Neural Network and Nearest Neighbor Algorithms for Enhancing Sampling of Molecular Dynamics

The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by high-energy barriers. The minima can be escaped using an enhanced sampling method such as metadynamics, which apply bias (i.e., importance sa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation Jg. 13; H. 6; S. 2489
Hauptverfasser: Galvelis, Raimondas, Sugita, Yuji
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 13.06.2017
Schlagworte:
ISSN:1549-9626, 1549-9626
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by high-energy barriers. The minima can be escaped using an enhanced sampling method such as metadynamics, which apply bias (i.e., importance sampling) along a set of collective variables (CV), but the maximum number of CVs (or dimensions) is severely limited. We propose a high-dimensional bias potential method (NN2B) based on two machine learning algorithms: the nearest neighbor density estimator (NNDE) and the artificial neural network (ANN) for the bias potential approximation. The bias potential is constructed iteratively from short biased MD simulations accounting for correlation among CVs. Our method is capable of achieving ergodic sampling and calculating free energy of polypeptides with up to 8-dimensional bias potential.
AbstractList The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by high-energy barriers. The minima can be escaped using an enhanced sampling method such as metadynamics, which apply bias (i.e., importance sampling) along a set of collective variables (CV), but the maximum number of CVs (or dimensions) is severely limited. We propose a high-dimensional bias potential method (NN2B) based on two machine learning algorithms: the nearest neighbor density estimator (NNDE) and the artificial neural network (ANN) for the bias potential approximation. The bias potential is constructed iteratively from short biased MD simulations accounting for correlation among CVs. Our method is capable of achieving ergodic sampling and calculating free energy of polypeptides with up to 8-dimensional bias potential.The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by high-energy barriers. The minima can be escaped using an enhanced sampling method such as metadynamics, which apply bias (i.e., importance sampling) along a set of collective variables (CV), but the maximum number of CVs (or dimensions) is severely limited. We propose a high-dimensional bias potential method (NN2B) based on two machine learning algorithms: the nearest neighbor density estimator (NNDE) and the artificial neural network (ANN) for the bias potential approximation. The bias potential is constructed iteratively from short biased MD simulations accounting for correlation among CVs. Our method is capable of achieving ergodic sampling and calculating free energy of polypeptides with up to 8-dimensional bias potential.
The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by high-energy barriers. The minima can be escaped using an enhanced sampling method such as metadynamics, which apply bias (i.e., importance sampling) along a set of collective variables (CV), but the maximum number of CVs (or dimensions) is severely limited. We propose a high-dimensional bias potential method (NN2B) based on two machine learning algorithms: the nearest neighbor density estimator (NNDE) and the artificial neural network (ANN) for the bias potential approximation. The bias potential is constructed iteratively from short biased MD simulations accounting for correlation among CVs. Our method is capable of achieving ergodic sampling and calculating free energy of polypeptides with up to 8-dimensional bias potential.
Author Galvelis, Raimondas
Sugita, Yuji
Author_xml – sequence: 1
  givenname: Raimondas
  orcidid: 0000-0001-8431-1612
  surname: Galvelis
  fullname: Galvelis, Raimondas
  organization: RIKEN Theoretical Molecular Science Laboratory , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
– sequence: 2
  givenname: Yuji
  orcidid: 0000-0001-9738-9216
  surname: Sugita
  fullname: Sugita, Yuji
  organization: RIKEN Quantitative Biology Center , Integrated Inovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28437616$$D View this record in MEDLINE/PubMed
BookMark eNpNkDtPwzAUhS1URB-wM6GMLCl-NXbGqpSHVMoATAzRje20KY5d7ESo_54gisR0viMdXd1zxmjgvDMIXRI8JZiSG1BxulOtmooSYyLlCRqRGc_TPKPZ4B8P0TjGHcaMccrO0JBKzkRGshF6X5sugE3Wpv3y4SMBp3uGYGLba73Zlj4kc7vxoW63TUyq3i7dFpyq3SZ5gWZvf8BXyZO3RnUWQnJ7cNDUKp6j0wpsNBdHnaC3u-Xr4iFdPd8_LuarFDjDbSo0NjOqeSa40lU1MzgrBUgKtO8ocgaMZELnVGEmqpxoKXJTcpCslFppTukEXf_e3Qf_2fWfF00dlbEWnPFdLIjM-22EpLiPXh2jXdkYXexD3UA4FH-D0G_S3mWf
CitedBy_id crossref_primary_10_1002_aic_70032
crossref_primary_10_1007_s10462_024_10731_4
crossref_primary_10_1080_00268976_2020_1737742
crossref_primary_10_3390_biom12091246
crossref_primary_10_1016_j_mtcomm_2020_101277
crossref_primary_10_1016_j_sbi_2025_103000
crossref_primary_10_1146_annurev_physchem_083122_125941
crossref_primary_10_1146_annurev_physchem_042018_052331
crossref_primary_10_3390_biom11101416
crossref_primary_10_7717_peerj_cs_1929
crossref_primary_10_1039_D2CS00203E
crossref_primary_10_1073_pnas_1907975116
crossref_primary_10_1137_22M1503464
crossref_primary_10_3389_fmolb_2025_1542267
crossref_primary_10_1016_j_jaerosci_2020_105621
crossref_primary_10_1080_23746149_2018_1477531
crossref_primary_10_1016_j_ces_2023_118532
crossref_primary_10_1002_kin_21759
crossref_primary_10_1016_j_sbi_2024_102889
crossref_primary_10_3389_fmolb_2019_00025
crossref_primary_10_1016_j_commatsci_2019_109393
crossref_primary_10_1016_j_cpc_2018_02_017
crossref_primary_10_1038_s41563_020_0777_6
crossref_primary_10_1002_wcms_1662
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.jctc.7b00188
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1549-9626
ExternalDocumentID 28437616
Genre Journal Article
GroupedDBID 4.4
53G
55A
5GY
5VS
7~N
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACIWK
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CGR
CS3
CUPRZ
CUY
CVF
D0L
DU5
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH9
J9A
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a430t-7d0e52d4674cdff5e06b7a82a2102793a3167d92c037f91d879eb4a83b8dcd422
IEDL.DBID 7X8
ISICitedReferencesCount 55
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403530100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-9626
IngestDate Sun Nov 09 10:34:04 EST 2025
Wed Feb 19 02:41:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a430t-7d0e52d4674cdff5e06b7a82a2102793a3167d92c037f91d879eb4a83b8dcd422
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9738-9216
0000-0001-8431-1612
PMID 28437616
PQID 1891887820
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1891887820
pubmed_primary_28437616
PublicationCentury 2000
PublicationDate 2017-06-13
PublicationDateYYYYMMDD 2017-06-13
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-13
  day: 13
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of chemical theory and computation
PublicationTitleAlternate J Chem Theory Comput
PublicationYear 2017
SSID ssj0033423
Score 2.434868
Snippet The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2489
SubjectTerms Molecular Dynamics Simulation
Neural Networks (Computer)
Thermodynamics
Title Neural Network and Nearest Neighbor Algorithms for Enhancing Sampling of Molecular Dynamics
URI https://www.ncbi.nlm.nih.gov/pubmed/28437616
https://www.proquest.com/docview/1891887820
Volume 13
WOSCitedRecordID wos000403530100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAIsGFfSmbjMQ1pY7TOj6hqrTiQKNKgFSJQ-R4aUGQFhL4fmaywIUDEpfEhySKLc-8sWf8HiEXoWIKYdFjTna9QDrmSWGkB8jJtGNIoV6w69-KKAonEzmuNtyyqqyy9omFozZzjXvklyyUDAwCAOtq8eahahRmVysJjWXS4BDKoGGKyXcWgSO7XcGXGiALpV-nKQHWLpXOWs861y2BYUOlu_JrgFkAzXDzv7-4RTaqEJP2yjmxTZZsukPW-rWy2y55REYOeCIqS8CpSg208SBSDndYrcO8oL2XKXw7n71mFOJaOkhnyMyRTumdwiJ0aMwdHdXiuvS6VLbP9sjDcHDfv_EqkQVPBbyde8K0bcc3KDqijXMd2-4mQoW-wrUgGK_Co_JG-rrNhZPMhELaJFAhT0KjTeD7-2Qlnaf2kNDQScsDy7lvkKJGq4AlzopEs47qOKab5Lwetxh6jJkJldr5Rxb_jFyTHJSDHy9Kto0Y8BOcIOse_eHtY7LuI-yithA_IQ0HJmxPyar-zJ-y97NidsA1Go--AJ85xPc
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+and+Nearest+Neighbor+Algorithms+for+Enhancing+Sampling+of+Molecular+Dynamics&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Galvelis%2C+Raimondas&rft.au=Sugita%2C+Yuji&rft.date=2017-06-13&rft.issn=1549-9626&rft.eissn=1549-9626&rft.volume=13&rft.issue=6&rft.spage=2489&rft_id=info:doi/10.1021%2Facs.jctc.7b00188&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9626&client=summon