An All-Organic Proton Battery
Rechargeable batteries that use organic matter as the capacity-carrying material have previously been considered a technology for the future. Earlier batteries in which both the anode and cathode consisted of organic material required significant amounts of conductive additives and were often based...
Saved in:
| Published in: | Journal of the American Chemical Society Vol. 139; no. 13; pp. 4828 - 4834 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
05.04.2017
|
| ISSN: | 1520-5126 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Rechargeable batteries that use organic matter as the capacity-carrying material have previously been considered a technology for the future. Earlier batteries in which both the anode and cathode consisted of organic material required significant amounts of conductive additives and were often based on metal-ion electrolytes containing Li
or Na
. However, we have used conducting poly(3,4-ethylenedioxythiophene) (PEDOT), functionalized with anthraquinone (PEDOT-AQ) or benzonquinone (PEDOT-BQ) pendant groups as the negative and positive electrode materials, respectively, to make an all-organic proton battery devoid of metals. The electrolyte consists of a proton donor and acceptor slurry containing substituted pyridinium triflates and the corresponding pyridine base. This slurry allows the 2e
/2H
quinone/hydroquinone redox reactions while suppressing proton reduction in the battery cell. By using strong (acidic) proton donors, the formal potential of the quinone redox reactions is tuned into the potential region in which the PEDOT backbone is conductive, thus eliminating the need for conducting additives. In this all-organic proton battery cell, PEDOT-AQ and PEDOT-BQ deliver 103 and 120 mAh g
, which correspond to 78% and 75%, respectively, of the theoretical specific capacity of the materials at an average cell potential of 0.5 V. We show that PEDOT-BQ determines the cycling stability of the device while PEDOT-AQ provides excellent reversibility for at least 1000 cycles. This proof-of-concept shows the feasibility of assembling all-organic proton batteries which require no conductive additives and also reveals where the challenges and opportunities lie on the path to producing plastic batteries. |
|---|---|
| AbstractList | Rechargeable batteries that use organic matter as the capacity-carrying material have previously been considered a technology for the future. Earlier batteries in which both the anode and cathode consisted of organic material required significant amounts of conductive additives and were often based on metal-ion electrolytes containing Li
or Na
. However, we have used conducting poly(3,4-ethylenedioxythiophene) (PEDOT), functionalized with anthraquinone (PEDOT-AQ) or benzonquinone (PEDOT-BQ) pendant groups as the negative and positive electrode materials, respectively, to make an all-organic proton battery devoid of metals. The electrolyte consists of a proton donor and acceptor slurry containing substituted pyridinium triflates and the corresponding pyridine base. This slurry allows the 2e
/2H
quinone/hydroquinone redox reactions while suppressing proton reduction in the battery cell. By using strong (acidic) proton donors, the formal potential of the quinone redox reactions is tuned into the potential region in which the PEDOT backbone is conductive, thus eliminating the need for conducting additives. In this all-organic proton battery cell, PEDOT-AQ and PEDOT-BQ deliver 103 and 120 mAh g
, which correspond to 78% and 75%, respectively, of the theoretical specific capacity of the materials at an average cell potential of 0.5 V. We show that PEDOT-BQ determines the cycling stability of the device while PEDOT-AQ provides excellent reversibility for at least 1000 cycles. This proof-of-concept shows the feasibility of assembling all-organic proton batteries which require no conductive additives and also reveals where the challenges and opportunities lie on the path to producing plastic batteries. Rechargeable batteries that use organic matter as the capacity-carrying material have previously been considered a technology for the future. Earlier batteries in which both the anode and cathode consisted of organic material required significant amounts of conductive additives and were often based on metal-ion electrolytes containing Li+ or Na+. However, we have used conducting poly(3,4-ethylenedioxythiophene) (PEDOT), functionalized with anthraquinone (PEDOT-AQ) or benzonquinone (PEDOT-BQ) pendant groups as the negative and positive electrode materials, respectively, to make an all-organic proton battery devoid of metals. The electrolyte consists of a proton donor and acceptor slurry containing substituted pyridinium triflates and the corresponding pyridine base. This slurry allows the 2e-/2H+ quinone/hydroquinone redox reactions while suppressing proton reduction in the battery cell. By using strong (acidic) proton donors, the formal potential of the quinone redox reactions is tuned into the potential region in which the PEDOT backbone is conductive, thus eliminating the need for conducting additives. In this all-organic proton battery cell, PEDOT-AQ and PEDOT-BQ deliver 103 and 120 mAh g-1, which correspond to 78% and 75%, respectively, of the theoretical specific capacity of the materials at an average cell potential of 0.5 V. We show that PEDOT-BQ determines the cycling stability of the device while PEDOT-AQ provides excellent reversibility for at least 1000 cycles. This proof-of-concept shows the feasibility of assembling all-organic proton batteries which require no conductive additives and also reveals where the challenges and opportunities lie on the path to producing plastic batteries. |
| Author | Strømme, Maria Sjödin, Martin Emanuelsson, Rikard Sterby, Mia |
| Author_xml | – sequence: 1 givenname: Rikard orcidid: 0000-0002-4726-4121 surname: Emanuelsson fullname: Emanuelsson, Rikard organization: Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University , Box 534, SE-751 21 Uppsala, Sweden – sequence: 2 givenname: Mia surname: Sterby fullname: Sterby, Mia organization: Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University , Box 534, SE-751 21 Uppsala, Sweden – sequence: 3 givenname: Maria surname: Strømme fullname: Strømme, Maria organization: Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University , Box 534, SE-751 21 Uppsala, Sweden – sequence: 4 givenname: Martin orcidid: 0000-0003-4126-4347 surname: Sjödin fullname: Sjödin, Martin organization: Nanotechnology and Functional Materials, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University , Box 534, SE-751 21 Uppsala, Sweden |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28293954$$D View this record in MEDLINE/PubMed |
| BookMark | eNo1jz1PwzAUAC0Eoh-wsYIysqT4PduxPZaKL6lSGWCOXmwHpUqcEidD_z1IlOmW00m3YOexj4GxG-Ar4AgPe3JppSvOQdkzNgeFPFeAxYwtUtpzziUauGQzNGiFVXLObtcxW7dtvhu-KDYuex_6sY_ZI41jGI5X7KKmNoXrE5fs8_npY_Oab3cvb5v1NicpYMwlgiNbhQoF1TUVBoIOwitU0pCuUQvtLafAuSBvXQBReHRO1kIU5MDjkt3_dQ9D_z2FNJZdk1xoW4qhn1IJRmujUGrzq96d1Knqgi8PQ9PRcCz_l_AHRotLmQ |
| CitedBy_id | crossref_primary_10_1002_slct_202102246 crossref_primary_10_1002_smtd_202100367 crossref_primary_10_1016_j_est_2024_114615 crossref_primary_10_1016_j_cej_2021_134253 crossref_primary_10_1002_anie_202106238 crossref_primary_10_1002_celc_202300569 crossref_primary_10_1016_j_cej_2022_134651 crossref_primary_10_1134_S107032842360016X crossref_primary_10_1002_ange_202414346 crossref_primary_10_1038_s41578_020_00241_4 crossref_primary_10_1016_j_jechem_2023_12_012 crossref_primary_10_1002_anie_201912634 crossref_primary_10_1002_anie_202001191 crossref_primary_10_1016_j_cej_2021_131548 crossref_primary_10_1016_j_ijhydene_2023_03_034 crossref_primary_10_1002_ange_202424025 crossref_primary_10_1016_j_jpowsour_2025_238074 crossref_primary_10_1016_j_electacta_2023_141870 crossref_primary_10_1016_j_electacta_2021_139525 crossref_primary_10_1088_1361_6463_ad809c crossref_primary_10_1039_D4EE00367E crossref_primary_10_1016_j_matdes_2022_111043 crossref_primary_10_1002_ange_202418394 crossref_primary_10_1016_j_cej_2023_144158 crossref_primary_10_1002_anie_202010554 crossref_primary_10_3390_molecules27206805 crossref_primary_10_1002_ange_202209642 crossref_primary_10_3390_molecules27103169 crossref_primary_10_1016_j_mtener_2023_101280 crossref_primary_10_1246_cl_180635 crossref_primary_10_1002_anie_202201972 crossref_primary_10_1021_acsenergylett_5c01542 crossref_primary_10_1039_C9EE02356A crossref_primary_10_1002_ange_202302539 crossref_primary_10_1038_s41467_021_27313_5 crossref_primary_10_1021_jacs_2c03844 crossref_primary_10_1021_jacs_7b06413 crossref_primary_10_1002_aesr_202100207 crossref_primary_10_1002_macp_202400387 crossref_primary_10_1002_ange_202010554 crossref_primary_10_1038_s41467_023_43603_6 crossref_primary_10_1016_j_ica_2021_120475 crossref_primary_10_1002_anie_202206635 crossref_primary_10_1002_adfm_201805858 crossref_primary_10_1016_j_joule_2018_01_017 crossref_primary_10_1002_anie_202302539 crossref_primary_10_1002_ange_202003198 crossref_primary_10_1002_anie_202215584 crossref_primary_10_1002_adma_202301088 crossref_primary_10_1016_j_nanoen_2021_106400 crossref_primary_10_1016_j_progpolymsci_2021_101449 crossref_primary_10_1002_smtd_202300699 crossref_primary_10_1016_j_jpowsour_2021_229942 crossref_primary_10_1002_anie_202410568 crossref_primary_10_1002_adfm_202303072 crossref_primary_10_1038_s41467_020_14748_5 crossref_primary_10_1016_j_joule_2023_04_011 crossref_primary_10_1016_j_matt_2021_01_022 crossref_primary_10_1007_s40820_022_00987_2 crossref_primary_10_1016_j_rser_2025_116317 crossref_primary_10_1002_celc_201700866 crossref_primary_10_1016_j_electacta_2023_143693 crossref_primary_10_1016_j_electacta_2022_141097 crossref_primary_10_1002_anie_202421224 crossref_primary_10_1002_anie_202505769 crossref_primary_10_1002_smll_202306071 crossref_primary_10_1002_cey2_680 crossref_primary_10_1039_D1SC00392E crossref_primary_10_1002_adma_202302199 crossref_primary_10_1002_anie_202414346 crossref_primary_10_1002_ange_202421224 crossref_primary_10_1016_j_electacta_2024_145043 crossref_primary_10_1039_D5QI00269A crossref_primary_10_1093_bulcsj_uoae048 crossref_primary_10_1016_j_progpolymsci_2021_101474 crossref_primary_10_1039_D3EE00211J crossref_primary_10_1039_D4SC00785A crossref_primary_10_1007_s12598_025_03332_9 crossref_primary_10_1002_anie_202424025 crossref_primary_10_1002_ange_201814625 crossref_primary_10_1038_s41560_018_0309_7 crossref_primary_10_1016_j_jclepro_2022_130454 crossref_primary_10_1002_ange_202410568 crossref_primary_10_1002_cssc_202000627 crossref_primary_10_1016_j_cej_2025_161930 crossref_primary_10_1002_ange_202511864 crossref_primary_10_1002_anie_202115180 crossref_primary_10_1002_anie_202418394 crossref_primary_10_1039_D3RA00284E crossref_primary_10_1016_j_cclet_2025_111185 crossref_primary_10_1016_j_jpowsour_2025_237288 crossref_primary_10_1002_smtd_202300688 crossref_primary_10_1016_j_enchem_2022_100092 crossref_primary_10_1002_anie_201814625 crossref_primary_10_1016_j_cclet_2024_109920 crossref_primary_10_1021_jacs_1c06936 crossref_primary_10_1002_anie_202511864 crossref_primary_10_1002_ange_202106238 crossref_primary_10_1002_ange_202115180 crossref_primary_10_1002_anie_202211107 crossref_primary_10_1002_ange_202505769 crossref_primary_10_1016_j_cej_2023_147169 crossref_primary_10_1002_adfm_202422079 crossref_primary_10_1016_j_cej_2024_149986 crossref_primary_10_3390_polym15173517 crossref_primary_10_1002_aenm_202101562 crossref_primary_10_1016_j_coelec_2018_04_003 crossref_primary_10_1002_cssc_201903175 crossref_primary_10_1021_acsnano_5c00143 crossref_primary_10_1016_j_elecom_2019_106489 crossref_primary_10_1002_smll_202406962 crossref_primary_10_1002_ejic_202400649 crossref_primary_10_1002_anie_202209642 crossref_primary_10_1088_1757_899X_436_1_012021 crossref_primary_10_1021_acsapm_5c01916 crossref_primary_10_1002_adma_202403489 crossref_primary_10_1016_j_trechm_2022_09_007 crossref_primary_10_1002_anie_202003198 crossref_primary_10_1002_ange_202211107 crossref_primary_10_1039_D5EE00823A crossref_primary_10_1002_adfm_202401001 crossref_primary_10_1039_D1MH00672J crossref_primary_10_1002_celc_202400212 crossref_primary_10_1016_j_cej_2024_156034 crossref_primary_10_1016_j_cej_2022_137655 crossref_primary_10_1002_chem_202401257 crossref_primary_10_1002_marc_201800734 crossref_primary_10_1039_D5GC01266J crossref_primary_10_1039_D3EE01212C crossref_primary_10_1002_ange_202001191 crossref_primary_10_1002_smll_202305692 crossref_primary_10_1002_aenm_202000968 crossref_primary_10_1002_EXP_20220066 crossref_primary_10_1007_s10118_020_2373_2 crossref_primary_10_1002_smll_202201719 crossref_primary_10_1063_5_0147071 crossref_primary_10_3390_ma11122567 crossref_primary_10_1002_adma_202305037 crossref_primary_10_1039_D0SC01757D crossref_primary_10_1002_cssc_202301809 crossref_primary_10_1002_advs_202001335 crossref_primary_10_1021_jacs_3c12710 crossref_primary_10_1002_ange_201807121 crossref_primary_10_1002_cssc_201901545 crossref_primary_10_1016_j_jcis_2023_07_106 crossref_primary_10_1002_sstr_202000113 crossref_primary_10_1002_ange_201912634 crossref_primary_10_1002_ange_202206635 crossref_primary_10_1039_D0SE00531B crossref_primary_10_1002_marc_202100374 crossref_primary_10_1039_D5TA03752B crossref_primary_10_1002_adfm_202108225 crossref_primary_10_1002_batt_202400346 crossref_primary_10_1002_aenm_202204005 crossref_primary_10_1007_s40820_023_01071_z crossref_primary_10_1002_adfm_202413436 crossref_primary_10_1016_j_electacta_2022_140616 crossref_primary_10_1002_ange_202215584 crossref_primary_10_1002_cssc_202402105 crossref_primary_10_1021_acsami_5c01903 crossref_primary_10_1016_j_cej_2024_151119 crossref_primary_10_1016_j_electacta_2019_03_207 crossref_primary_10_1016_j_cej_2020_125325 crossref_primary_10_1021_acsami_5c09195 crossref_primary_10_1002_aenm_201901418 crossref_primary_10_1002_advs_202410318 crossref_primary_10_1002_ange_202201972 crossref_primary_10_1016_j_nanoen_2020_105632 crossref_primary_10_1002_adma_202202063 crossref_primary_10_1002_aenm_202401006 crossref_primary_10_1002_anie_201807121 crossref_primary_10_3390_batteries10060207 crossref_primary_10_1002_cssc_201902856 crossref_primary_10_1016_j_jpowsour_2022_231808 crossref_primary_10_1016_j_mtener_2020_100547 crossref_primary_10_1021_jacs_4c03223 crossref_primary_10_1002_aenm_201703509 crossref_primary_10_1016_j_nanoen_2022_107727 crossref_primary_10_1016_j_jpowsour_2023_233026 crossref_primary_10_1016_j_jcis_2022_03_091 crossref_primary_10_1016_j_mtener_2021_100872 crossref_primary_10_1016_j_cej_2025_163396 crossref_primary_10_1016_j_electacta_2017_03_068 crossref_primary_10_1002_aenm_202001445 crossref_primary_10_1016_j_ccr_2022_214867 crossref_primary_10_1002_adfm_202107720 crossref_primary_10_1002_adfm_202510945 crossref_primary_10_1016_j_materresbull_2025_113775 crossref_primary_10_1002_adfm_202421858 crossref_primary_10_1039_D0SE01338B crossref_primary_10_1016_j_electacta_2024_143817 crossref_primary_10_1246_bcsj_20170420 crossref_primary_10_1007_s11426_023_1800_5 crossref_primary_10_3390_molecules27030586 crossref_primary_10_1002_aenm_202500150 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/jacs.7b00159 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-5126 |
| EndPage | 4834 |
| ExternalDocumentID | 28293954 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -ET -~X .DC .K2 4.4 53G 55A 5GY 5RE 5VS 7~N 85S AABXI AAHBH ABJNI ABMVS ABPPZ ABQRX ABUCX ACBEA ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH BKOMP CS3 CUPRZ DU5 EBS ED~ EJD F5P GGK GNL IH2 IH9 JG~ LG6 NPM P2P ROL RXW TAE TN5 UHB UI2 UKR UPT VF5 VG9 VQA W1F WH7 XSW YIN YQT YZZ ZCA ~02 7X8 AAYWT ABBLG ABLBI ABUFD AETEA AHDLI |
| ID | FETCH-LOGICAL-a431t-421ca9beb23affa681e7e3d52548a7f2737d90ae003ad9ce136d2cc4f336ac1d2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 239 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000398764000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| IngestDate | Sun Nov 09 12:29:49 EST 2025 Wed Feb 19 02:42:58 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a431t-421ca9beb23affa681e7e3d52548a7f2737d90ae003ad9ce136d2cc4f336ac1d2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4126-4347 0000-0002-4726-4121 |
| PMID | 28293954 |
| PQID | 1877852478 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1877852478 pubmed_primary_28293954 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-04-05 |
| PublicationDateYYYYMMDD | 2017-04-05 |
| PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-05 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of the American Chemical Society |
| PublicationTitleAlternate | J Am Chem Soc |
| PublicationYear | 2017 |
| SSID | ssj0004281 |
| Score | 2.622254 |
| Snippet | Rechargeable batteries that use organic matter as the capacity-carrying material have previously been considered a technology for the future. Earlier batteries... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 4828 |
| Title | An All-Organic Proton Battery |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28293954 https://www.proquest.com/docview/1877852478 |
| Volume | 139 |
| WOSCitedRecordID | wos000398764000036&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB7UCnrx_ahaWcFrbHeTNNmTlGLxYulBobdl8gKl7LbdKvjvTXa36EkEL7kFJq-Zbx6ZD-CWKS1obA1JpWKEGX-NEdESw5VKNTpJmavIJsR4LKfTdNIE3MqmrHKtEytFbQodYuTdWAohecKEvJ8vSGCNCtnVhkJjE1rUQ5lQ0iWmP7qFJzJuit29Keu-oS7vRAUTfgGUlWEZ7f9XpAPYayBlNKjvwCFs2PwIdoZrJrdj6AzyaDCbkfrfpY4my8Ijvqhurfl5Ai-jh-fhI2loEQh6a78iLIk1psq7xBSdw76MrbDUcO_qSRTO4xFh0h5a_17RpNrGtG8SrZmjtI86NskpbOVFbs8hQmWFQO-zGKq8xkSFKBSXylDklrteG27WK8-8zCGXgLkt3svse-1tOKu3L5vX_TGykJylKWcXf5h9CbtJMJShFoZfQcv5R2c7sK0_Vq_l8ro6Tz-OJ09funOtMg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+All-Organic+Proton+Battery&rft.jtitle=Journal+of+the+American+Chemical+Society&rft.au=Emanuelsson%2C+Rikard&rft.au=Sterby%2C+Mia&rft.au=Str%C3%B8mme%2C+Maria&rft.au=Sj%C3%B6din%2C+Martin&rft.date=2017-04-05&rft.eissn=1520-5126&rft.volume=139&rft.issue=13&rft.spage=4828&rft.epage=4834&rft_id=info:doi/10.1021%2Fjacs.7b00159&rft.externalDBID=NO_FULL_TEXT |