Neural Network and Nearest Neighbor Algorithms for Enhancing Sampling of Molecular Dynamics
The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by high-energy barriers. The minima can be escaped using an enhanced sampling method such as metadynamics, which apply bias (i.e., importance sa...
Gespeichert in:
| Veröffentlicht in: | Journal of chemical theory and computation Jg. 13; H. 6; S. 2489 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
13.06.2017
|
| Schlagworte: | |
| ISSN: | 1549-9626, 1549-9626 |
| Online-Zugang: | Weitere Angaben |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by high-energy barriers. The minima can be escaped using an enhanced sampling method such as metadynamics, which apply bias (i.e., importance sampling) along a set of collective variables (CV), but the maximum number of CVs (or dimensions) is severely limited. We propose a high-dimensional bias potential method (NN2B) based on two machine learning algorithms: the nearest neighbor density estimator (NNDE) and the artificial neural network (ANN) for the bias potential approximation. The bias potential is constructed iteratively from short biased MD simulations accounting for correlation among CVs. Our method is capable of achieving ergodic sampling and calculating free energy of polypeptides with up to 8-dimensional bias potential. |
|---|---|
| AbstractList | The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by high-energy barriers. The minima can be escaped using an enhanced sampling method such as metadynamics, which apply bias (i.e., importance sampling) along a set of collective variables (CV), but the maximum number of CVs (or dimensions) is severely limited. We propose a high-dimensional bias potential method (NN2B) based on two machine learning algorithms: the nearest neighbor density estimator (NNDE) and the artificial neural network (ANN) for the bias potential approximation. The bias potential is constructed iteratively from short biased MD simulations accounting for correlation among CVs. Our method is capable of achieving ergodic sampling and calculating free energy of polypeptides with up to 8-dimensional bias potential.The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by high-energy barriers. The minima can be escaped using an enhanced sampling method such as metadynamics, which apply bias (i.e., importance sampling) along a set of collective variables (CV), but the maximum number of CVs (or dimensions) is severely limited. We propose a high-dimensional bias potential method (NN2B) based on two machine learning algorithms: the nearest neighbor density estimator (NNDE) and the artificial neural network (ANN) for the bias potential approximation. The bias potential is constructed iteratively from short biased MD simulations accounting for correlation among CVs. Our method is capable of achieving ergodic sampling and calculating free energy of polypeptides with up to 8-dimensional bias potential. The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by high-energy barriers. The minima can be escaped using an enhanced sampling method such as metadynamics, which apply bias (i.e., importance sampling) along a set of collective variables (CV), but the maximum number of CVs (or dimensions) is severely limited. We propose a high-dimensional bias potential method (NN2B) based on two machine learning algorithms: the nearest neighbor density estimator (NNDE) and the artificial neural network (ANN) for the bias potential approximation. The bias potential is constructed iteratively from short biased MD simulations accounting for correlation among CVs. Our method is capable of achieving ergodic sampling and calculating free energy of polypeptides with up to 8-dimensional bias potential. |
| Author | Galvelis, Raimondas Sugita, Yuji |
| Author_xml | – sequence: 1 givenname: Raimondas orcidid: 0000-0001-8431-1612 surname: Galvelis fullname: Galvelis, Raimondas organization: RIKEN Theoretical Molecular Science Laboratory , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan – sequence: 2 givenname: Yuji orcidid: 0000-0001-9738-9216 surname: Sugita fullname: Sugita, Yuji organization: RIKEN Quantitative Biology Center , Integrated Inovation Building 7F, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28437616$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkDtPwzAUhS1URB-wM6GMLCl-NXbGqpSHVMoATAzRje20KY5d7ESo_54gisR0viMdXd1zxmjgvDMIXRI8JZiSG1BxulOtmooSYyLlCRqRGc_TPKPZ4B8P0TjGHcaMccrO0JBKzkRGshF6X5sugE3Wpv3y4SMBp3uGYGLba73Zlj4kc7vxoW63TUyq3i7dFpyq3SZ5gWZvf8BXyZO3RnUWQnJ7cNDUKp6j0wpsNBdHnaC3u-Xr4iFdPd8_LuarFDjDbSo0NjOqeSa40lU1MzgrBUgKtO8ocgaMZELnVGEmqpxoKXJTcpCslFppTukEXf_e3Qf_2fWfF00dlbEWnPFdLIjM-22EpLiPXh2jXdkYXexD3UA4FH-D0G_S3mWf |
| CitedBy_id | crossref_primary_10_1002_aic_70032 crossref_primary_10_1007_s10462_024_10731_4 crossref_primary_10_1080_00268976_2020_1737742 crossref_primary_10_3390_biom12091246 crossref_primary_10_1016_j_mtcomm_2020_101277 crossref_primary_10_1016_j_sbi_2025_103000 crossref_primary_10_1146_annurev_physchem_083122_125941 crossref_primary_10_1146_annurev_physchem_042018_052331 crossref_primary_10_3390_biom11101416 crossref_primary_10_7717_peerj_cs_1929 crossref_primary_10_1039_D2CS00203E crossref_primary_10_1073_pnas_1907975116 crossref_primary_10_1137_22M1503464 crossref_primary_10_3389_fmolb_2025_1542267 crossref_primary_10_1016_j_jaerosci_2020_105621 crossref_primary_10_1080_23746149_2018_1477531 crossref_primary_10_1016_j_ces_2023_118532 crossref_primary_10_1002_kin_21759 crossref_primary_10_1016_j_sbi_2024_102889 crossref_primary_10_3389_fmolb_2019_00025 crossref_primary_10_1016_j_commatsci_2019_109393 crossref_primary_10_1016_j_cpc_2018_02_017 crossref_primary_10_1038_s41563_020_0777_6 crossref_primary_10_1002_wcms_1662 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.jctc.7b00188 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1549-9626 |
| ExternalDocumentID | 28437616 |
| Genre | Journal Article |
| GroupedDBID | 4.4 53G 55A 5GY 5VS 7~N AABXI ABJNI ABMVS ABQRX ABUCX ACGFS ACIWK ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CGR CS3 CUPRZ CUY CVF D0L DU5 EBS ECM ED~ EIF EJD F5P GGK GNL IH9 J9A JG~ NPM P2P RNS ROL UI2 VF5 VG9 W1F 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-a430t-7d0e52d4674cdff5e06b7a82a2102793a3167d92c037f91d879eb4a83b8dcd422 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 55 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000403530100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1549-9626 |
| IngestDate | Sun Nov 09 10:34:04 EST 2025 Wed Feb 19 02:41:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a430t-7d0e52d4674cdff5e06b7a82a2102793a3167d92c037f91d879eb4a83b8dcd422 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9738-9216 0000-0001-8431-1612 |
| PMID | 28437616 |
| PQID | 1891887820 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1891887820 pubmed_primary_28437616 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-13 |
| PublicationDateYYYYMMDD | 2017-06-13 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-13 day: 13 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of chemical theory and computation |
| PublicationTitleAlternate | J Chem Theory Comput |
| PublicationYear | 2017 |
| SSID | ssj0033423 |
| Score | 2.434868 |
| Snippet | The free energy calculations of complex chemical and biological systems with molecular dynamics (MD) are inefficient due to multiple local minima separated by... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2489 |
| SubjectTerms | Molecular Dynamics Simulation Neural Networks (Computer) Thermodynamics |
| Title | Neural Network and Nearest Neighbor Algorithms for Enhancing Sampling of Molecular Dynamics |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/28437616 https://www.proquest.com/docview/1891887820 |
| Volume | 13 |
| WOSCitedRecordID | wos000403530100012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAIsGFfSmbjMQ1pY7TOj6hqrTiQKNKgFSJQ-R4aUGQFhL4fmaywIUDEpfEhySKLc-8sWf8HiEXoWIKYdFjTna9QDrmSWGkB8jJtGNIoV6w69-KKAonEzmuNtyyqqyy9omFozZzjXvklyyUDAwCAOtq8eahahRmVysJjWXS4BDKoGGKyXcWgSO7XcGXGiALpV-nKQHWLpXOWs861y2BYUOlu_JrgFkAzXDzv7-4RTaqEJP2yjmxTZZsukPW-rWy2y55REYOeCIqS8CpSg208SBSDndYrcO8oL2XKXw7n71mFOJaOkhnyMyRTumdwiJ0aMwdHdXiuvS6VLbP9sjDcHDfv_EqkQVPBbyde8K0bcc3KDqijXMd2-4mQoW-wrUgGK_Co_JG-rrNhZPMhELaJFAhT0KjTeD7-2Qlnaf2kNDQScsDy7lvkKJGq4AlzopEs47qOKab5Lwetxh6jJkJldr5Rxb_jFyTHJSDHy9Kto0Y8BOcIOse_eHtY7LuI-yithA_IQ0HJmxPyar-zJ-y97NidsA1Go--AJ85xPc |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural+Network+and+Nearest+Neighbor+Algorithms+for+Enhancing+Sampling+of+Molecular+Dynamics&rft.jtitle=Journal+of+chemical+theory+and+computation&rft.au=Galvelis%2C+Raimondas&rft.au=Sugita%2C+Yuji&rft.date=2017-06-13&rft.issn=1549-9626&rft.eissn=1549-9626&rft.volume=13&rft.issue=6&rft.spage=2489&rft_id=info:doi/10.1021%2Facs.jctc.7b00188&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9626&client=summon |