Geo-guided deep learning for spatial downscaling of solute transport in heterogeneous porous media
Resolving solute transport in heterogeneous porous media is a complex task, because of the sparse experimental data and the high computational cost of numerical simulations. This work proposes a unique two-stage deep learning architecture comprising a dual-branch autoencoder and a geo-guided super-r...
Uložené v:
| Vydané v: | Computers & geosciences Ročník 188; číslo C; s. 105599 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United Kingdom
Elsevier Ltd
01.06.2024
Elsevier |
| Predmet: | |
| ISSN: | 0098-3004, 1873-7803 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
Buďte prvý, kto okomentuje tento záznam!