Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio

Over 109 small earthquakes (Mw 0.4–3.9) were detected during January 2011 to February 2012 in the Youngstown, Ohio area, where there were no known earthquakes in the past. These shocks were close to a deep fluid injection well. The 14 month seismicity included six felt earthquakes and culminated wit...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Solid earth Vol. 118; no. 7; pp. 3506 - 3518
Main Author: Kim, Won-Young
Format: Journal Article
Language:English
Published: Washington Blackwell Publishing Ltd 01.07.2013
Subjects:
ISSN:2169-9313, 2169-9356
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Over 109 small earthquakes (Mw 0.4–3.9) were detected during January 2011 to February 2012 in the Youngstown, Ohio area, where there were no known earthquakes in the past. These shocks were close to a deep fluid injection well. The 14 month seismicity included six felt earthquakes and culminated with a Mw 3.9 shock on 31 December 2011. Among the 109 shocks, 12 events greater than Mw 1.8 were detected by regional network and accurately relocated, whereas 97 small earthquakes (0.4 < Mw < 1.8) were detected by the waveform correlation detector. Accurately located earthquakes were along a subsurface fault trending ENE‐WSW—consistent with the focal mechanism of the main shock and occurred at depths 3.5–4.0 km in the Precambrian basement. We conclude that the recent earthquakes in Youngstown, Ohio were induced by the fluid injection at a deep injection well due to increased pore pressure along the preexisting subsurface faults located close to the wellbore. We found that the seismicity initiated at the eastern end of the subsurface fault—close to the injection point, and migrated toward the west—away from the wellbore, indicating that the expanding high fluid pressure front increased the pore pressure along its path and progressively triggered the earthquakes. We observe that several periods of quiescence of seismicity follow the minima in injection volumes and pressure, which may indicate that the earthquakes were directly caused by the pressure buildup and stopped when pressure dropped. Key Points 109 small potentially induced earthquakes occurred in Youngstown Ohio in 2011 Expanding high fluid pressure front progressively triggered the earthquakes Minima in injection pressure correlate with the quiescense of earthquake
AbstractList Over 109 small earthquakes ( M w 0.4–3.9) were detected during January 2011 to February 2012 in the Youngstown, Ohio area, where there were no known earthquakes in the past. These shocks were close to a deep fluid injection well. The 14 month seismicity included six felt earthquakes and culminated with a M w 3.9 shock on 31 December 2011. Among the 109 shocks, 12 events greater than M w 1.8 were detected by regional network and accurately relocated, whereas 97 small earthquakes (0.4 <  M w  < 1.8) were detected by the waveform correlation detector. Accurately located earthquakes were along a subsurface fault trending ENE‐WSW—consistent with the focal mechanism of the main shock and occurred at depths 3.5–4.0 km in the Precambrian basement. We conclude that the recent earthquakes in Youngstown, Ohio were induced by the fluid injection at a deep injection well due to increased pore pressure along the preexisting subsurface faults located close to the wellbore. We found that the seismicity initiated at the eastern end of the subsurface fault—close to the injection point, and migrated toward the west—away from the wellbore, indicating that the expanding high fluid pressure front increased the pore pressure along its path and progressively triggered the earthquakes. We observe that several periods of quiescence of seismicity follow the minima in injection volumes and pressure, which may indicate that the earthquakes were directly caused by the pressure buildup and stopped when pressure dropped. 109 small potentially induced earthquakes occurred in Youngstown Ohio in 2011 Expanding high fluid pressure front progressively triggered the earthquakes Minima in injection pressure correlate with the quiescense of earthquake
Over 109 small earthquakes (Mw 0.4–3.9) were detected during January 2011 to February 2012 in the Youngstown, Ohio area, where there were no known earthquakes in the past. These shocks were close to a deep fluid injection well. The 14 month seismicity included six felt earthquakes and culminated with a Mw 3.9 shock on 31 December 2011. Among the 109 shocks, 12 events greater than Mw 1.8 were detected by regional network and accurately relocated, whereas 97 small earthquakes (0.4 < Mw < 1.8) were detected by the waveform correlation detector. Accurately located earthquakes were along a subsurface fault trending ENE‐WSW—consistent with the focal mechanism of the main shock and occurred at depths 3.5–4.0 km in the Precambrian basement. We conclude that the recent earthquakes in Youngstown, Ohio were induced by the fluid injection at a deep injection well due to increased pore pressure along the preexisting subsurface faults located close to the wellbore. We found that the seismicity initiated at the eastern end of the subsurface fault—close to the injection point, and migrated toward the west—away from the wellbore, indicating that the expanding high fluid pressure front increased the pore pressure along its path and progressively triggered the earthquakes. We observe that several periods of quiescence of seismicity follow the minima in injection volumes and pressure, which may indicate that the earthquakes were directly caused by the pressure buildup and stopped when pressure dropped. Key Points 109 small potentially induced earthquakes occurred in Youngstown Ohio in 2011 Expanding high fluid pressure front progressively triggered the earthquakes Minima in injection pressure correlate with the quiescense of earthquake
Over 109 small earthquakes (M sub(w) 0.4-3.9) were detected during January 2011 to February 2012 in the Youngstown, Ohio area, where there were no known earthquakes in the past. These shocks were close to a deep fluid injection well. The 14 month seismicity included six felt earthquakes and culminated with a M sub(w) 3.9 shock on 31 December 2011. Among the 109 shocks, 12 events greater than M sub(w) 1.8 were detected by regional network and accurately relocated, whereas 97 small earthquakes (0.4
Over 109 small earthquakes (Mw 0.4-3.9) were detected during January 2011 to February 2012 in the Youngstown, Ohio area, where there were no known earthquakes in the past. These shocks were close to a deep fluid injection well. The 14 month seismicity included six felt earthquakes and culminated with a Mw 3.9 shock on 31 December 2011. Among the 109 shocks, 12 events greater than Mw 1.8 were detected by regional network and accurately relocated, whereas 97 small earthquakes (0.4<Mw<1.8) were detected by the waveform correlation detector. Accurately located earthquakes were along a subsurface fault trending ENE-WSW--consistent with the focal mechanism of the main shock and occurred at depths 3.5-4.0 km in the Precambrian basement. We conclude that the recent earthquakes in Youngstown, Ohio were induced by the fluid injection at a deep injection well due to increased pore pressure along the preexisting subsurface faults located close to the wellbore. We found that the seismicity initiated at the eastern end of the subsurface fault--close to the injection point, and migrated toward the west--away from the wellbore, indicating that the expanding high fluid pressure front increased the pore pressure along its path and progressively triggered the earthquakes. We observe that several periods of quiescence of seismicity follow the minima in injection volumes and pressure, which may indicate that the earthquakes were directly caused by the pressure buildup and stopped when pressure dropped. Key Points 109 small potentially induced earthquakes occurred in Youngstown Ohio in 2011 Expanding high fluid pressure front progressively triggered the earthquakes Minima in injection pressure correlate with the quiescense of earthquake
Author Kim, Won-Young
Author_xml – sequence: 1
  givenname: Won-Young
  surname: Kim
  fullname: Kim, Won-Young
  email: wykim@ldeo.columbia.edu
  organization: Lamont-Doherty Earth Observatory, Columbia University, New York, Palisades, USA
BookMark eNp9kEFPGzEQha0KpFLKpb_AUi-oYlN71_Zmj21UQioEUtSCOFmzXhscNnZqexXy73EI5YAQc5nR0_dGM-8T2nPeaYS-UDKihJTfF7ehHXFSsvoDOiipaIqm4mLvZabVR3QU44LkGmeJsgN0PXPdoHSHo7ZxaZVNGwwxemUhZXVt0x02_WA7bN1Cq2S9y1PyGHCn9Qqvdd9nAd_4wd3G5NfuBF_eWf8Z7Rvooz567ofo7-mvP5Oz4vxyOpv8OC-AVbQuOABQNtYl5Y3RasygM0zXAoxSNW-JYS1RPAuGqRKAi9rQjo-p6doWTN1Wh-h4t3cV_L9BxySXNqp8FDjthyipYGV-v6qajH59hS78EFy-7okSXDAiMkV2lAo-xqCNzJnA9u8UwPaSErkNW27Dlk9hZ8u3V5ZVsEsIm7dhuoPXttebd0j5ezr_-d9T7Dw2Jv3w4oFwL0Vd1VxeX0zlfH51RvlVI0X1CH71oaw
CitedBy_id crossref_primary_10_1029_2020JB020402
crossref_primary_10_1002_2017JB015158
crossref_primary_10_1016_j_tecto_2018_12_022
crossref_primary_10_1002_2017GL075258
crossref_primary_10_1002_2015JB012362
crossref_primary_10_1002_2016JB012818
crossref_primary_10_1016_j_ijggc_2024_104216
crossref_primary_10_1038_s41598_022_19775_4
crossref_primary_10_1002_2016GL068893
crossref_primary_10_1002_2016GL070861
crossref_primary_10_1016_j_scitotenv_2015_02_030
crossref_primary_10_1029_2021JB023141
crossref_primary_10_1002_2015JB012510
crossref_primary_10_1029_2022JB026313
crossref_primary_10_1016_j_cej_2023_148095
crossref_primary_10_1088_1755_1315_80_1_012052
crossref_primary_10_1111_gwat_12657
crossref_primary_10_1093_jge_gxab075
crossref_primary_10_1002_2017JB014071
crossref_primary_10_1111_gwat_12818
crossref_primary_10_1002_2015GL064669
crossref_primary_10_1002_2017JB014694
crossref_primary_10_1016_j_petsci_2023_11_022
crossref_primary_10_1146_annurev_earth_082517_010054
crossref_primary_10_1016_j_petrol_2019_106861
crossref_primary_10_3390_app132011466
crossref_primary_10_1002_2014WR016841
crossref_primary_10_1002_2017JB014456
crossref_primary_10_1007_s10950_023_10141_z
crossref_primary_10_1002_2016JB013918
crossref_primary_10_1016_j_geothermics_2014_11_001
crossref_primary_10_1016_j_scitotenv_2015_01_004
crossref_primary_10_1029_2019JB017400
crossref_primary_10_1007_s00603_024_04124_w
crossref_primary_10_1029_2018GL077696
crossref_primary_10_1029_2018GL078422
crossref_primary_10_1038_ncomms7728
crossref_primary_10_1111_gwat_12307
crossref_primary_10_1002_2016JB012821
crossref_primary_10_1016_j_ijggc_2018_05_016
crossref_primary_10_1029_2018JB017062
crossref_primary_10_1002_cjce_25646
crossref_primary_10_1016_j_ijggc_2019_05_030
crossref_primary_10_1029_2022JB025571
crossref_primary_10_1002_2016JB013236
crossref_primary_10_1002_2017JB014460
crossref_primary_10_1029_2022GL101056
crossref_primary_10_1038_s41467_020_16860_y
crossref_primary_10_1007_s13412_016_0370_0
crossref_primary_10_1785_0120180015
crossref_primary_10_1002_2017JB014841
crossref_primary_10_1007_s00024_016_1373_1
crossref_primary_10_1029_2024JB029526
crossref_primary_10_1002_2013JB010755
crossref_primary_10_1002_2017JB014725
crossref_primary_10_1002_2015JB012060
crossref_primary_10_1007_s12665_020_09008_0
crossref_primary_10_1016_j_ijrmms_2025_106250
crossref_primary_10_1016_j_soildyn_2021_107118
crossref_primary_10_1002_2013JB010597
crossref_primary_10_1016_j_fuel_2017_05_004
crossref_primary_10_1016_j_geothermics_2014_06_005
crossref_primary_10_1016_j_enggeo_2019_105306
crossref_primary_10_1785_0120170003
crossref_primary_10_1016_j_jngse_2021_104190
crossref_primary_10_1126_science_aab1345
crossref_primary_10_5194_nhess_22_2257_2022
crossref_primary_10_1029_2023JB027126
crossref_primary_10_1007_s10950_020_09966_9
crossref_primary_10_1002_2015GL066948
crossref_primary_10_1073_pnas_1617945114
crossref_primary_10_1029_2022GL098721
crossref_primary_10_1007_s11242_023_02027_y
crossref_primary_10_1002_2015GL067514
crossref_primary_10_1002_2013JB010492
crossref_primary_10_1016_j_cej_2022_140968
crossref_primary_10_3389_fenrg_2018_00083
crossref_primary_10_1002_2015JB011895
crossref_primary_10_1016_j_geoen_2023_211965
crossref_primary_10_1029_2019JB017898
crossref_primary_10_1016_j_erss_2015_09_009
crossref_primary_10_1029_2018GL077472
crossref_primary_10_1029_2019RG000695
crossref_primary_10_1080_23251042_2017_1349638
crossref_primary_10_1029_2018JB016073
crossref_primary_10_1002_bbb_1528
crossref_primary_10_1126_science_aag0262
crossref_primary_10_1016_j_exis_2014_07_004
crossref_primary_10_1071_EN15001
crossref_primary_10_1007_s00531_023_02383_6
crossref_primary_10_1029_2020JB021258
crossref_primary_10_1002_2016JB013153
crossref_primary_10_1029_2021JB022768
crossref_primary_10_1029_2019JB017298
crossref_primary_10_1289_EHP2663
crossref_primary_10_1002_2013JB010612
crossref_primary_10_1007_s10040_017_1699_5
crossref_primary_10_1016_j_tecto_2018_08_001
crossref_primary_10_1126_sciadv_1500195
crossref_primary_10_1016_j_ijggc_2016_10_001
crossref_primary_10_1080_02723646_2020_1762982
crossref_primary_10_1007_s00603_025_04802_3
crossref_primary_10_1016_j_coal_2023_104440
crossref_primary_10_1016_j_ijggc_2016_04_007
crossref_primary_10_1016_j_petrol_2020_108226
crossref_primary_10_1016_j_gete_2016_04_003
crossref_primary_10_1073_pnas_1819225116
crossref_primary_10_1016_j_rse_2018_09_005
crossref_primary_10_1007_s11600_019_00249_7
crossref_primary_10_1016_j_jngse_2015_12_039
crossref_primary_10_1111_gfl_12199
crossref_primary_10_1016_j_memsci_2018_09_036
crossref_primary_10_1002_ghg_2365
crossref_primary_10_1016_j_ijggc_2021_103393
crossref_primary_10_1038_s41561_018_0090_z
crossref_primary_10_1007_s00024_016_1319_7
crossref_primary_10_1126_science_aap7911
crossref_primary_10_1029_2022JB024719
crossref_primary_10_1785_0120170337
crossref_primary_10_1029_2018JB016446
crossref_primary_10_1007_s10950_021_10068_3
crossref_primary_10_2298_GABP250417005P
crossref_primary_10_1038_s41598_022_05242_7
crossref_primary_10_1002_2014JB011695
crossref_primary_10_1193_110514EQS183M
crossref_primary_10_1785_0120170335
crossref_primary_10_1016_j_petrol_2022_110423
crossref_primary_10_3390_rs14010135
crossref_primary_10_1002_nag_2875
crossref_primary_10_1007_s11600_018_0231_1
crossref_primary_10_1016_j_ijggc_2014_06_002
crossref_primary_10_1785_0120170295
crossref_primary_10_1002_2015JB012561
crossref_primary_10_1002_2016RG000542
crossref_primary_10_1038_s41598_022_05216_9
crossref_primary_10_1002_2016JB012981
crossref_primary_10_1785_0220250093
crossref_primary_10_1016_j_petsci_2025_08_024
crossref_primary_10_1038_s41598_021_89527_3
crossref_primary_10_1002_2016JB013711
crossref_primary_10_1525_cse_2019_002196
crossref_primary_10_1785_0120180054
crossref_primary_10_3389_feart_2021_638723
crossref_primary_10_1016_j_epsl_2014_08_033
crossref_primary_10_1088_1748_9326_ab678a
crossref_primary_10_1007_s00603_018_1467_4
crossref_primary_10_1016_j_ijggc_2015_02_022
crossref_primary_10_1016_j_tecto_2024_230582
crossref_primary_10_1002_2013JB010836
crossref_primary_10_1155_2018_2056123
crossref_primary_10_1002_2015GL066917
crossref_primary_10_1016_j_ijrmms_2024_105689
crossref_primary_10_1002_2017JB014648
crossref_primary_10_1007_s11053_022_10095_y
crossref_primary_10_1016_j_pepi_2017_04_005
crossref_primary_10_1016_j_ijrmms_2020_104235
crossref_primary_10_1029_2018JB015863
crossref_primary_10_1002_2014GL060948
crossref_primary_10_1007_s00024_017_1567_1
crossref_primary_10_1029_2018JB016045
crossref_primary_10_3390_w16040622
crossref_primary_10_1080_10934529_2015_992653
crossref_primary_10_1111_ropr_12179
crossref_primary_10_1007_s00024_022_03140_7
crossref_primary_10_1038_s41598_020_58881_z
crossref_primary_10_1016_j_geothermics_2014_07_006
crossref_primary_10_1002_2017JB014473
crossref_primary_10_1007_s00603_024_03956_w
crossref_primary_10_1126_science_1225942
crossref_primary_10_1016_j_tecto_2018_01_028
crossref_primary_10_1080_07011784_2016_1238782
crossref_primary_10_1002_2014GL062047
crossref_primary_10_1038_s41598_017_04992_z
crossref_primary_10_1515_reveh_2014_0049
crossref_primary_10_1016_j_juogr_2015_03_002
crossref_primary_10_1061_JENMDT_EMENG_8385
crossref_primary_10_3390_geosciences8120436
crossref_primary_10_1016_j_rser_2023_113945
crossref_primary_10_1016_j_ijrmms_2022_105098
crossref_primary_10_1073_pnas_1715284115
crossref_primary_10_1029_2019GL085705
crossref_primary_10_1029_2018GL077552
crossref_primary_10_1002_2015JB012265
crossref_primary_10_1016_j_regsciurbeco_2018_01_004
crossref_primary_10_1038_s41467_021_26679_w
crossref_primary_10_1002_2017GC006915
crossref_primary_10_1007_s12665_018_7708_8
crossref_primary_10_1080_17524032_2015_1133435
crossref_primary_10_1002_2017JB015297
crossref_primary_10_1007_s00603_022_03083_4
Cites_doi 10.1029/92JB00221
10.1016/S0074-6142(02)80243-1
10.1785/gssrl.83.2.250
10.1109/TGRS.2011.2170429
10.1785/BSSA0660030639
10.1785/0120020091
10.1785/0120000006
10.1785/BSSA0630051557
10.3133/ofr0273
10.1126/science.191.4233.1230
10.1785/0120100131
10.1029/1999JB900416
10.1785/BSSA08006A1605
10.1016/S0040-1951(01)00091-9
10.1029/JB081i008p01487
10.1029/JB086iB02p00903
10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2
10.1785/0120020217
10.1785/0120040207
10.1126/science.161.3848.1301
10.1130/G34045.1
10.1785/gssrl.74.5.561
10.1785/0120040072
10.1785/0120100042
10.1029/JB075i026p04997
10.7202/032964ar
10.1785/0120060263
10.1029/96JB02814
10.1029/2004JB003602
10.1029/91JB02175
10.1007/BF00876528
10.3133/pp1527
10.1130/DNAG-CSMS-NEO.339
10.1785/0119980011
10.1007/BF00879951
ContentType Journal Article
Copyright 2013. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2013. American Geophysical Union. All Rights Reserved.
DBID BSCLL
AAYXX
CITATION
7ST
7TG
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
SOI
7SM
DOI 10.1002/jgrb.50247
DatabaseName Istex
CrossRef
Environment Abstracts
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Environment Abstracts
Earthquake Engineering Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
Earthquake Engineering Abstracts
DatabaseTitleList CrossRef

Earthquake Engineering Abstracts
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2169-9356
EndPage 3518
ExternalDocumentID 3547684181
10_1002_jgrb_50247
JGRB50247
ark_67375_WNG_RRVH15V9_6
Genre article
GroupedDBID 05W
0R~
1OC
31~
33P
50Y
52M
702
8-1
8FG
AAESR
AAHQN
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJCF
ABJNI
ACAHQ
ACCZN
ACGFS
ACGOD
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEIGN
AEUYN
AEUYR
AEYWJ
AFBPY
AFFHD
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AGHNM
AGYGG
AHBTC
AIQQE
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BFHJK
BGLVJ
BMXJE
BRXPI
BSCLL
CCPQU
DPXWK
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
L6V
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
M7R
M7S
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
P-X
P2W
P62
PATMY
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
R.K
RJQFR
RNS
ROL
SUPJJ
WBKPD
WIN
WXSBR
~OA
24P
A00
AAHHS
ACCFJ
AEEZP
AEQDE
AFPWT
AIWBW
AJBDE
WYJ
AAYXX
CITATION
7ST
7TG
8FD
C1K
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
SOI
7SM
ID FETCH-LOGICAL-a4317-5aaa148e2159fec84adf4e76afcc75b0f4b0c5e76f4c2aa567f1d581fdbbaf7b3
IEDL.DBID WIN
ISICitedReferencesCount 264
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000324952300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2169-9313
IngestDate Wed Oct 01 14:26:14 EDT 2025
Mon Oct 27 02:23:51 EDT 2025
Tue Nov 18 21:23:52 EST 2025
Sat Nov 29 02:49:56 EST 2025
Wed Jan 22 16:41:10 EST 2025
Tue Nov 11 03:33:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4317-5aaa148e2159fec84adf4e76afcc75b0f4b0c5e76f4c2aa567f1d581fdbbaf7b3
Notes ArticleID:JGRB50247
ark:/67375/WNG-RRVH15V9-6
istex:E59179100EE1511D428EEF58631B264ACA168119
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jgrb.50247
PQID 1642656406
PQPubID 54731
PageCount 13
ParticipantIDs proquest_miscellaneous_1642216339
proquest_journals_1642656406
crossref_citationtrail_10_1002_jgrb_50247
crossref_primary_10_1002_jgrb_50247
wiley_primary_10_1002_jgrb_50247_JGRB50247
istex_primary_ark_67375_WNG_RRVH15V9_6
PublicationCentury 2000
PublicationDate July 2013
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: July 2013
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Journal of geophysical research. Solid earth
PublicationTitleAlternate J. Geophys. Res. Solid Earth
PublicationYear 2013
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Frohlich, C., C. Hayward, B. Stump, and E. Potter (2011), The Dallas-Fort Worth earthquake sequence: October 2008 through May 2009, Bull. Seismol. Soc. Am., 101, 327-340.
Zoback, M. D., and J. H. Healy (1984), In situ stress measurements to 3.5 km depth in the Cajon Pass scientific research borehole: Implications for the mechanics of crustal faulting, J. Geophys. Res., 97, 5039-5057.
Keranen, K., H. M. Savage, G. Abers, and E. S. Cochran (2013), Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 MW 5.7 earthquake sequence, Geology, 41, 699-702, doi:10.1130/G34045.1.
Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seismol. Soc. Am., 66, 639-666.
Zhao, L. S., and D. V. Helmberger (1994), Source estimation from broadband regional seismograms, Bull. Seismol. Soc. Am., 84, 91-104.
Seeber, L., and J. G. Armbruster (1993), Natural and induced seismicity in the Erie-Ontario region: Reactivation of ancient faults with little neotectonic displacement, Geogr. Phys. Quat., 47, 363-378.
Horton, S. (2012), Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake, Seismol. Res. Lett., 83, 250-260, doi:10.1785/gssrl.83.2.250.
Healy, J. T., W. W. Rubey, D. T. Griggs, and C. B. Raleigh (1968), The Denver earthquakes, Science, 161, 1301-1310.
Ake, J., K. Mahrer, D. O'Connell, and L. Block (2005), Deep-injection and closely monitored induced seismicity at Paradox Valley, Colorado, Bull. Seismol. Soc. Am., 95, 664-683.
Kim, W.-Y., and M. Chapman (2005), The 9 December 2003 central Virginia earthquake sequence: A compound earthquake in the central Virginia seismic zone, Bull. Seismol. Soc. Am., 95, 2428-2445.
McGarr, A. (1976), Seismic moments and volume changes, J. Geophys. Res., 81, 1487-1494.
Seeber, L., J. Armbruster, and W. Y. Kim (2004), A fluid-injection-triggered earthquake sequence in Ashtabula, Ohio: Implications for seismogenesis in stable continental regions, Bull. Seismol. Soc. Am., 94, 76-87.
Brune, J. N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75, 4997-5009.
Byerlee, J. D. (1978), Friction of rocks, Pure Appl. Geophys., 116, 615-626.
Hsieh, P. A., and J. S. Bredehoeft (1981), A reservoir analysis of the Denver earthquakes-A case study of induced seismicity, J. Geophys. Res., 86, 903-920.
Gibbons, S. J., and F. Ringdal (2012), Seismic monitoring of the North Korea nuclear test site using a multichannel correlation detector, IEEE Trans. Geosci. Remote Sens., 50, 1897-1909, doi:10.1109/TGRS.2011.2170429.
Zoback, M. D., and H.-P. Harjes (1997), Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany, J. Geophys. Res., 102, 18,477-18,491.
Herrmann, R. B., S.-K. Park, and C.-Y. Wang (1981), The Denver earthquakes of 1967-1968, Bull. Seismol. Soc. Am., 71, 731-745.
Du, W.-X., W.-Y. Kim, and L. R. Sykes (2003), Earthquake source parameters and state of stress for northeastern United States and southeastern Canada from analysis of regional seismograms, Bull. Seismol. Soc. Am., 93, 1633-1648.
Tadokoro, K., M. Ando, and K. Nishigami (2000), Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: Seismicity and its migration, J. Geophys. Res., 105(B3), 6089-6104, doi:10.1029/1999JB900416.
Zoback, M. D., and J. Townend (2001), Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere, Tectonophysics, 336, 19-30.
Gibbs, J. F., J. H. Healy, C. B. Raleigh, and J. Coakley (1973), Seismicity in the Rangely, Colorado, area: 1962-1970, Bull. Seismol. Soc. Am., 63, 1557-1570.
Schaff, D. P., and F. Waldhauser (2010), One magnitude unit reduction in detection threshold by cross correlation applied to Parkfield (California) and China seismicity, Bull. Seismol. Soc. Am., 100, 3224-3238, doi:10.1785/0120100042.
Schaff, D. P. (2008), Semiempirical statistics of correlation-detector performance, Bull. Seismol. Soc. Am., 98, 1495-1507.
Tadokoro, K., M. Ando, and K. Nishigami (2005), Correction to "Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: Seismicity and its migration," J. Geophys. Res., 110, B03305, doi:10.1029/2004JB003602.
Nicholson, C., E. Roeloffs, and R. L. Wesson (1988), The northeastern Ohio earthquake of 31 January 1986: Was it induced?, Bull. Seismol. Soc. Am., 78, 188-217.
Zoback, M. L. (1992), Stress field constraints on intra-plate seismicity in eastern North America, J. Geophys. Res., 97, 11,761-11,782.
Waldhauser, F., and W. L. Ellsworth (2000), A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California, Bull. Seismol. Soc. Am., 90, 1353-1368.
Hubbert, M. K., and W. W. Rubey (1959), Role of fluid pressure in mechanics of overthrust faulting, Geol. Soc. Am. Bull., 70, 115-206.
Hansen, M. C., and L. J. Ruff (2003), The Ohio seismic network, Seismol. Res. Lett., 74, 561-564.
Nicholson, C., and R. L. Wesson (1992), Triggered earthquakes and deep well activities, Pure Appl. Geophys., 139, 561-578.
Gomberg, J. S., K. M. Shedlock, and S. W. Roecker (1990), The effect of S-wave arrival times on the accuracy of hypocenter estimation, Bull. Seismol. Soc. Am., 80, 1605-1628.
Shi, J., P. G. Richards, and W. Y. Kim (2000), Determination of seismic energy from Lg waves, Bull. Seismol. Soc. Am., 90, 483-493.
Davis, S. D., and W. D. Pennington (1989), Induced seismic deformation in the Cogdell oil field of west Texas, Bull. Seismol. Soc. Am., 79, 1477-1495.
Raleigh, C. B., J. H. Healy, and J. D. Bredehoeft (1976), An experiment in earthquake control at Rangely, Colorado, Science, 91, 1230-1237.
Yeats, R. S., K. Sieh, and C. R. Allen (1997), Geology of Earthquakes, 568 pp., Oxford Univ. Press, New York.
2012; 83
1993; 47
1976; 66
2012
2005; 110
1976; 81
2013; 41
2010; 100
1997
2007
1988; 78
1970; 75
2008; 98
2000; 90
1993
2002
1991
2003; 93
1992; 97
1978; 116
2003; 74
1990; 80
1981; 86
1994; 84
2012; 50
1997; 102
1984; 97
2004; 94
1959; 70
1973; 63
2000; 105
1976; 91
2005; 95
1992; 139
1968; 161
1981; 71
1989; 79
2011; 101
2001; 336
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
Yeats R. S. (e_1_2_8_46_1) 1997
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
Gomberg J. S. (e_1_2_8_14_1) 1990; 80
e_1_2_8_2_1
e_1_2_8_4_1
Gibbs J. F. (e_1_2_8_13_1) 1973; 63
e_1_2_8_6_1
Davis S. D. (e_1_2_8_8_1) 1989; 79
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
Zhao L. S. (e_1_2_8_47_1) 1994; 84
Nicholson C. (e_1_2_8_32_1) 1988; 78
Herrmann R. B. (e_1_2_8_18_1) 1981; 71
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – reference: Nicholson, C., E. Roeloffs, and R. L. Wesson (1988), The northeastern Ohio earthquake of 31 January 1986: Was it induced?, Bull. Seismol. Soc. Am., 78, 188-217.
– reference: Raleigh, C. B., J. H. Healy, and J. D. Bredehoeft (1976), An experiment in earthquake control at Rangely, Colorado, Science, 91, 1230-1237.
– reference: Horton, S. (2012), Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake, Seismol. Res. Lett., 83, 250-260, doi:10.1785/gssrl.83.2.250.
– reference: Keranen, K., H. M. Savage, G. Abers, and E. S. Cochran (2013), Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 MW 5.7 earthquake sequence, Geology, 41, 699-702, doi:10.1130/G34045.1.
– reference: Zoback, M. D., and J. Townend (2001), Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere, Tectonophysics, 336, 19-30.
– reference: Frohlich, C., C. Hayward, B. Stump, and E. Potter (2011), The Dallas-Fort Worth earthquake sequence: October 2008 through May 2009, Bull. Seismol. Soc. Am., 101, 327-340.
– reference: Shi, J., P. G. Richards, and W. Y. Kim (2000), Determination of seismic energy from Lg waves, Bull. Seismol. Soc. Am., 90, 483-493.
– reference: Tadokoro, K., M. Ando, and K. Nishigami (2005), Correction to "Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: Seismicity and its migration," J. Geophys. Res., 110, B03305, doi:10.1029/2004JB003602.
– reference: Seeber, L., and J. G. Armbruster (1993), Natural and induced seismicity in the Erie-Ontario region: Reactivation of ancient faults with little neotectonic displacement, Geogr. Phys. Quat., 47, 363-378.
– reference: Zhao, L. S., and D. V. Helmberger (1994), Source estimation from broadband regional seismograms, Bull. Seismol. Soc. Am., 84, 91-104.
– reference: Hansen, M. C., and L. J. Ruff (2003), The Ohio seismic network, Seismol. Res. Lett., 74, 561-564.
– reference: Zoback, M. D., and J. H. Healy (1984), In situ stress measurements to 3.5 km depth in the Cajon Pass scientific research borehole: Implications for the mechanics of crustal faulting, J. Geophys. Res., 97, 5039-5057.
– reference: Yeats, R. S., K. Sieh, and C. R. Allen (1997), Geology of Earthquakes, 568 pp., Oxford Univ. Press, New York.
– reference: Hsieh, P. A., and J. S. Bredehoeft (1981), A reservoir analysis of the Denver earthquakes-A case study of induced seismicity, J. Geophys. Res., 86, 903-920.
– reference: Nicholson, C., and R. L. Wesson (1992), Triggered earthquakes and deep well activities, Pure Appl. Geophys., 139, 561-578.
– reference: Byerlee, J. D. (1978), Friction of rocks, Pure Appl. Geophys., 116, 615-626.
– reference: McGarr, A. (1976), Seismic moments and volume changes, J. Geophys. Res., 81, 1487-1494.
– reference: Gibbons, S. J., and F. Ringdal (2012), Seismic monitoring of the North Korea nuclear test site using a multichannel correlation detector, IEEE Trans. Geosci. Remote Sens., 50, 1897-1909, doi:10.1109/TGRS.2011.2170429.
– reference: Healy, J. T., W. W. Rubey, D. T. Griggs, and C. B. Raleigh (1968), The Denver earthquakes, Science, 161, 1301-1310.
– reference: Ake, J., K. Mahrer, D. O'Connell, and L. Block (2005), Deep-injection and closely monitored induced seismicity at Paradox Valley, Colorado, Bull. Seismol. Soc. Am., 95, 664-683.
– reference: Tadokoro, K., M. Ando, and K. Nishigami (2000), Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: Seismicity and its migration, J. Geophys. Res., 105(B3), 6089-6104, doi:10.1029/1999JB900416.
– reference: Du, W.-X., W.-Y. Kim, and L. R. Sykes (2003), Earthquake source parameters and state of stress for northeastern United States and southeastern Canada from analysis of regional seismograms, Bull. Seismol. Soc. Am., 93, 1633-1648.
– reference: Zoback, M. D., and H.-P. Harjes (1997), Injection-induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany, J. Geophys. Res., 102, 18,477-18,491.
– reference: Brune, J. N. (1970), Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res., 75, 4997-5009.
– reference: Gibbs, J. F., J. H. Healy, C. B. Raleigh, and J. Coakley (1973), Seismicity in the Rangely, Colorado, area: 1962-1970, Bull. Seismol. Soc. Am., 63, 1557-1570.
– reference: Madariaga, R. (1976), Dynamics of an expanding circular fault, Bull. Seismol. Soc. Am., 66, 639-666.
– reference: Seeber, L., J. Armbruster, and W. Y. Kim (2004), A fluid-injection-triggered earthquake sequence in Ashtabula, Ohio: Implications for seismogenesis in stable continental regions, Bull. Seismol. Soc. Am., 94, 76-87.
– reference: Davis, S. D., and W. D. Pennington (1989), Induced seismic deformation in the Cogdell oil field of west Texas, Bull. Seismol. Soc. Am., 79, 1477-1495.
– reference: Herrmann, R. B., S.-K. Park, and C.-Y. Wang (1981), The Denver earthquakes of 1967-1968, Bull. Seismol. Soc. Am., 71, 731-745.
– reference: Schaff, D. P. (2008), Semiempirical statistics of correlation-detector performance, Bull. Seismol. Soc. Am., 98, 1495-1507.
– reference: Schaff, D. P., and F. Waldhauser (2010), One magnitude unit reduction in detection threshold by cross correlation applied to Parkfield (California) and China seismicity, Bull. Seismol. Soc. Am., 100, 3224-3238, doi:10.1785/0120100042.
– reference: Hubbert, M. K., and W. W. Rubey (1959), Role of fluid pressure in mechanics of overthrust faulting, Geol. Soc. Am. Bull., 70, 115-206.
– reference: Waldhauser, F., and W. L. Ellsworth (2000), A double-difference earthquake location algorithm: Method and application to the northern Hayward fault, California, Bull. Seismol. Soc. Am., 90, 1353-1368.
– reference: Zoback, M. L. (1992), Stress field constraints on intra-plate seismicity in eastern North America, J. Geophys. Res., 97, 11,761-11,782.
– reference: Kim, W.-Y., and M. Chapman (2005), The 9 December 2003 central Virginia earthquake sequence: A compound earthquake in the central Virginia seismic zone, Bull. Seismol. Soc. Am., 95, 2428-2445.
– reference: Gomberg, J. S., K. M. Shedlock, and S. W. Roecker (1990), The effect of S-wave arrival times on the accuracy of hypocenter estimation, Bull. Seismol. Soc. Am., 80, 1605-1628.
– start-page: 339
  year: 1991
  end-page: 366
– volume: 161
  start-page: 1301
  year: 1968
  end-page: 1310
  article-title: The Denver earthquakes
  publication-title: Science
– volume: 94
  start-page: 76
  year: 2004
  end-page: 87
  article-title: A fluid‐injection‐triggered earthquake sequence in Ashtabula, Ohio: Implications for seismogenesis in stable continental regions
  publication-title: Bull. Seismol. Soc. Am.
– start-page: 568
  year: 1997
– year: 2007
– volume: 95
  start-page: 664
  year: 2005
  end-page: 683
  article-title: Deep‐injection and closely monitored induced seismicity at Paradox Valley, Colorado
  publication-title: Bull. Seismol. Soc. Am.
– volume: 102
  start-page: 18,477
  year: 1997
  end-page: 18,491
  article-title: Injection‐induced earthquakes and crustal stress at 9 km depth at the KTB deep drilling site, Germany
  publication-title: J. Geophys. Res.
– volume: 70
  start-page: 115
  year: 1959
  end-page: 206
  article-title: Role of fluid pressure in mechanics of overthrust faulting
  publication-title: Geol. Soc. Am. Bull.
– volume: 47
  start-page: 363
  year: 1993
  end-page: 378
  article-title: Natural and induced seismicity in the Erie‐Ontario region: Reactivation of ancient faults with little neotectonic displacement
  publication-title: Geogr. Phys. Quat.
– volume: 80
  start-page: 1605
  year: 1990
  end-page: 1628
  article-title: The effect of S‐wave arrival times on the accuracy of hypocenter estimation
  publication-title: Bull. Seismol. Soc. Am.
– year: 2012
– volume: 75
  start-page: 4997
  year: 1970
  end-page: 5009
  article-title: Tectonic stress and the spectra of seismic shear waves from earthquakes
  publication-title: J. Geophys. Res.
– volume: 83
  start-page: 250
  year: 2012
  end-page: 260
  article-title: Disposal of hydrofracking waste fluid by injection into subsurface aquifers triggers earthquake swarm in central Arkansas with potential for damaging earthquake
  publication-title: Seismol. Res. Lett.
– volume: 78
  start-page: 188
  year: 1988
  end-page: 217
  article-title: The northeastern Ohio earthquake of 31 January 1986: Was it induced?
  publication-title: Bull. Seismol. Soc. Am.
– volume: 98
  start-page: 1495
  year: 2008
  end-page: 1507
  article-title: Semiempirical statistics of correlation‐detector performance
  publication-title: Bull. Seismol. Soc. Am.
– volume: 90
  start-page: 1353
  year: 2000
  end-page: 1368
  article-title: A double‐difference earthquake location algorithm: Method and application to the northern Hayward fault, California
  publication-title: Bull. Seismol. Soc. Am.
– volume: 93
  start-page: 1633
  year: 2003
  end-page: 1648
  article-title: Earthquake source parameters and state of stress for northeastern United States and southeastern Canada from analysis of regional seismograms
  publication-title: Bull. Seismol. Soc. Am.
– year: 2002
– volume: 101
  start-page: 327
  year: 2011
  end-page: 340
  article-title: The Dallas‐Fort Worth earthquake sequence: October 2008 through May 2009
  publication-title: Bull. Seismol. Soc. Am.
– volume: 95
  start-page: 2428
  year: 2005
  end-page: 2445
  article-title: The 9 December 2003 central Virginia earthquake sequence: A compound earthquake in the central Virginia seismic zone
  publication-title: Bull. Seismol. Soc. Am.
– volume: 91
  start-page: 1230
  year: 1976
  end-page: 1237
  article-title: An experiment in earthquake control at Rangely, Colorado
  publication-title: Science
– volume: 110
  year: 2005
  article-title: Correction to “Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: Seismicity and its migration,”
  publication-title: J. Geophys. Res.
– volume: 74
  start-page: 561
  year: 2003
  end-page: 564
  article-title: The Ohio seismic network
  publication-title: Seismol. Res. Lett.
– volume: 66
  start-page: 639
  year: 1976
  end-page: 666
  article-title: Dynamics of an expanding circular fault
  publication-title: Bull. Seismol. Soc. Am.
– volume: 41
  start-page: 699
  year: 2013
  end-page: 702
  article-title: Potentially induced earthquakes in Oklahoma, USA: Links between wastewater injection and the 2011 5.7 earthquake sequence
  publication-title: Geology
– volume: 86
  start-page: 903
  year: 1981
  end-page: 920
  article-title: A reservoir analysis of the Denver earthquakes—A case study of induced seismicity
  publication-title: J. Geophys. Res.
– volume: 90
  start-page: 483
  year: 2000
  end-page: 493
  article-title: Determination of seismic energy from waves
  publication-title: Bull. Seismol. Soc. Am.
– volume: 139
  start-page: 561
  year: 1992
  end-page: 578
  article-title: Triggered earthquakes and deep well activities
  publication-title: Pure Appl. Geophys.
– volume: 336
  start-page: 19
  year: 2001
  end-page: 30
  article-title: Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere
  publication-title: Tectonophysics
– volume: 50
  start-page: 1897
  year: 2012
  end-page: 1909
  article-title: Seismic monitoring of the North Korea nuclear test site using a multichannel correlation detector
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 116
  start-page: 615
  year: 1978
  end-page: 626
  article-title: Friction of rocks
  publication-title: Pure Appl. Geophys.
– volume: 71
  start-page: 731
  year: 1981
  end-page: 745
  article-title: The Denver earthquakes of 1967–1968
  publication-title: Bull. Seismol. Soc. Am.
– year: 1993
– volume: 97
  start-page: 11,761
  year: 1992
  end-page: 11,782
  article-title: Stress field constraints on intra‐plate seismicity in eastern North America
  publication-title: J. Geophys. Res.
– volume: 79
  start-page: 1477
  year: 1989
  end-page: 1495
  article-title: Induced seismic deformation in the Cogdell oil field of west Texas
  publication-title: Bull. Seismol. Soc. Am.
– start-page: 647
  year: 2002
  end-page: 664
– volume: 97
  start-page: 5039
  year: 1984
  end-page: 5057
  article-title: In situ stress measurements to 3.5 km depth in the Cajon Pass scientific research borehole: Implications for the mechanics of crustal faulting
  publication-title: J. Geophys. Res.
– volume: 81
  start-page: 1487
  year: 1976
  end-page: 1494
  article-title: Seismic moments and volume changes
  publication-title: J. Geophys. Res.
– volume: 84
  start-page: 91
  year: 1994
  end-page: 104
  article-title: Source estimation from broadband regional seismograms
  publication-title: Bull. Seismol. Soc. Am.
– volume: 63
  start-page: 1557
  year: 1973
  end-page: 1570
  article-title: Seismicity in the Rangely, Colorado, area: 1962–1970
  publication-title: Bull. Seismol. Soc. Am.
– volume: 105
  start-page: 6089
  issue: B3
  year: 2000
  end-page: 6104
  article-title: Induced earthquakes accompanying the water injection experiment at the Nojima fault zone, Japan: Seismicity and its migration
  publication-title: J. Geophys. Res.
– volume: 100
  start-page: 3224
  year: 2010
  end-page: 3238
  article-title: One magnitude unit reduction in detection threshold by cross correlation applied to Parkfield (California) and China seismicity
  publication-title: Bull. Seismol. Soc. Am.
– ident: e_1_2_8_52_1
  doi: 10.1029/92JB00221
– ident: e_1_2_8_28_1
  doi: 10.1016/S0074-6142(02)80243-1
– ident: e_1_2_8_19_1
  doi: 10.1785/gssrl.83.2.250
– ident: e_1_2_8_3_1
– ident: e_1_2_8_44_1
– ident: e_1_2_8_12_1
  doi: 10.1109/TGRS.2011.2170429
– ident: e_1_2_8_4_1
– ident: e_1_2_8_25_1
  doi: 10.1785/BSSA0660030639
– ident: e_1_2_8_39_1
  doi: 10.1785/0120020091
– ident: e_1_2_8_45_1
  doi: 10.1785/0120000006
– ident: e_1_2_8_10_1
– volume: 63
  start-page: 1557
  year: 1973
  ident: e_1_2_8_13_1
  article-title: Seismicity in the Rangely, Colorado, area: 1962–1970
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA0630051557
– volume: 79
  start-page: 1477
  year: 1989
  ident: e_1_2_8_8_1
  article-title: Induced seismic deformation in the Cogdell oil field of west Texas
  publication-title: Bull. Seismol. Soc. Am.
– ident: e_1_2_8_29_1
  doi: 10.3133/ofr0273
– ident: e_1_2_8_34_1
  doi: 10.1126/science.191.4233.1230
– ident: e_1_2_8_11_1
  doi: 10.1785/0120100131
– volume: 78
  start-page: 188
  year: 1988
  ident: e_1_2_8_32_1
  article-title: The northeastern Ohio earthquake of 31 January 1986: Was it induced?
  publication-title: Bull. Seismol. Soc. Am.
– ident: e_1_2_8_42_1
  doi: 10.1029/1999JB900416
– volume: 80
  start-page: 1605
  year: 1990
  ident: e_1_2_8_14_1
  article-title: The effect of S‐wave arrival times on the accuracy of hypocenter estimation
  publication-title: Bull. Seismol. Soc. Am.
  doi: 10.1785/BSSA08006A1605
– ident: e_1_2_8_50_1
  doi: 10.1016/S0040-1951(01)00091-9
– ident: e_1_2_8_15_1
– ident: e_1_2_8_26_1
  doi: 10.1029/JB081i008p01487
– ident: e_1_2_8_20_1
  doi: 10.1029/JB086iB02p00903
– ident: e_1_2_8_21_1
  doi: 10.1130/0016-7606(1959)70[115:ROFPIM]2.0.CO;2
– ident: e_1_2_8_9_1
  doi: 10.1785/0120020217
– volume: 84
  start-page: 91
  year: 1994
  ident: e_1_2_8_47_1
  article-title: Source estimation from broadband regional seismograms
  publication-title: Bull. Seismol. Soc. Am.
– ident: e_1_2_8_23_1
  doi: 10.1785/0120040207
– ident: e_1_2_8_6_1
– start-page: 568
  volume-title: Geology of Earthquakes
  year: 1997
  ident: e_1_2_8_46_1
– ident: e_1_2_8_17_1
  doi: 10.1126/science.161.3848.1301
– ident: e_1_2_8_22_1
  doi: 10.1130/G34045.1
– ident: e_1_2_8_16_1
  doi: 10.1785/gssrl.74.5.561
– ident: e_1_2_8_33_1
– ident: e_1_2_8_2_1
  doi: 10.1785/0120040072
– volume: 71
  start-page: 731
  year: 1981
  ident: e_1_2_8_18_1
  article-title: The Denver earthquakes of 1967–1968
  publication-title: Bull. Seismol. Soc. Am.
– ident: e_1_2_8_37_1
  doi: 10.1785/0120100042
– ident: e_1_2_8_5_1
  doi: 10.1029/JB075i026p04997
– ident: e_1_2_8_38_1
  doi: 10.7202/032964ar
– ident: e_1_2_8_36_1
  doi: 10.1785/0120060263
– ident: e_1_2_8_48_1
  doi: 10.1029/96JB02814
– ident: e_1_2_8_27_1
– ident: e_1_2_8_43_1
  doi: 10.1029/2004JB003602
– ident: e_1_2_8_24_1
– ident: e_1_2_8_35_1
– ident: e_1_2_8_30_1
– ident: e_1_2_8_49_1
  doi: 10.1029/91JB02175
– ident: e_1_2_8_7_1
  doi: 10.1007/BF00876528
– ident: e_1_2_8_41_1
  doi: 10.3133/pp1527
– ident: e_1_2_8_51_1
  doi: 10.1130/DNAG-CSMS-NEO.339
– ident: e_1_2_8_40_1
  doi: 10.1785/0119980011
– ident: e_1_2_8_31_1
  doi: 10.1007/BF00879951
SSID ssj0000816914
Score 2.4065206
Snippet Over 109 small earthquakes (Mw 0.4–3.9) were detected during January 2011 to February 2012 in the Youngstown, Ohio area, where there were no known earthquakes...
Over 109 small earthquakes ( M w 0.4–3.9) were detected during January 2011 to February 2012 in the Youngstown, Ohio area, where there were no known...
Over 109 small earthquakes (Mw 0.4-3.9) were detected during January 2011 to February 2012 in the Youngstown, Ohio area, where there were no known earthquakes...
Over 109 small earthquakes (M sub(w) 0.4-3.9) were detected during January 2011 to February 2012 in the Youngstown, Ohio area, where there were no known...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3506
SubjectTerms Earthquakes
Faults
Fluid injection
Fluid pressure
Geophysics
Induced earthquakes in Youngstown
Induced earthquakes in Youngstown, Ohio
Injection
Injection volume triggered earthquakes
Migration of earthquakes
Ohio
Plate tectonics
Pore pressure
Porosity
Precambrian
Seismic activity
Seismic phenomena
Seismicity
Seismology
Well drilling
Title Induced seismicity associated with fluid injection into a deep well in Youngstown, Ohio
URI https://api.istex.fr/ark:/67375/WNG-RRVH15V9-6/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjgrb.50247
https://www.proquest.com/docview/1642656406
https://www.proquest.com/docview/1642216339
Volume 118
WOSCitedRecordID wos000324952300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 2169-9356
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816914
  issn: 2169-9313
  databaseCode: WIN
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2169-9356
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816914
  issn: 2169-9313
  databaseCode: DRFUL
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB9Kq-AX3-L2RUQRFLe9zSa7G_CLr2uVcsphe_0WJtlEt4-9cntn_fNNsntbCyKI30J2AmEmk3ns5DcAz4RwkU9GmdM0I2KWlkWMpYtaGTJhkRbcqIAze5CPRsXxsfiyAq-Xb2FafIg-4eY1I9zXXsFRNbtXoKEn32ZqhzsT45-SJyxo5eTjqE-w-I4SImB7UzeIRZqkPTwp3b1afc0grXne_rzmbf7uswajM7zzf9u9C7c7Z5O8aU_HPVgx9X24GYo-dfMAJr5vhzYlaUzVnFfaOeQEO3G5WZ-iJfZsUZWkqk9CyVbtRvMpQVIac0F83s9NkHBjOCfysn5FPn-vpg_hcPjh67v9uGu0EKP3H2KOiC4sMs78C2t0wbC0zOQZWq1zrgaWqYHmbsIyTRF5ltuk5EViS6XQ5ip9BKv1tDaPgaSizBApp1pkzC1XGcvSgAKojNJsEMGLJbel7lDIfTOMM9niJ1PpGSUDoyJ42tNetNgbf6R6HoTWk-Ds1Fer5VxORntyPD7aT_iRkFkEm0upyk5RG-miRepcWufWRPCk_-xUzP83wdpMFy2NO0NpKiJ4GWT8l-3IT3vjt2G0_i_EG3CLhkYbvhB4E1bns4XZghv6x7xqZtuw9n48PDzYDif8F8YP_SU
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFD6CFgQv4zZEYIARCAlEttaxk_iRW1egFFTt9mbZjg0ZI52advDzOXayjEkICfFmOSdRdC7255OT7wA8EQJPPillGGlWxCwp8lgVeGpligmnaM6tDjyzk2w6zQ8OxOe2Nsf_C9PwQ3QJNx8ZYb32Ae4T0ltnrKGHXxZ6k-Mek12EPkM_4j3ov5mNdiddksV3lRCB35viIBbJMOkoSunW2QPObUp9r9-f5xDn77g1bDyja__5ytdhrUWc5GXjIjfggq1uwuVQ-WnqW7Dvm3cYW5DalvX30iAqJ6q1Gc76PC1xR6uyIGV1GOq2Khwt50SRwtpj4pN_OEHCsoFI8kf1gnz6Ws7XYXf0duf1OG67LcTKg4iYK6XwbGQRAwhnTc5U4ZjNUuWMybgeOKYHhuOEY4YqxdPMDQueD12htXKZTm5Dr5pX9g6QRBSpUpRTI1KGt-sUzROoALXVhg0ieHaqbmlaKnLfEeNINiTKVHpFyaCoCB53sscNAccfpZ4Gq3UiavHNl6xlXO5Pt-Vstjce8j0h0wg2Ts0q22itJR4ZKeJaxDYRPOouY5z5jyeqsvNVI4NOlCQigufByH95Hfl-e_YqjO7-i_BDuDLe-TiRk3fTD_fgKg2dN3xl8Ab0louVvQ-XzMmyrBcPWkf_BaXRAOA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_BChMvfE8EBhiBkECEtY6dxI_A6AZUZarYx5vlT8gYadW0wJ_P2c0yJiEkxJvlXKLozmf_7nL5HcATITDyySlDT3MiZZktU2UxamWKCa9oyZ2OPLOjYjwuj47EXlubE_6FWfFDdAm34Blxvw4O7mbWb52xhh5_nuuXHM-Y4iL0GBc5-mVvezLcH3VJltBVQkR-b4qDVGSDrKMopVtnDzh3KPWCfn-eQ5y_49Z48Ayv_ecrX4erLeIkr1ZL5AZccPVNuBwrP01zCw5D8w7jLGlc1XyrDKJyolqb4WzI0xJ_sqwsqerjWLdV42gxJYpY52YkJP9wgsRtA5Hkj_oF-filmt6G_eHbT29207bbQqoCiEi5UgpjI4cYQHhnSqasZ67IlTem4Lrvme4bjhOeGaoUzws_sLwceKu18oXONmCtntbuDpBM2FwpyqkROcPbdc7yLFIBaqcN6yfw7FTd0rRU5KEjxolckShTGRQlo6ISeNzJzlYEHH-Uehqt1omo-ddQslZweTjekZPJwe6AHwiZJ7B5albZemsjMWSkiGsR2yTwqLuMfhY-nqjaTZcrGVxEWSYSeB6N_JfXke93Jq_j6O6_CD-E9b3toRy9G3-4B1dobLwRCoM3YW0xX7r7cMl8X1TN_EG7zn8BMFYAWw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Induced+seismicity+associated+with+fluid+injection+into+a+deep+well+in+Youngstown%2C+Ohio&rft.jtitle=Journal+of+geophysical+research.+Solid+earth&rft.au=Kim%2C+Won%E2%80%90Young&rft.date=2013-07-01&rft.issn=2169-9313&rft.eissn=2169-9356&rft.volume=118&rft.issue=7&rft.spage=3506&rft.epage=3518&rft_id=info:doi/10.1002%2Fjgrb.50247&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jgrb_50247
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-9313&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-9313&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-9313&client=summon