview/1669880039 https://www.proquest.com/docview/1825414363 |
| Volume | 511 |
| WOSCitedRecordID | wos000335274900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2707 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000334 issn: 0022-1694 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6FFAleEKdaLhmJN-Rie33tY4RKAaEKpKiK-rLayyRRYkdp3OsX8LOZPWyHFFL6wIsVrdarbObLzOzszDcIvdW1i4nKhJ9GmfRjyYlPVAyHlTDjQcQzhU2bzuOv2dFRPhqRb73ez6YW5myWlWV-cUEW_1XUMAbC1qWztxB3uygMwGcQOjxB7PD8J8Gbklq_4lOryt5VoBTmrtpSu4ZqvphYXpDxpVy2us-0xDFJh7p8hM2LWXWuGQTkRLSyu-7ENkuYnIHBXLMuSA2xNrxwWNurnboF4cm4qs0QAPNqXDnLqXOCmuGrsepGT-zs7zD7x3qIIjSZLbaCcq1kIExtN-NG7SZOyTrFaTm2nA2OLIHwNfVuIw3T_andnc7Miw3rqmXt_J1Oe8PMtcmHTV7blLplqF6GBiGFZe6gnShLSN5HO4PPB6MvnVXHOG6Y5_VWumqw93_8Pn_zczYsvnFjhg_RAyc6b2Bx8wj1VPkY3TtUjrn8CTrewI-3jh-vKrwWP946fjyDHw_w43X48Tr8PEXDjwfDD59813zDZ-BTrvxEYCES3T2ACS4xUymcbJTgSqpCZjhJGSOF4oXIZIILGehYooKzA-eEpwHBz1C_rEq1izxMwpwL3QsWtACLJQuZvnyPU8yiiPN8D8XNL0WFI6bX_VFmdKuk9tB--9rCMrPc9ELeiIE699K6jRTgddOrbxqxUVC_-k6NlaqqT2mYprGO20Xp1jkEzGSAyZY5OlIDZ5cUP7_tvl6g-92f7iXqr5a1eoXuirPV5HT52uH4F2cgx4I |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+optimization+of+empirical+hydrological+model+for+streamflow+prediction&rft.jtitle=Journal+of+hydrology+%28Amsterdam%29&rft.au=Guo%2C+Jun&rft.au=Zhou%2C+Jianzhong&rft.au=Lu%2C+Jiazheng&rft.au=Zou%2C+Qiang&rft.date=2014-04-16&rft.issn=0022-1694&rft.volume=511&rft.spage=242&rft.epage=253&rft_id=info:doi/10.1016%2Fj.jhydrol.2014.01.047&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jhydrol_2014_01_047 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1694&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1694&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1694&client=summon |