Geo-guided deep learning for spatial downscaling of solute transport in heterogeneous porous media

Resolving solute transport in heterogeneous porous media is a complex task, because of the sparse experimental data and the high computational cost of numerical simulations. This work proposes a unique two-stage deep learning architecture comprising a dual-branch autoencoder and a geo-guided super-r...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & geosciences Ročník 188; číslo C; s. 105599
Hlavní autori: Pawar, Nikhil M., Soltanmohammadi, Ramin, Faroughi, Shirko, Faroughi, Salah A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United Kingdom Elsevier Ltd 01.06.2024
Elsevier
Predmet:
ISSN:0098-3004, 1873-7803
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Resolving solute transport in heterogeneous porous media is a complex task, because of the sparse experimental data and the high computational cost of numerical simulations. This work proposes a unique two-stage deep learning architecture comprising a dual-branch autoencoder and a geo-guided super-resolution generative adversarial network (Gg-SRGAN) to address this dual challenge. The dual-branch autoencoder addresses the issue of sparsity by constructing a continuous, but coarse representation of concentration and pressure profiles from a sparse, discontinuous profile with up to 85% missing data points. The Gg-SRGAN is then employed to generate a finer representation of field variables from the outputs generated by the dual-branch autoencoder (i.e., downscaling). We train and test our framework using six solute transport cases with varying levels of heterogeneity and compare the results with standalone methods, namely the vanilla autoencoder and vanilla SRGAN, in addition to ground truth profiles generated by the finite element method (FEM). The comparisons are performed based on several statistical metrics, such as absolute point error (APE), mean squared error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and learned perceptual image patch similarity (LPIPS). The first four cases are used for training, evaluation, and testing. The last two cases are utilized for blind testing to determine the generalizability of the framework. Our results show that the dual-branch autoencoder outperforms the vanilla autoencoder, and the Gg-SRGAN outperforms the SRGAN during both the training and evaluation phases. Moreover, the proposed framework can successfully construct the fine representation of concentration profiles, compared to FEM, using the coarse representation of the pressure, concentration, and domain permeability fields. When tested using the two blind test cases, the proposed dual-branch autoencoder and Gg-SRGAN exhibit superior performance compared to their counterparts in terms of all evaluation metrics. •A two-stage deep learning framework is developed to resolve solute transport in porous media.•The framework addresses the dual challenge of data sparsity and spatial downscaling.•The framework incorporates geological information to comprehend the underlying physics.•The framework outperforms conventional algorithms in terms of accuracy.
AbstractList Resolving solute transport in heterogeneous porous media is a complex task, because of the sparse experimental data and the high computational cost of numerical simulations. This work proposes a unique two-stage deep learning architecture comprising a dual-branch autoencoder and a geo-guided super-resolution generative adversarial network (Gg-SRGAN) to address this dual challenge. The dual-branch autoencoder addresses the issue of sparsity by constructing a continuous, but coarse representation of concentration and pressure profiles from a sparse, discontinuous profile with up to 85% missing data points. The Gg-SRGAN is then employed to generate a finer representation of field variables from the outputs generated by the dual-branch autoencoder (i.e., downscaling). We train and test our framework using six solute transport cases with varying levels of heterogeneity and compare the results with standalone methods, namely the vanilla autoencoder and vanilla SRGAN, in addition to ground truth profiles generated by the finite element method (FEM). The comparisons are performed based on several statistical metrics, such as absolute point error (APE), mean squared error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and learned perceptual image patch similarity (LPIPS). The first four cases are used for training, evaluation, and testing. The last two cases are utilized for blind testing to determine the generalizability of the framework. Our results show that the dual-branch autoencoder outperforms the vanilla autoencoder, and the Gg-SRGAN outperforms the SRGAN during both the training and evaluation phases. Moreover, the proposed framework can successfully construct the fine representation of concentration profiles, compared to FEM, using the coarse representation of the pressure, concentration, and domain permeability fields. When tested using the two blind test cases, the proposed dual-branch autoencoder and Gg-SRGAN exhibit superior performance compared to their counterparts in terms of all evaluation metrics.
Resolving solute transport in heterogeneous porous media is a complex task, because of the sparse experimental data and the high computational cost of numerical simulations. This work proposes a unique two-stage deep learning architecture comprising a dual-branch autoencoder and a geo-guided super-resolution generative adversarial network (Gg-SRGAN) to address this dual challenge. The dual-branch autoencoder addresses the issue of sparsity by constructing a continuous, but coarse representation of concentration and pressure profiles from a sparse, discontinuous profile with up to 85% missing data points. The Gg-SRGAN is then employed to generate a finer representation of field variables from the outputs generated by the dual-branch autoencoder (i.e., downscaling). We train and test our framework using six solute transport cases with varying levels of heterogeneity and compare the results with standalone methods, namely the vanilla autoencoder and vanilla SRGAN, in addition to ground truth profiles generated by the finite element method (FEM). The comparisons are performed based on several statistical metrics, such as absolute point error (APE), mean squared error (MSE), peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and learned perceptual image patch similarity (LPIPS). The first four cases are used for training, evaluation, and testing. The last two cases are utilized for blind testing to determine the generalizability of the framework. Our results show that the dual-branch autoencoder outperforms the vanilla autoencoder, and the Gg-SRGAN outperforms the SRGAN during both the training and evaluation phases. Moreover, the proposed framework can successfully construct the fine representation of concentration profiles, compared to FEM, using the coarse representation of the pressure, concentration, and domain permeability fields. When tested using the two blind test cases, the proposed dual-branch autoencoder and Gg-SRGAN exhibit superior performance compared to their counterparts in terms of all evaluation metrics. •A two-stage deep learning framework is developed to resolve solute transport in porous media.•The framework addresses the dual challenge of data sparsity and spatial downscaling.•The framework incorporates geological information to comprehend the underlying physics.•The framework outperforms conventional algorithms in terms of accuracy.
ArticleNumber 105599
Author Soltanmohammadi, Ramin
Pawar, Nikhil M.
Faroughi, Salah A.
Faroughi, Shirko
Author_xml – sequence: 1
  givenname: Nikhil M.
  orcidid: 0000-0002-1161-3289
  surname: Pawar
  fullname: Pawar, Nikhil M.
  organization: Geo-Intelligence Laboratory, Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
– sequence: 2
  givenname: Ramin
  orcidid: 0000-0002-4423-8884
  surname: Soltanmohammadi
  fullname: Soltanmohammadi, Ramin
  organization: Geo-Intelligence Laboratory, Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
– sequence: 3
  givenname: Shirko
  orcidid: 0000-0002-6489-0562
  surname: Faroughi
  fullname: Faroughi, Shirko
  organization: Department of Mechanical Engineering, School of Engineering, Urmia University of Technology, Urmia, 8352-25382, Iran
– sequence: 4
  givenname: Salah A.
  orcidid: 0000-0002-6543-1691
  surname: Faroughi
  fullname: Faroughi, Salah A.
  email: salah.faroughi@txstate.edu
  organization: Geo-Intelligence Laboratory, Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
BackLink https://www.osti.gov/biblio/2339930$$D View this record in Osti.gov
BookMark eNqFkD9vFDEUxC2USLmEfII0FhXNHs_2_rELChRBQIpEA7Xl9T5ffNqzF9sH4tvHm6WigOpJo5nRm981uQgxICF3DPYMWP_uuLfmgHHPgbdV6TqlXpEdk4NoBgniguwAlGwEQHtFrnM-AgDnstuR8QFjczj7CSc6IS50RpOCDwfqYqJ5McWbmU7xV8jWzKseHc1xPhekJZmQl5gK9YE-YcEUDxgwnjOt6npOOHnzmlw6M2e8_XNvyPdPH7_df24evz58uf_w2JhWsNJwYIypth8HJnkPsmUWlDVSuLEbWdtKyXrppAPGJ8OsMaZ1k1N8sIIzPqK4IW-23piL19n6gvbJxhDQFs2FUEpANb3dTEuKP86Yiz75bHGezcvjWrBO9NDLgVer2qw2xZwTOl0rK48Y6nA_awZ6ha-P-gW-XuHrDX7Nir-yS_Ink37_J_V-S2HF9NNjWldgsJViWkdM0f8z_wy49qE_
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2024_126149
crossref_primary_10_1038_s41598_025_11092_w
crossref_primary_10_1016_j_jcp_2025_114116
Cites_doi 10.1016/j.ijggc.2008.02.011
10.1016/j.geothermics.2017.01.006
10.1016/j.compgeo.2018.04.013
10.12989/aer.2014.3.1.045
10.1016/0146-664X(80)90054-4
10.1061/(ASCE)CP.1943-5487.0000118
10.1016/j.apenergy.2021.117603
10.3390/fractalfract6080445
10.1016/j.irbm.2020.08.004
10.1002/2015WR017639
10.1029/WR012i001p00057
10.1109/ACCESS.2019.2934320
10.1016/j.ijggc.2016.01.010
10.1017/jfm.2019.238
10.1109/LSP.2018.2805809
10.1063/5.0066077
10.1016/j.geoen.2023.211716
10.1016/j.jconhyd.2020.103662
10.1016/j.jhydrol.2008.08.015
10.1016/j.advwatres.2020.103610
10.1007/s11004-021-09976-4
10.1016/j.geothermics.2021.102046
10.1016/S0022-1694(02)00145-2
10.1061/(ASCE)HE.1943-5584.0001410
10.1016/j.jcp.2020.109475
10.2151/sola.2019-032
10.1007/s11760-009-0144-1
10.1137/030600795
10.1103/PhysRevFluids.7.074302
10.2136/sssaj1999.03615995006300030008x
10.1063/5.0038133
10.3390/math12010063
10.1063/1.5127031
10.1029/2020WR029479
10.1016/j.jconhyd.2021.103815
10.1029/2001WR001030
10.1016/S0021-9991(03)00075-5
10.1016/j.petrol.2015.01.021
10.1016/j.jnnfm.2022.104789
10.1016/j.jhydrol.2019.123911
10.1023/A:1015568724369
10.1063/5.0065734
10.1115/1.4064449
10.1063/5.0054312
10.1016/j.ocemod.2021.101845
10.1038/s41598-023-32947-0
10.1117/1.JRS.15.028506
10.1029/2000WR900096
10.1016/j.camwa.2006.05.003
10.1016/j.apm.2010.11.064
10.1080/10916466.2020.1780256
10.1016/0309-1708(96)00016-4
10.1109/CVPR.2018.00068
10.1016/j.apnum.2006.07.009
10.1016/j.rser.2023.113393
10.1016/j.petrol.2017.12.051
10.1063/5.0039986
10.1016/j.egyai.2020.100044
10.1016/j.matcom.2012.11.012
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
OTOTI
DOI 10.1016/j.cageo.2024.105599
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1873-7803
ExternalDocumentID 2339930
10_1016_j_cageo_2024_105599
S0098300424000827
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACRPL
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
KOM
LG9
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SEP
SES
SEW
SPC
SPCBC
SSE
SSH
SSV
SSZ
T5K
TN5
WUQ
ZCA
ZMT
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
ADXHL
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
7S9
L.6
AAIAV
AFKWA
AJOXV
AMFUW
OTOTI
ID FETCH-LOGICAL-a431t-20111946b718260841c09ca83fb5b14488168f8f012da1caaa4fdf927c3212be3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001236876800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-3004
IngestDate Mon Jul 01 06:27:10 EDT 2024
Thu Oct 02 23:01:27 EDT 2025
Sat Nov 29 03:42:15 EST 2025
Tue Nov 18 21:46:53 EST 2025
Sun Apr 06 06:53:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue C
Keywords Super-resolution
Solute transport
Data imputation
Autoencoders
Generative adversarial network
Spatial downscaling
Heterogeneous porous media
Geo-guided deep learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a431t-20111946b718260841c09ca83fb5b14488168f8f012da1caaa4fdf927c3212be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Environmental Management (EM)
ORCID 0000-0002-4423-8884
0000-0002-6489-0562
0000-0002-6543-1691
0000-0002-1161-3289
0000000244238884
0000000211613289
0000000264890562
0000000265431691
OpenAccessLink https://dx.doi.org/10.1016/j.cageo.2024.105599
PQID 3153606872
PQPubID 24069
ParticipantIDs osti_scitechconnect_2339930
proquest_miscellaneous_3153606872
crossref_citationtrail_10_1016_j_cageo_2024_105599
crossref_primary_10_1016_j_cageo_2024_105599
elsevier_sciencedirect_doi_10_1016_j_cageo_2024_105599
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle Computers & geosciences
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Luo, Li, Sun, An, Navon (b54) 2013; 89
Maulik, Lusch, Balaprakash (b55) 2021; 33
Zhang, Ma, Yin, Wallace, Soltanian, Dai, Ritzi, Ma, Zhan, Lü (b83) 2021; 303
Gómez-Hernández, Xu (b31) 2022; 54
Oyama, Ishizaki, Koide, Yoshida (b62) 2023; 13
Fukami, Fukagata, Taira (b26) 2019; 870
Liang, Liu (b52) 2015
Alaskar, Ames, Liu, Li, Horne (b3) 2015; 127
Wiranata, Wibowo, Patmasari, Rahmania, Mayasari (b77) 2018
Kemna, Vanderborght, Kulessa, Vereecken (b44) 2002; 267
Adeyemi (b1) 2021
Chao, Rajaram, Illangasekare (b11) 2000; 36
Zhao, Toksoz (b86) 1994
Faroughi, Soltanmohammadi, Datta, Mahjour, Faroughi (b23) 2023; 12
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O., 2018a. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 586–595.
Lee, Lee, Lee, Lee, Lee (b49) 2019; 7
Soltanmohammadi, Iraji, De Almeida, Munoz, Fioravanti, Vidal (b72) 2021; vol. 2021
Yang, Sun, Yang, Liu, Li (b79) 2021; 8
Pawar, Faroughi (b64) 2022
Mull (b58) 1988
Kitanidis, Shen (b47) 1996; 19
Wu, Qiao (b78) 2021; 3
Ghodrati (b30) 1999; 63
Simmons, Pierini, Hutson (b71) 2002; 47
Iraji, Soltanmohammadi, Munoz, Basso, Vidal (b38) 2023; 225
Pawar, Mahjour, Kalantari, Faroughi (b65) 2022
Lou, Chen, Lin, Yu, Yan (b53) 2020; 414
Gao, Sun, Wang (b28) 2021; 33
Sun, Qiu, Wu, Niu, Hu (b73) 2020; 7
Faroughi, Pruvot, McAndrew (b22) 2018; 163
Kitanidis (b46) 2015; 51
Ahmadi, Motie, Soltanmohammadi (b2) 2020; 38
Jiao, Zhang, Wang (b43) 2019; 577
Baioni, Mousavi Nezhad, Porta, Guadagnini (b6) 2021; 33
Bordbar, Faroughi, Faroughi (b8) 2018; 7
He, Barajas-Solano, Tartakovsky, Tartakovsky (b36) 2020; 141
Li, Luo, Chen (b50) 2011; 35
Van Genuchten (b76) 1982
Fraces, Tchelepi (b24) 2021
Ali, Faraj, Koya, Ali, Faraj (b4) 2014; 1
Carrera (b9) 1988
Khan, Alhazmi, Alotaibi, Ferrara, Ahmadian (b45) 2022; 6
Zhang, Zhang, Wu, Han, Yin, Kong, Chen (b85) 2021; 15
Deng, He, Liu, Kim (b15) 2019; 31
Onishi, Sugiyama, Matsuda (b61) 2019; 15
Pradhan, Duraisamy (b67) 2021
Ding, Qian, Zhou (b16) 2018
Berkowitz, Klafter, Metzler, Scher (b7) 2002; 38
Faroughi, Pawar, Fernandes, Raissi, Das, Kalantari, Kourosh Mahjour (b21) 2024; 24
Jiao, Zhang (b42) 2016; 21
Hawkins, Bender, Grooms, Schissel, Tester (b35) 2021; 92
Asa, Saafi, Membah, Billa (b5) 2012; 26
Ren, Kong, Pang, Wang (b68) 2023; 182
Zhang, Kaito, Hu, Patmonoaji, Matsushita, Suekane (b82) 2021; 33
Zhang, Yan, Wang, Jin, Chen, Shen (b84) 2018; 17
Efendiev, Hou (b19) 2007; 57
Motie, Bemani, Soltanmohammadi (b57) 2018; vol. 2018
Zhou, McClure, Chen, Xiao (b87) 2022; 7
Ronneberger, Fischer, Brox (b69) 2015
Deng (b14) 2018; 25
Haigh, Sun, McWilliams, Berloff (b33) 2021; 165
Yousif, Yu, Lim (b80) 2021; 33
Dosselmann, Yang (b17) 2011; 5
Tian, Shen, Liu, Wu (b75) 2016
Patil, Chore (b63) 2014; 3
Gaus, Audigane, André, Lions, Jacquemet, Durst, Czernichowski-Lauriol, Azaroual (b29) 2008; 2
Faroughi, Faroughi, McAdams (b20) 2013; 4
Ledig, Theis, Huszár, Caballero, Cunningham, Acosta, Aitken, Tejani, Totz, Wang (b48) 2017
Sharma, Jiwari, Kumar (b70) 2011; 70
Talon (b74) 2022; 304
Medina, Carrera, Galarza (b56) 1990; vol. 90
Frippiat, Holeyman (b25) 2008; 362
Hawkins, Becker, Tsoflias (b34) 2017; 67
Narasimhan, Witherspoon (b60) 1976; 12
Mustafa, Bahar, Aziz, Darwish (b59) 2020; 233
Jenny, Lee, Tchelepi (b40) 2005; 3
Li, Sixou, Peyrin (b51) 2021; 42
Pinaya, Vieira, Garcia-Dias, Mechelli (b66) 2020
Fukami, Fukagata, Taira (b27) 2023
Jenny, Lee, Tchelepi (b39) 2003; 187
Carroll, Carey, Dzombak, Huerta, Li, Richard, Um, Walsh, Zhang (b10) 2016; 49
Douglas, Efendiev (b18) 2006; 51
Jiang, Liu, Xia, Wang, Cheng, Li (b41) 2021; 241
Cui, Gawecka, Potts, Taborda, Zdravković (b12) 2018; 100
Danielsson (b13) 1980; 14
Gondara (b32) 2016
He, Tartakovsky (b37) 2021; 57
Zienkiewicz, Taylor, Nithiarasu (b88) 2013
Yang (10.1016/j.cageo.2024.105599_b79) 2021; 8
Ahmadi (10.1016/j.cageo.2024.105599_b2) 2020; 38
Douglas (10.1016/j.cageo.2024.105599_b18) 2006; 51
Li (10.1016/j.cageo.2024.105599_b50) 2011; 35
Narasimhan (10.1016/j.cageo.2024.105599_b60) 1976; 12
He (10.1016/j.cageo.2024.105599_b36) 2020; 141
Oyama (10.1016/j.cageo.2024.105599_b62) 2023; 13
Gómez-Hernández (10.1016/j.cageo.2024.105599_b31) 2022; 54
He (10.1016/j.cageo.2024.105599_b37) 2021; 57
Sharma (10.1016/j.cageo.2024.105599_b70) 2011; 70
Hawkins (10.1016/j.cageo.2024.105599_b34) 2017; 67
Van Genuchten (10.1016/j.cageo.2024.105599_b76) 1982
Ren (10.1016/j.cageo.2024.105599_b68) 2023; 182
Deng (10.1016/j.cageo.2024.105599_b14) 2018; 25
Faroughi (10.1016/j.cageo.2024.105599_b22) 2018; 163
Patil (10.1016/j.cageo.2024.105599_b63) 2014; 3
Yousif (10.1016/j.cageo.2024.105599_b80) 2021; 33
Bordbar (10.1016/j.cageo.2024.105599_b8) 2018; 7
Khan (10.1016/j.cageo.2024.105599_b45) 2022; 6
Faroughi (10.1016/j.cageo.2024.105599_b23) 2023; 12
Ghodrati (10.1016/j.cageo.2024.105599_b30) 1999; 63
Li (10.1016/j.cageo.2024.105599_b51) 2021; 42
Simmons (10.1016/j.cageo.2024.105599_b71) 2002; 47
Tian (10.1016/j.cageo.2024.105599_b75) 2016
Fukami (10.1016/j.cageo.2024.105599_b27) 2023
Wiranata (10.1016/j.cageo.2024.105599_b77) 2018
Jenny (10.1016/j.cageo.2024.105599_b39) 2003; 187
Motie (10.1016/j.cageo.2024.105599_b57) 2018; vol. 2018
Danielsson (10.1016/j.cageo.2024.105599_b13) 1980; 14
Asa (10.1016/j.cageo.2024.105599_b5) 2012; 26
Jiao (10.1016/j.cageo.2024.105599_b42) 2016; 21
Onishi (10.1016/j.cageo.2024.105599_b61) 2019; 15
Chao (10.1016/j.cageo.2024.105599_b11) 2000; 36
Faroughi (10.1016/j.cageo.2024.105599_b21) 2024; 24
Fukami (10.1016/j.cageo.2024.105599_b26) 2019; 870
Pawar (10.1016/j.cageo.2024.105599_b64) 2022
Luo (10.1016/j.cageo.2024.105599_b54) 2013; 89
Medina (10.1016/j.cageo.2024.105599_b56) 1990; vol. 90
Frippiat (10.1016/j.cageo.2024.105599_b25) 2008; 362
Sun (10.1016/j.cageo.2024.105599_b73) 2020; 7
Dosselmann (10.1016/j.cageo.2024.105599_b17) 2011; 5
Berkowitz (10.1016/j.cageo.2024.105599_b7) 2002; 38
Alaskar (10.1016/j.cageo.2024.105599_b3) 2015; 127
Ronneberger (10.1016/j.cageo.2024.105599_b69) 2015
Jiao (10.1016/j.cageo.2024.105599_b43) 2019; 577
10.1016/j.cageo.2024.105599_b81
Zhou (10.1016/j.cageo.2024.105599_b87) 2022; 7
Adeyemi (10.1016/j.cageo.2024.105599_b1) 2021
Cui (10.1016/j.cageo.2024.105599_b12) 2018; 100
Lee (10.1016/j.cageo.2024.105599_b49) 2019; 7
Ding (10.1016/j.cageo.2024.105599_b16) 2018
Iraji (10.1016/j.cageo.2024.105599_b38) 2023; 225
Mustafa (10.1016/j.cageo.2024.105599_b59) 2020; 233
Zienkiewicz (10.1016/j.cageo.2024.105599_b88) 2013
Zhang (10.1016/j.cageo.2024.105599_b84) 2018; 17
Efendiev (10.1016/j.cageo.2024.105599_b19) 2007; 57
Zhang (10.1016/j.cageo.2024.105599_b85) 2021; 15
Soltanmohammadi (10.1016/j.cageo.2024.105599_b72) 2021; vol. 2021
Kemna (10.1016/j.cageo.2024.105599_b44) 2002; 267
Fraces (10.1016/j.cageo.2024.105599_b24) 2021
Pradhan (10.1016/j.cageo.2024.105599_b67) 2021
Gao (10.1016/j.cageo.2024.105599_b28) 2021; 33
Gondara (10.1016/j.cageo.2024.105599_b32) 2016
Pawar (10.1016/j.cageo.2024.105599_b65) 2022
Ali (10.1016/j.cageo.2024.105599_b4) 2014; 1
Talon (10.1016/j.cageo.2024.105599_b74) 2022; 304
Baioni (10.1016/j.cageo.2024.105599_b6) 2021; 33
Hawkins (10.1016/j.cageo.2024.105599_b35) 2021; 92
Lou (10.1016/j.cageo.2024.105599_b53) 2020; 414
Liang (10.1016/j.cageo.2024.105599_b52) 2015
Zhao (10.1016/j.cageo.2024.105599_b86) 1994
Haigh (10.1016/j.cageo.2024.105599_b33) 2021; 165
Jenny (10.1016/j.cageo.2024.105599_b40) 2005; 3
Mull (10.1016/j.cageo.2024.105599_b58) 1988
Carrera (10.1016/j.cageo.2024.105599_b9) 1988
Wu (10.1016/j.cageo.2024.105599_b78) 2021; 3
Jiang (10.1016/j.cageo.2024.105599_b41) 2021; 241
Maulik (10.1016/j.cageo.2024.105599_b55) 2021; 33
Ledig (10.1016/j.cageo.2024.105599_b48) 2017
Zhang (10.1016/j.cageo.2024.105599_b82) 2021; 33
Zhang (10.1016/j.cageo.2024.105599_b83) 2021; 303
Deng (10.1016/j.cageo.2024.105599_b15) 2019; 31
Gaus (10.1016/j.cageo.2024.105599_b29) 2008; 2
Faroughi (10.1016/j.cageo.2024.105599_b20) 2013; 4
Pinaya (10.1016/j.cageo.2024.105599_b66) 2020
Kitanidis (10.1016/j.cageo.2024.105599_b46) 2015; 51
Kitanidis (10.1016/j.cageo.2024.105599_b47) 1996; 19
Carroll (10.1016/j.cageo.2024.105599_b10) 2016; 49
References_xml – volume: 127
  start-page: 212
  year: 2015
  end-page: 228
  ident: b3
  article-title: Temperature nanotracers for fractured reservoirs characterization
  publication-title: J. Pet. Sci. Eng.
– volume: 3
  start-page: 50
  year: 2005
  end-page: 64
  ident: b40
  article-title: Adaptive multiscale finite-volume method for multiphase flow and transport in porous media
  publication-title: Multiscale Model. Simul.
– volume: 47
  start-page: 215
  year: 2002
  end-page: 244
  ident: b71
  article-title: Laboratory investigation of variable-density flow and solute transport in unsaturated–saturated porous media
  publication-title: Transp. Porous Media
– volume: 51
  start-page: 5888
  year: 2015
  end-page: 5904
  ident: b46
  article-title: Persistent questions of heterogeneity, uncertainty, and scale in subsurface flow and transport
  publication-title: Water Resour. Res.
– start-page: 697
  year: 2015
  end-page: 701
  ident: b52
  article-title: Stacked denoising autoencoder and dropout together to prevent overfitting in deep neural network
  publication-title: 2015 8th International Congress on Image and Signal Processing
– year: 2021
  ident: b1
  article-title: Determining Effective Permeability at Reservoir Scale: Numerical Simulations and Critical Path Analysis
– volume: 141
  year: 2020
  ident: b36
  article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
  publication-title: Adv. Water Resour.
– volume: vol. 2021
  start-page: 1
  year: 2021
  end-page: 5
  ident: b72
  article-title: Insights into multi-phase flow pattern characteristics and petrophysical properties in heterogeneous porous media
  publication-title: Second EAGE Conference on Pre-Salt Reservoir
– volume: 7
  start-page: 110344
  year: 2019
  end-page: 110357
  ident: b49
  article-title: Resolution-preserving generative adversarial networks for image enhancement
  publication-title: IEEE Access
– year: 1982
  ident: b76
  article-title: Analytical Solutions of the One-Dimensional Convective-Dispersive Solute Transport Equation
– year: 2013
  ident: b88
  article-title: The Finite Element Method for Fluid Dynamics
– volume: vol. 2018
  start-page: 1
  year: 2018
  end-page: 5
  ident: b57
  article-title: On the estimation of phase behavior of CO2-based binary systems using ANFIS optimized by GA algorithm
  publication-title: Fifth CO2 Geological Storage Workshop
– volume: 38
  start-page: 9
  year: 2002
  end-page: 1–9–12
  ident: b7
  article-title: Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations
  publication-title: Water Resour. Res.
– volume: 100
  start-page: 158
  year: 2018
  end-page: 173
  ident: b12
  article-title: A Petrov-Galerkin finite element method for 2D transient and steady state highly advective flows in porous media
  publication-title: Comput. Geotech.
– volume: 304
  year: 2022
  ident: b74
  article-title: On the statistical properties of fluid flows with transitional power-law rheology in heterogeneous porous media
  publication-title: J. Non-Newton. Fluid Mech.
– volume: 12
  start-page: 57
  year: 1976
  end-page: 64
  ident: b60
  article-title: An integrated finite difference method for analyzing fluid flow in porous media
  publication-title: Water Resour. Res.
– volume: 21
  year: 2016
  ident: b42
  article-title: Direct method of hydraulic conductivity structure identification for subsurface transport modeling
  publication-title: J. Hydrol. Eng.
– volume: 577
  year: 2019
  ident: b43
  article-title: A new inverse method for contaminant source identification under unknown solute transport boundary conditions
  publication-title: J. Hydrol.
– volume: 35
  start-page: 2489
  year: 2011
  end-page: 2498
  ident: b50
  article-title: Numerical simulation based on POD for two-dimensional solute transport problems
  publication-title: Appl. Math. Model.
– reference: Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O., 2018a. The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 586–595.
– volume: 26
  start-page: 11
  year: 2012
  end-page: 18
  ident: b5
  article-title: Comparison of linear and nonlinear kriging methods for characterization and interpolation of soil data
  publication-title: J. Comput. Civ. Eng.
– volume: 67
  start-page: 86
  year: 2017
  end-page: 94
  ident: b34
  article-title: Evaluation of inert tracers in a bedrock fracture using ground penetrating radar and thermal sensors
  publication-title: Geothermics
– year: 1988
  ident: b58
  article-title: Application of Dye-Tracing Techniques for Determining Solute-Transport Characteristics of Ground Water in Karst Terranes
– year: 2021
  ident: b67
  article-title: Variational multi-scale super-resolution: A data-driven approach for reconstruction and predictive modeling of unresolved physics
– volume: 57
  year: 2021
  ident: b37
  article-title: Physics-informed neural network method for forward and backward advection-dispersion equations
  publication-title: Water Resour. Res.
– volume: 36
  start-page: 2869
  year: 2000
  end-page: 2884
  ident: b11
  article-title: Intermediate-scale experiments and numerical simulations of transport under radial flow in a two-dimensional heterogeneous porous medium
  publication-title: Water Resour. Res.
– volume: 165
  year: 2021
  ident: b33
  article-title: On eddy transport in the ocean. Part II: The advection tensor
  publication-title: Ocean Model.
– volume: 12
  start-page: 63
  year: 2023
  ident: b23
  article-title: Physics-informed neural networks with periodic activation functions for solute transport in heterogeneous porous media
  publication-title: Mathematics
– volume: 2
  start-page: 605
  year: 2008
  end-page: 625
  ident: b29
  article-title: Geochemical and solute transport modelling for CO2 storage, what to expect from it?
  publication-title: Int. J. Greenh. Gas Control
– year: 2022
  ident: b64
  article-title: Complex fluids latent space exploration towards accelerated predictive modeling
  publication-title: Bull. Am. Phys. Soc
– start-page: 549
  year: 1988
  end-page: 583
  ident: b9
  article-title: State of the art of the inverse problem applied to the flow and solute transport equations
  publication-title: Groundwater Flow and Quality Modelling
– volume: 33
  year: 2021
  ident: b28
  article-title: Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels
  publication-title: Phys. Fluids
– volume: 15
  start-page: 028506
  year: 2021
  ident: b85
  article-title: Super-resolution method using generative adversarial network for Gaofen wide-field-view images
  publication-title: J. Appl. Remote Sens.
– volume: 13
  start-page: 5992
  year: 2023
  ident: b62
  article-title: Deep generative model super-resolves spatially correlated multiregional climate data
  publication-title: Sci. Rep.
– volume: 5
  start-page: 81
  year: 2011
  end-page: 91
  ident: b17
  article-title: A comprehensive assessment of the structural similarity index
  publication-title: Signal Image Video Process.
– volume: 42
  start-page: 120
  year: 2021
  end-page: 133
  ident: b51
  article-title: A review of the deep learning methods for medical images super resolution problems
  publication-title: Irbm
– volume: 241
  year: 2021
  ident: b41
  article-title: Simultaneous identification of contaminant sources and hydraulic conductivity field by combining geostatistics method with self-organizing maps algorithm
  publication-title: J. Contam. Hydrol.
– volume: 303
  year: 2021
  ident: b83
  article-title: Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media: A critical review
  publication-title: Appl. Energy
– volume: 17
  start-page: 1
  year: 2018
  end-page: 10
  ident: b84
  article-title: Impact of flow velocity on transport of graphene oxide nanoparticles in saturated porous media
  publication-title: Vadose Zone J.
– volume: 7
  year: 2022
  ident: b87
  article-title: Neural network–based pore flow field prediction in porous media using super resolution
  publication-title: Phys. Rev. Fluids
– volume: 31
  year: 2019
  ident: b15
  article-title: Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework
  publication-title: Phys. Fluids
– volume: 49
  start-page: 149
  year: 2016
  end-page: 160
  ident: b10
  article-title: Role of chemistry, mechanics, and transport on well integrity in CO2 storage environments
  publication-title: Int. J. Greenh. Gas Control
– volume: 54
  start-page: 437
  year: 2022
  end-page: 458
  ident: b31
  article-title: Contaminant source identification in aquifers: A critical view
  publication-title: Math. Geosci.
– volume: 92
  year: 2021
  ident: b35
  article-title: Temperature-responsive smart tracers for field-measurement of inter-well thermal evolution: Heterogeneous kinetics and field demonstration
  publication-title: Geothermics
– volume: 19
  start-page: 369
  year: 1996
  end-page: 378
  ident: b47
  article-title: Geostatistical interpolation of chemical concentration
  publication-title: Adv. Water Resour.
– volume: 3
  start-page: 45
  year: 2014
  end-page: 69
  ident: b63
  article-title: Contaminant transport through porous media: An overview of experimental and numerical studies
  publication-title: Adv. Environ. Res.
– volume: 4
  start-page: 129
  year: 2013
  end-page: 150
  ident: b20
  article-title: A prompt sequential method for subsurface flow modeling using the modified multi-scale finite volume and streamline methods
  publication-title: Int. J. Num Anal. Model.
– volume: 163
  start-page: 243
  year: 2018
  end-page: 263
  ident: b22
  article-title: The rheological behavior of energized fluids and foams with application to hydraulic fracturing
  publication-title: J. Pet. Sci. Eng.
– volume: 33
  year: 2021
  ident: b6
  article-title: Modeling solute transport and mixing in heterogeneous porous media under turbulent flow conditions
  publication-title: Phys. Fluids
– volume: 51
  start-page: 1633
  year: 2006
  end-page: 1646
  ident: b18
  article-title: A dynamic data-driven application simulation framework for contaminant transport problems
  publication-title: Comput. Math. Appl.
– volume: 57
  start-page: 577
  year: 2007
  end-page: 596
  ident: b19
  article-title: Multiscale finite element methods for porous media flows and their applications
  publication-title: Appl. Numer. Math.
– volume: 1
  start-page: 1
  year: 2014
  end-page: 6
  ident: b4
  article-title: Data normalization and standardization: A technical report
  publication-title: Mach. Learn. Tech. Rep.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b69
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18
– year: 2022
  ident: b65
  article-title: Spatiotemporal down-scaling for multiphase flow in porous media using implicit hypernetwork neural representation
  publication-title: Fall Meeting 2022
– volume: 267
  start-page: 125
  year: 2002
  end-page: 146
  ident: b44
  article-title: Imaging and characterisation of subsurface solute transport using Electrical Resistivity Tomography (ERT) and equivalent transport models
  publication-title: J. Hydrol.
– year: 1994
  ident: b86
  article-title: Solute Transport in Heterogeneous Porous Media
– volume: 7
  start-page: 23
  year: 2018
  end-page: 31
  ident: b8
  article-title: A pseudo-TOF based streamline tracing for streamline simulation method in heterogeneous hydrocarbon reservoirs
  publication-title: Am. J. Eng. Res.
– start-page: 193
  year: 2020
  end-page: 208
  ident: b66
  article-title: Autoencoders
  publication-title: Machine Learning
– volume: 89
  start-page: 50
  year: 2013
  end-page: 68
  ident: b54
  article-title: A reduced-order finite volume element formulation based on POD method and numerical simulation for two-dimensional solute transport problems
  publication-title: Math. Comput. Simulation
– volume: 14
  start-page: 227
  year: 1980
  end-page: 248
  ident: b13
  article-title: Euclidean distance mapping
  publication-title: Comput. Graph. Image Process.
– volume: 362
  start-page: 150
  year: 2008
  end-page: 176
  ident: b25
  article-title: A comparative review of upscaling methods for solute transport in heterogeneous porous media
  publication-title: J. Hydrol.
– volume: 33
  year: 2021
  ident: b55
  article-title: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
  publication-title: Phys. Fluids
– volume: 233
  year: 2020
  ident: b59
  article-title: Solute transport modelling to manage groundwater pollution from surface water resources
  publication-title: J. Contaminant Hydrol.
– start-page: 208
  year: 2018
  end-page: 212
  ident: b77
  article-title: Investigation of padding schemes for faster R-CNN on vehicle detection
  publication-title: 2018 International Conference on Control, Electronics, Renewable Energy and Communications
– volume: 187
  start-page: 47
  year: 2003
  end-page: 67
  ident: b39
  article-title: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation
  publication-title: J. Comput. Phys.
– volume: 6
  start-page: 445
  year: 2022
  ident: b45
  article-title: On the numerical approximation of mobile-immobile advection-dispersion model of fractional order arising from solute transport in porous media
  publication-title: Fractal Fract.
– start-page: 4681
  year: 2017
  end-page: 4690
  ident: b48
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1836
  year: 2018
  end-page: 1841
  ident: b16
  article-title: Activation functions and their characteristics in deep neural networks
  publication-title: 2018 Chinese Control and Decision Conference
– volume: 25
  start-page: 571
  year: 2018
  end-page: 575
  ident: b14
  article-title: Enhancing image quality via style transfer for single image super-resolution
  publication-title: IEEE Signal Process. Lett.
– year: 2016
  ident: b75
  article-title: Hydraulic fracture diagnosis using partitioning tracer in shale gas reservoir
  publication-title: SPE Asia Pacific Hydraulic Fracturing Conference
– year: 2021
  ident: b24
  article-title: Physics informed deep learning for flow and transport in porous media
  publication-title: SPE Reservoir Simulation Conference
– start-page: 1
  year: 2023
  end-page: 24
  ident: b27
  article-title: Super-resolution analysis via machine learning: A survey for fluid flows
  publication-title: Theoretical and Computational Fluid Dynamics
– volume: 182
  year: 2023
  ident: b68
  article-title: A comprehensive review of tracer tests in enhanced geothermal systems
  publication-title: Renew. Sustain. Energy Rev.
– volume: 33
  year: 2021
  ident: b80
  article-title: High-fidelity reconstruction of turbulent flow from spatially limited data using enhanced super-resolution generative adversarial network
  publication-title: Phys. Fluids
– volume: 38
  start-page: 699
  year: 2020
  end-page: 705
  ident: b2
  article-title: Proposing a modified mechanism for determination of hydrocarbons dynamic viscosity, using artificial neural network
  publication-title: Petrol. Sci. Technol.
– start-page: 241
  year: 2016
  end-page: 246
  ident: b32
  article-title: Medical image denoising using convolutional denoising autoencoders
  publication-title: 2016 IEEE 16th International Conference on Data Mining Workshops
– volume: 414
  year: 2020
  ident: b53
  article-title: Effective high-order energy stable flux reconstruction methods for first-order hyperbolic linear and nonlinear systems
  publication-title: J. Comput. Phys.
– volume: 225
  year: 2023
  ident: b38
  article-title: Core scale investigation of fluid flow in the heterogeneous porous media based on X-ray computed tomography images: Upscaling and history matching approaches
  publication-title: Geoenergy Sci. Eng.
– volume: 24
  year: 2024
  ident: b21
  article-title: Physics-guided, physics-informed, and physics-encoded neural networks and operators in scientific computing: Fluid and solid mechanics
  publication-title: J. Comput. Inf. Sci. Eng.
– volume: 8
  year: 2021
  ident: b79
  article-title: Recent progress in multi-scale modeling and simulation of flow and solute transport in porous media
  publication-title: Wiley Interdiscip. Rev.: Water
– volume: 7
  year: 2020
  ident: b73
  article-title: A review of applications of fractional advection–dispersion equations for anomalous solute transport in surface and subsurface water
  publication-title: Wiley Interdiscip. Rev.: Water
– volume: vol. 90
  start-page: 185
  year: 1990
  end-page: 194
  ident: b56
  article-title: Inverse modelling of coupled flow and solute transport problems
  publication-title: ModelCARE
– volume: 870
  start-page: 106
  year: 2019
  end-page: 120
  ident: b26
  article-title: Super-resolution reconstruction of turbulent flows with machine learning
  publication-title: J. Fluid Mech.
– volume: 15
  start-page: 178
  year: 2019
  end-page: 182
  ident: b61
  article-title: Super-resolution simulation for real-time prediction of urban micrometeorology
  publication-title: Sola
– volume: 70
  start-page: 389
  year: 2011
  end-page: 399
  ident: b70
  article-title: Galerkin-finite element method for the numerical solution of advection-diffusion equation
  publication-title: Int. J. Pure Appl. Math.
– volume: 3
  year: 2021
  ident: b78
  article-title: Physics-constrained deep learning for data assimilation of subsurface transport
  publication-title: Energy AI
– volume: 33
  year: 2021
  ident: b82
  article-title: Influence of stagnant zones on solute transport in heterogeneous porous media at the pore scale
  publication-title: Phys. Fluids
– volume: 63
  start-page: 471
  year: 1999
  end-page: 479
  ident: b30
  article-title: Point measurement of solute transport processes in soil using fiber optic sensors
  publication-title: Soil Sci. Am. J.
– volume: 2
  start-page: 605
  issue: 4
  year: 2008
  ident: 10.1016/j.cageo.2024.105599_b29
  article-title: Geochemical and solute transport modelling for CO2 storage, what to expect from it?
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2008.02.011
– volume: 67
  start-page: 86
  year: 2017
  ident: 10.1016/j.cageo.2024.105599_b34
  article-title: Evaluation of inert tracers in a bedrock fracture using ground penetrating radar and thermal sensors
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2017.01.006
– volume: 7
  issue: 4
  year: 2020
  ident: 10.1016/j.cageo.2024.105599_b73
  article-title: A review of applications of fractional advection–dispersion equations for anomalous solute transport in surface and subsurface water
  publication-title: Wiley Interdiscip. Rev.: Water
– year: 1994
  ident: 10.1016/j.cageo.2024.105599_b86
– volume: 100
  start-page: 158
  year: 2018
  ident: 10.1016/j.cageo.2024.105599_b12
  article-title: A Petrov-Galerkin finite element method for 2D transient and steady state highly advective flows in porous media
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2018.04.013
– volume: 3
  start-page: 45
  issue: 1
  year: 2014
  ident: 10.1016/j.cageo.2024.105599_b63
  article-title: Contaminant transport through porous media: An overview of experimental and numerical studies
  publication-title: Adv. Environ. Res.
  doi: 10.12989/aer.2014.3.1.045
– volume: 14
  start-page: 227
  issue: 3
  year: 1980
  ident: 10.1016/j.cageo.2024.105599_b13
  article-title: Euclidean distance mapping
  publication-title: Comput. Graph. Image Process.
  doi: 10.1016/0146-664X(80)90054-4
– volume: vol. 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b72
  article-title: Insights into multi-phase flow pattern characteristics and petrophysical properties in heterogeneous porous media
– year: 2022
  ident: 10.1016/j.cageo.2024.105599_b65
  article-title: Spatiotemporal down-scaling for multiphase flow in porous media using implicit hypernetwork neural representation
– volume: 26
  start-page: 11
  issue: 1
  year: 2012
  ident: 10.1016/j.cageo.2024.105599_b5
  article-title: Comparison of linear and nonlinear kriging methods for characterization and interpolation of soil data
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)CP.1943-5487.0000118
– volume: 303
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b83
  article-title: Application of upscaling methods for fluid flow and mass transport in multi-scale heterogeneous media: A critical review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.117603
– volume: vol. 90
  start-page: 185
  year: 1990
  ident: 10.1016/j.cageo.2024.105599_b56
  article-title: Inverse modelling of coupled flow and solute transport problems
– volume: 6
  start-page: 445
  issue: 8
  year: 2022
  ident: 10.1016/j.cageo.2024.105599_b45
  article-title: On the numerical approximation of mobile-immobile advection-dispersion model of fractional order arising from solute transport in porous media
  publication-title: Fractal Fract.
  doi: 10.3390/fractalfract6080445
– volume: 42
  start-page: 120
  issue: 2
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b51
  article-title: A review of the deep learning methods for medical images super resolution problems
  publication-title: Irbm
  doi: 10.1016/j.irbm.2020.08.004
– start-page: 234
  year: 2015
  ident: 10.1016/j.cageo.2024.105599_b69
  article-title: U-Net: Convolutional networks for biomedical image segmentation
– volume: 51
  start-page: 5888
  issue: 8
  year: 2015
  ident: 10.1016/j.cageo.2024.105599_b46
  article-title: Persistent questions of heterogeneity, uncertainty, and scale in subsurface flow and transport
  publication-title: Water Resour. Res.
  doi: 10.1002/2015WR017639
– volume: 12
  start-page: 57
  issue: 1
  year: 1976
  ident: 10.1016/j.cageo.2024.105599_b60
  article-title: An integrated finite difference method for analyzing fluid flow in porous media
  publication-title: Water Resour. Res.
  doi: 10.1029/WR012i001p00057
– volume: 7
  start-page: 110344
  year: 2019
  ident: 10.1016/j.cageo.2024.105599_b49
  article-title: Resolution-preserving generative adversarial networks for image enhancement
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2934320
– volume: 49
  start-page: 149
  year: 2016
  ident: 10.1016/j.cageo.2024.105599_b10
  article-title: Role of chemistry, mechanics, and transport on well integrity in CO2 storage environments
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2016.01.010
– year: 2021
  ident: 10.1016/j.cageo.2024.105599_b1
– volume: 870
  start-page: 106
  year: 2019
  ident: 10.1016/j.cageo.2024.105599_b26
  article-title: Super-resolution reconstruction of turbulent flows with machine learning
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.238
– volume: 17
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cageo.2024.105599_b84
  article-title: Impact of flow velocity on transport of graphene oxide nanoparticles in saturated porous media
  publication-title: Vadose Zone J.
– volume: 25
  start-page: 571
  issue: 4
  year: 2018
  ident: 10.1016/j.cageo.2024.105599_b14
  article-title: Enhancing image quality via style transfer for single image super-resolution
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2018.2805809
– volume: 33
  issue: 12
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b80
  article-title: High-fidelity reconstruction of turbulent flow from spatially limited data using enhanced super-resolution generative adversarial network
  publication-title: Phys. Fluids
  doi: 10.1063/5.0066077
– start-page: 697
  year: 2015
  ident: 10.1016/j.cageo.2024.105599_b52
  article-title: Stacked denoising autoencoder and dropout together to prevent overfitting in deep neural network
– volume: 225
  year: 2023
  ident: 10.1016/j.cageo.2024.105599_b38
  article-title: Core scale investigation of fluid flow in the heterogeneous porous media based on X-ray computed tomography images: Upscaling and history matching approaches
  publication-title: Geoenergy Sci. Eng.
  doi: 10.1016/j.geoen.2023.211716
– volume: 233
  year: 2020
  ident: 10.1016/j.cageo.2024.105599_b59
  article-title: Solute transport modelling to manage groundwater pollution from surface water resources
  publication-title: J. Contaminant Hydrol.
  doi: 10.1016/j.jconhyd.2020.103662
– volume: 362
  start-page: 150
  issue: 1–2
  year: 2008
  ident: 10.1016/j.cageo.2024.105599_b25
  article-title: A comparative review of upscaling methods for solute transport in heterogeneous porous media
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2008.08.015
– volume: 141
  year: 2020
  ident: 10.1016/j.cageo.2024.105599_b36
  article-title: Physics-informed neural networks for multiphysics data assimilation with application to subsurface transport
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2020.103610
– volume: 54
  start-page: 437
  issue: 2
  year: 2022
  ident: 10.1016/j.cageo.2024.105599_b31
  article-title: Contaminant source identification in aquifers: A critical view
  publication-title: Math. Geosci.
  doi: 10.1007/s11004-021-09976-4
– volume: 92
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b35
  article-title: Temperature-responsive smart tracers for field-measurement of inter-well thermal evolution: Heterogeneous kinetics and field demonstration
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2021.102046
– year: 2016
  ident: 10.1016/j.cageo.2024.105599_b75
  article-title: Hydraulic fracture diagnosis using partitioning tracer in shale gas reservoir
– volume: 267
  start-page: 125
  issue: 3–4
  year: 2002
  ident: 10.1016/j.cageo.2024.105599_b44
  article-title: Imaging and characterisation of subsurface solute transport using Electrical Resistivity Tomography (ERT) and equivalent transport models
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(02)00145-2
– volume: 21
  issue: 10
  year: 2016
  ident: 10.1016/j.cageo.2024.105599_b42
  article-title: Direct method of hydraulic conductivity structure identification for subsurface transport modeling
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)HE.1943-5584.0001410
– volume: 414
  year: 2020
  ident: 10.1016/j.cageo.2024.105599_b53
  article-title: Effective high-order energy stable flux reconstruction methods for first-order hyperbolic linear and nonlinear systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109475
– volume: 15
  start-page: 178
  year: 2019
  ident: 10.1016/j.cageo.2024.105599_b61
  article-title: Super-resolution simulation for real-time prediction of urban micrometeorology
  publication-title: Sola
  doi: 10.2151/sola.2019-032
– volume: 5
  start-page: 81
  year: 2011
  ident: 10.1016/j.cageo.2024.105599_b17
  article-title: A comprehensive assessment of the structural similarity index
  publication-title: Signal Image Video Process.
  doi: 10.1007/s11760-009-0144-1
– volume: 4
  start-page: 129
  issue: 2
  year: 2013
  ident: 10.1016/j.cageo.2024.105599_b20
  article-title: A prompt sequential method for subsurface flow modeling using the modified multi-scale finite volume and streamline methods
  publication-title: Int. J. Num Anal. Model.
– volume: vol. 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.cageo.2024.105599_b57
  article-title: On the estimation of phase behavior of CO2-based binary systems using ANFIS optimized by GA algorithm
– volume: 3
  start-page: 50
  issue: 1
  year: 2005
  ident: 10.1016/j.cageo.2024.105599_b40
  article-title: Adaptive multiscale finite-volume method for multiphase flow and transport in porous media
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/030600795
– volume: 7
  issue: 7
  year: 2022
  ident: 10.1016/j.cageo.2024.105599_b87
  article-title: Neural network–based pore flow field prediction in porous media using super resolution
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.7.074302
– start-page: 4681
  year: 2017
  ident: 10.1016/j.cageo.2024.105599_b48
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
– volume: 63
  start-page: 471
  issue: 3
  year: 1999
  ident: 10.1016/j.cageo.2024.105599_b30
  article-title: Point measurement of solute transport processes in soil using fiber optic sensors
  publication-title: Soil Sci. Am. J.
  doi: 10.2136/sssaj1999.03615995006300030008x
– volume: 33
  issue: 3
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b82
  article-title: Influence of stagnant zones on solute transport in heterogeneous porous media at the pore scale
  publication-title: Phys. Fluids
  doi: 10.1063/5.0038133
– volume: 12
  start-page: 63
  issue: 1
  year: 2023
  ident: 10.1016/j.cageo.2024.105599_b23
  article-title: Physics-informed neural networks with periodic activation functions for solute transport in heterogeneous porous media
  publication-title: Mathematics
  doi: 10.3390/math12010063
– volume: 8
  issue: 6
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b79
  article-title: Recent progress in multi-scale modeling and simulation of flow and solute transport in porous media
  publication-title: Wiley Interdiscip. Rev.: Water
– volume: 31
  issue: 12
  year: 2019
  ident: 10.1016/j.cageo.2024.105599_b15
  article-title: Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework
  publication-title: Phys. Fluids
  doi: 10.1063/1.5127031
– volume: 57
  issue: 7
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b37
  article-title: Physics-informed neural network method for forward and backward advection-dispersion equations
  publication-title: Water Resour. Res.
  doi: 10.1029/2020WR029479
– volume: 241
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b41
  article-title: Simultaneous identification of contaminant sources and hydraulic conductivity field by combining geostatistics method with self-organizing maps algorithm
  publication-title: J. Contam. Hydrol.
  doi: 10.1016/j.jconhyd.2021.103815
– volume: 38
  start-page: 9
  issue: 10
  year: 2002
  ident: 10.1016/j.cageo.2024.105599_b7
  article-title: Physical pictures of transport in heterogeneous media: Advection-dispersion, random-walk, and fractional derivative formulations
  publication-title: Water Resour. Res.
  doi: 10.1029/2001WR001030
– start-page: 1
  year: 2023
  ident: 10.1016/j.cageo.2024.105599_b27
  article-title: Super-resolution analysis via machine learning: A survey for fluid flows
– volume: 187
  start-page: 47
  issue: 1
  year: 2003
  ident: 10.1016/j.cageo.2024.105599_b39
  article-title: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00075-5
– volume: 1
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.cageo.2024.105599_b4
  article-title: Data normalization and standardization: A technical report
  publication-title: Mach. Learn. Tech. Rep.
– start-page: 1836
  year: 2018
  ident: 10.1016/j.cageo.2024.105599_b16
  article-title: Activation functions and their characteristics in deep neural networks
– volume: 127
  start-page: 212
  year: 2015
  ident: 10.1016/j.cageo.2024.105599_b3
  article-title: Temperature nanotracers for fractured reservoirs characterization
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2015.01.021
– start-page: 193
  year: 2020
  ident: 10.1016/j.cageo.2024.105599_b66
  article-title: Autoencoders
– volume: 304
  year: 2022
  ident: 10.1016/j.cageo.2024.105599_b74
  article-title: On the statistical properties of fluid flows with transitional power-law rheology in heterogeneous porous media
  publication-title: J. Non-Newton. Fluid Mech.
  doi: 10.1016/j.jnnfm.2022.104789
– start-page: 208
  year: 2018
  ident: 10.1016/j.cageo.2024.105599_b77
  article-title: Investigation of padding schemes for faster R-CNN on vehicle detection
– volume: 577
  year: 2019
  ident: 10.1016/j.cageo.2024.105599_b43
  article-title: A new inverse method for contaminant source identification under unknown solute transport boundary conditions
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2019.123911
– volume: 7
  start-page: 23
  issue: 4
  year: 2018
  ident: 10.1016/j.cageo.2024.105599_b8
  article-title: A pseudo-TOF based streamline tracing for streamline simulation method in heterogeneous hydrocarbon reservoirs
  publication-title: Am. J. Eng. Res.
– start-page: 241
  year: 2016
  ident: 10.1016/j.cageo.2024.105599_b32
  article-title: Medical image denoising using convolutional denoising autoencoders
– volume: 47
  start-page: 215
  year: 2002
  ident: 10.1016/j.cageo.2024.105599_b71
  article-title: Laboratory investigation of variable-density flow and solute transport in unsaturated–saturated porous media
  publication-title: Transp. Porous Media
  doi: 10.1023/A:1015568724369
– year: 2022
  ident: 10.1016/j.cageo.2024.105599_b64
  article-title: Complex fluids latent space exploration towards accelerated predictive modeling
  publication-title: Bull. Am. Phys. Soc
– volume: 33
  issue: 10
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b6
  article-title: Modeling solute transport and mixing in heterogeneous porous media under turbulent flow conditions
  publication-title: Phys. Fluids
  doi: 10.1063/5.0065734
– volume: 24
  issue: 4
  year: 2024
  ident: 10.1016/j.cageo.2024.105599_b21
  article-title: Physics-guided, physics-informed, and physics-encoded neural networks and operators in scientific computing: Fluid and solid mechanics
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.4064449
– volume: 33
  issue: 7
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b28
  article-title: Super-resolution and denoising of fluid flow using physics-informed convolutional neural networks without high-resolution labels
  publication-title: Phys. Fluids
  doi: 10.1063/5.0054312
– volume: 165
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b33
  article-title: On eddy transport in the ocean. Part II: The advection tensor
  publication-title: Ocean Model.
  doi: 10.1016/j.ocemod.2021.101845
– volume: 13
  start-page: 5992
  issue: 1
  year: 2023
  ident: 10.1016/j.cageo.2024.105599_b62
  article-title: Deep generative model super-resolves spatially correlated multiregional climate data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-32947-0
– volume: 15
  start-page: 028506
  issue: 2
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b85
  article-title: Super-resolution method using generative adversarial network for Gaofen wide-field-view images
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.15.028506
– volume: 36
  start-page: 2869
  issue: 10
  year: 2000
  ident: 10.1016/j.cageo.2024.105599_b11
  article-title: Intermediate-scale experiments and numerical simulations of transport under radial flow in a two-dimensional heterogeneous porous medium
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900096
– volume: 51
  start-page: 1633
  issue: 11
  year: 2006
  ident: 10.1016/j.cageo.2024.105599_b18
  article-title: A dynamic data-driven application simulation framework for contaminant transport problems
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2006.05.003
– volume: 35
  start-page: 2489
  issue: 5
  year: 2011
  ident: 10.1016/j.cageo.2024.105599_b50
  article-title: Numerical simulation based on POD for two-dimensional solute transport problems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2010.11.064
– year: 1988
  ident: 10.1016/j.cageo.2024.105599_b58
– volume: 38
  start-page: 699
  issue: 10
  year: 2020
  ident: 10.1016/j.cageo.2024.105599_b2
  article-title: Proposing a modified mechanism for determination of hydrocarbons dynamic viscosity, using artificial neural network
  publication-title: Petrol. Sci. Technol.
  doi: 10.1080/10916466.2020.1780256
– volume: 19
  start-page: 369
  issue: 6
  year: 1996
  ident: 10.1016/j.cageo.2024.105599_b47
  article-title: Geostatistical interpolation of chemical concentration
  publication-title: Adv. Water Resour.
  doi: 10.1016/0309-1708(96)00016-4
– year: 2021
  ident: 10.1016/j.cageo.2024.105599_b67
– ident: 10.1016/j.cageo.2024.105599_b81
  doi: 10.1109/CVPR.2018.00068
– volume: 57
  start-page: 577
  issue: 5–7
  year: 2007
  ident: 10.1016/j.cageo.2024.105599_b19
  article-title: Multiscale finite element methods for porous media flows and their applications
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2006.07.009
– volume: 182
  year: 2023
  ident: 10.1016/j.cageo.2024.105599_b68
  article-title: A comprehensive review of tracer tests in enhanced geothermal systems
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113393
– volume: 163
  start-page: 243
  year: 2018
  ident: 10.1016/j.cageo.2024.105599_b22
  article-title: The rheological behavior of energized fluids and foams with application to hydraulic fracturing
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2017.12.051
– volume: 70
  start-page: 389
  issue: 3
  year: 2011
  ident: 10.1016/j.cageo.2024.105599_b70
  article-title: Galerkin-finite element method for the numerical solution of advection-diffusion equation
  publication-title: Int. J. Pure Appl. Math.
– year: 2021
  ident: 10.1016/j.cageo.2024.105599_b24
  article-title: Physics informed deep learning for flow and transport in porous media
– volume: 33
  issue: 3
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b55
  article-title: Reduced-order modeling of advection-dominated systems with recurrent neural networks and convolutional autoencoders
  publication-title: Phys. Fluids
  doi: 10.1063/5.0039986
– volume: 3
  year: 2021
  ident: 10.1016/j.cageo.2024.105599_b78
  article-title: Physics-constrained deep learning for data assimilation of subsurface transport
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2020.100044
– year: 1982
  ident: 10.1016/j.cageo.2024.105599_b76
– year: 2013
  ident: 10.1016/j.cageo.2024.105599_b88
– volume: 89
  start-page: 50
  year: 2013
  ident: 10.1016/j.cageo.2024.105599_b54
  article-title: A reduced-order finite volume element formulation based on POD method and numerical simulation for two-dimensional solute transport problems
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2012.11.012
– start-page: 549
  year: 1988
  ident: 10.1016/j.cageo.2024.105599_b9
  article-title: State of the art of the inverse problem applied to the flow and solute transport equations
SSID ssj0002285
Score 2.4279563
Snippet Resolving solute transport in heterogeneous porous media is a complex task, because of the sparse experimental data and the high computational cost of...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105599
SubjectTerms Autoencoders
Data imputation
domain
finite element analysis
Generative adversarial network
Geo-guided deep learning
Heterogeneous porous media
permeability
signal-to-noise ratio
Solute transport
solutes
Spatial downscaling
Super-resolution
Title Geo-guided deep learning for spatial downscaling of solute transport in heterogeneous porous media
URI https://dx.doi.org/10.1016/j.cageo.2024.105599
https://www.proquest.com/docview/3153606872
https://www.osti.gov/biblio/2339930
Volume 188
WOSCitedRecordID wos001236876800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-7803
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002285
  issn: 0098-3004
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKBxIviE9RBshIvI1U-Y7zWKFtgEQ1wZD6FjmO02RLk6rtxvgh_F_uteO0pVCxB17cyokdK_fk5tg5vpeQt0wIHyYetiVQKu77UPAoiCwJYMpiN5JOZqtkE9F4zCaT-KzX-2n2wlxXUV2zm5t4_l9NDXVgbNw6ewtzd51CBfwHo0MJZofynwx_KhtrelVmwCQzKecmL4TWSy5RQI3fZXBRGczTap7ViCTmi9CRznEVpEChTAOXkaiShVr8URtNNgmtyQqxVBiayjY25lqZeMa_aw33uLwsyuro87Bb1GkqYKazpuCzGc-UquALn5UdWk-4SiGkDnwtysVl88cjvOLF0Wi4uXzh-muZlXHJMbMw7Ne2S2YbThVzeOosSjv-Xi89XMBcfqq2crr-cH32dnTt3956nRbRyNwuEtVJgp0kupM75MCNgpj1ycHo4_HkU_eKd10WmGCsOHYTzkoJB3fG8jfK02_Ai-9wAEVszh-SB-2MhI40kh6Rnqwfk3unKuPzjyckXeOJIp6owRMFPNEWT3QDT7TJqcYT7fBEy5pu4YlqPFGFp6fk28nx-fsPVpuYw-LAN1cWkkYn9sM0wtmpzXxH2LHgzMvTIIUZOsNkLjnLgfxk3BGccz_PcnjyhQdMKZXeM9Kvm1o-J9RP7djmTiowsqCXBeBSwlAyRwRewJkjB8Q19y4RbdR6TJ5SJXvsNiDvukZzHbRl_-mhMUrSPiSaTyYAs_0ND9GE2AgjLguUpkEr10PWbw_IG2PZBHw2fojj6hYnHtCM0A5Z5L643UgPyf31M_SS9FeLK_mK3BXXq3K5eN2i9Beccbtn
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Geo-guided+deep+learning+for+spatial+downscaling+of+solute+transport+in+heterogeneous+porous+media&rft.jtitle=Computers+%26+geosciences&rft.au=Pawar%2C+Nikhil+M.&rft.au=Soltanmohammadi%2C+Ramin&rft.au=Faroughi%2C+Shirko&rft.au=Faroughi%2C+Salah+A.&rft.date=2024-06-01&rft.issn=0098-3004&rft.volume=188&rft.spage=105599&rft_id=info:doi/10.1016%2Fj.cageo.2024.105599&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cageo_2024_105599
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-3004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-3004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-3004&client=summon