Conducting Polymers for Tissue Engineering

Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and poly(3,4-ethylenedioxythiophene)) with good biocompatibility find wide applications in biomedical fields including bioactuators, biosensors, neural implants, drug deli...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biomacromolecules Ročník 19; číslo 6; s. 1764
Hlavní autori: Guo, Baolin, Ma, Peter X
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 11.06.2018
Predmet:
ISSN:1526-4602, 1526-4602
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and poly(3,4-ethylenedioxythiophene)) with good biocompatibility find wide applications in biomedical fields including bioactuators, biosensors, neural implants, drug delivery systems, and tissue engineering scaffolds. This review focuses on these conductive polymers for tissue engineering applications. Conductive polymers exhibit promising conductivity as bioactive scaffolds for tissue regeneration, and their conductive nature allows cells or tissue cultured on them to be stimulated by electrical signals. However, their mechanical brittleness and poor processability restrict their application. Therefore, conductive polymeric composites based on conductive polymers and biocompatible biodegradable polymers (natural or synthetic) were developed. The major objective of this review is to summarize the conductive biomaterials used in tissue engineering including conductive composite films, conductive nanofibers, conductive hydrogels, and conductive composite scaffolds fabricated by various methods such as electrospinning, coating, or deposition by in situ polymerization. Furthermore, recent progress in tissue engineering applications using these conductive biomaterials including bone tissue engineering, muscle tissue engineering, nerve tissue engineering, cardiac tissue engineering, and wound healing application are discussed in detail.
AbstractList Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and poly(3,4-ethylenedioxythiophene)) with good biocompatibility find wide applications in biomedical fields including bioactuators, biosensors, neural implants, drug delivery systems, and tissue engineering scaffolds. This review focuses on these conductive polymers for tissue engineering applications. Conductive polymers exhibit promising conductivity as bioactive scaffolds for tissue regeneration, and their conductive nature allows cells or tissue cultured on them to be stimulated by electrical signals. However, their mechanical brittleness and poor processability restrict their application. Therefore, conductive polymeric composites based on conductive polymers and biocompatible biodegradable polymers (natural or synthetic) were developed. The major objective of this review is to summarize the conductive biomaterials used in tissue engineering including conductive composite films, conductive nanofibers, conductive hydrogels, and conductive composite scaffolds fabricated by various methods such as electrospinning, coating, or deposition by in situ polymerization. Furthermore, recent progress in tissue engineering applications using these conductive biomaterials including bone tissue engineering, muscle tissue engineering, nerve tissue engineering, cardiac tissue engineering, and wound healing application are discussed in detail.Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and poly(3,4-ethylenedioxythiophene)) with good biocompatibility find wide applications in biomedical fields including bioactuators, biosensors, neural implants, drug delivery systems, and tissue engineering scaffolds. This review focuses on these conductive polymers for tissue engineering applications. Conductive polymers exhibit promising conductivity as bioactive scaffolds for tissue regeneration, and their conductive nature allows cells or tissue cultured on them to be stimulated by electrical signals. However, their mechanical brittleness and poor processability restrict their application. Therefore, conductive polymeric composites based on conductive polymers and biocompatible biodegradable polymers (natural or synthetic) were developed. The major objective of this review is to summarize the conductive biomaterials used in tissue engineering including conductive composite films, conductive nanofibers, conductive hydrogels, and conductive composite scaffolds fabricated by various methods such as electrospinning, coating, or deposition by in situ polymerization. Furthermore, recent progress in tissue engineering applications using these conductive biomaterials including bone tissue engineering, muscle tissue engineering, nerve tissue engineering, cardiac tissue engineering, and wound healing application are discussed in detail.
Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and poly(3,4-ethylenedioxythiophene)) with good biocompatibility find wide applications in biomedical fields including bioactuators, biosensors, neural implants, drug delivery systems, and tissue engineering scaffolds. This review focuses on these conductive polymers for tissue engineering applications. Conductive polymers exhibit promising conductivity as bioactive scaffolds for tissue regeneration, and their conductive nature allows cells or tissue cultured on them to be stimulated by electrical signals. However, their mechanical brittleness and poor processability restrict their application. Therefore, conductive polymeric composites based on conductive polymers and biocompatible biodegradable polymers (natural or synthetic) were developed. The major objective of this review is to summarize the conductive biomaterials used in tissue engineering including conductive composite films, conductive nanofibers, conductive hydrogels, and conductive composite scaffolds fabricated by various methods such as electrospinning, coating, or deposition by in situ polymerization. Furthermore, recent progress in tissue engineering applications using these conductive biomaterials including bone tissue engineering, muscle tissue engineering, nerve tissue engineering, cardiac tissue engineering, and wound healing application are discussed in detail.
Author Ma, Peter X
Guo, Baolin
Author_xml – sequence: 1
  givenname: Baolin
  orcidid: 0000-0001-6756-1441
  surname: Guo
  fullname: Guo, Baolin
  organization: Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , China
– sequence: 2
  givenname: Peter X
  orcidid: 0000-0002-0191-9487
  surname: Ma
  fullname: Ma, Peter X
  organization: Departments of Biologic and Materials Sciences, Biomedical Engineering, and Materials Science and Engineering and Macromolecular Science and Engineering Center , University of Michigan , Ann Arbor , Michigan 48109 , United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29684268$$D View this record in MEDLINE/PubMed
BookMark eNpNj0tLxDAUhYOMOA_9Ay6kSxFab27SNF3KMD5gQBfjuiTt7VBpkzFpF_PvHXAEV-eD83HgLNnMeUeM3XLIOCB_NHXMbOcHU2faAmChLtiC56hSqQBn_3jOljF-AUApZH7F5lgqLVHpBXtYe9dM9di5ffLh--NAISatD8mui3GiZOP2nSMKp_6aXbamj3RzzhX7fN7s1q_p9v3lbf20TY0UMKZcGFBESmlBQlFBtikU1yQLMg1Co2WTt2jbXOeIVnAsNIEsc4nWSkDCFbv_3T0E_z1RHKuhizX1vXHkp1ghCA4CSg0n9e6sTnagpjqEbjDhWP39wx8gsFQ3
CitedBy_id crossref_primary_10_1016_j_polymer_2019_121858
crossref_primary_10_1080_00914037_2020_1825086
crossref_primary_10_3390_biom9090448
crossref_primary_10_1016_j_ceramint_2023_08_274
crossref_primary_10_1002_mabi_202000149
crossref_primary_10_3390_biology14050497
crossref_primary_10_1039_D3RA02336B
crossref_primary_10_1089_bioe_2020_0021
crossref_primary_10_1016_j_ijbiomac_2020_03_155
crossref_primary_10_1039_D0BM01268H
crossref_primary_10_3390_pharmaceutics16010134
crossref_primary_10_3390_ma16155459
crossref_primary_10_1016_j_jcis_2024_09_182
crossref_primary_10_1039_C9SC02033K
crossref_primary_10_1016_j_compscitech_2022_109793
crossref_primary_10_3390_jfb13010001
crossref_primary_10_1007_s43032_022_01048_0
crossref_primary_10_3390_gels11040269
crossref_primary_10_1039_D3MH01588B
crossref_primary_10_1016_j_bioactmat_2022_10_014
crossref_primary_10_3389_fmedt_2021_669763
crossref_primary_10_1007_s00289_025_05937_7
crossref_primary_10_1088_1758_5090_ac57a6
crossref_primary_10_1016_j_jpcs_2022_110949
crossref_primary_10_1093_rb_rbad099
crossref_primary_10_1002_adma_201806712
crossref_primary_10_1155_2021_8868431
crossref_primary_10_1039_D4BM01109K
crossref_primary_10_1016_j_jcis_2021_02_107
crossref_primary_10_1016_j_bbiosy_2025_100116
crossref_primary_10_1016_j_diamond_2023_110483
crossref_primary_10_1016_j_heliyon_2022_e12193
crossref_primary_10_1016_j_compositesb_2019_107415
crossref_primary_10_1016_j_matchemphys_2022_126205
crossref_primary_10_1080_09205063_2022_2104600
crossref_primary_10_1039_D1RA00413A
crossref_primary_10_3389_fbioe_2024_1294238
crossref_primary_10_1002_marc_202300246
crossref_primary_10_1002_adhm_201901358
crossref_primary_10_1002_adhm_202001571
crossref_primary_10_1016_j_mattod_2023_06_011
crossref_primary_10_3389_fchem_2022_1051678
crossref_primary_10_1002_cphc_201900545
crossref_primary_10_3390_gels7010024
crossref_primary_10_1016_j_cis_2024_103099
crossref_primary_10_3389_fbioe_2021_613787
crossref_primary_10_1016_j_jmps_2025_106050
crossref_primary_10_3390_pr8121680
crossref_primary_10_1088_1748_605X_acadc3
crossref_primary_10_1007_s11696_025_03908_w
crossref_primary_10_1002_smtd_202001060
crossref_primary_10_1126_science_abb0216
crossref_primary_10_1007_s10853_023_08291_z
crossref_primary_10_1002_adhm_202200941
crossref_primary_10_3390_cryst14110959
crossref_primary_10_1002_jbm_a_37016
crossref_primary_10_1039_C9QM00788A
crossref_primary_10_1016_j_actbio_2020_12_033
crossref_primary_10_1016_j_cej_2020_126387
crossref_primary_10_3390_polym12030709
crossref_primary_10_1016_j_cej_2019_121999
crossref_primary_10_26599_NR_2025_94907818
crossref_primary_10_1002_mabi_202300248
crossref_primary_10_1134_S1995421221030205
crossref_primary_10_3389_fbioe_2020_00414
crossref_primary_10_1088_1748_605X_ad0d85
crossref_primary_10_1016_j_mtcomm_2023_105704
crossref_primary_10_1016_j_polymer_2021_123694
crossref_primary_10_1007_s40820_021_00751_y
crossref_primary_10_1016_j_ijbiomac_2019_10_086
crossref_primary_10_1002_EXP_20210157
crossref_primary_10_3389_fbioe_2021_591838
crossref_primary_10_1088_2053_1591_abd826
crossref_primary_10_3390_bioengineering11030218
crossref_primary_10_3390_ma14174837
crossref_primary_10_1002_advs_202105586
crossref_primary_10_1016_j_porgcoat_2018_10_018
crossref_primary_10_1177_08853282231200963
crossref_primary_10_1007_s41745_019_00126_8
crossref_primary_10_1080_00914037_2021_1981319
crossref_primary_10_1177_09673911211028398
crossref_primary_10_3389_fmats_2022_1018815
crossref_primary_10_3390_polym13030474
crossref_primary_10_1007_s00289_021_03707_9
crossref_primary_10_1016_j_jelechem_2020_114754
crossref_primary_10_1039_D0QM00279H
crossref_primary_10_1002_smll_202309575
crossref_primary_10_3390_polym11020350
crossref_primary_10_1016_j_progpolymsci_2025_101994
crossref_primary_10_1021_acs_chemrev_4c00811
crossref_primary_10_1016_j_nwnano_2025_100151
crossref_primary_10_1016_j_eurpolymj_2021_110388
crossref_primary_10_1016_j_actbio_2021_08_031
crossref_primary_10_1002_adhm_202100012
crossref_primary_10_3390_ijms24031836
crossref_primary_10_1038_s41467_024_55401_9
crossref_primary_10_1080_00914037_2019_1581200
crossref_primary_10_1002_adhm_202401297
crossref_primary_10_1016_j_cirp_2024_04_018
crossref_primary_10_1002_adhm_202301759
crossref_primary_10_1021_acsbiomaterials_9b01601
crossref_primary_10_2147_IJN_S514978
crossref_primary_10_3389_fneur_2022_991099
crossref_primary_10_1039_D1BM00147G
crossref_primary_10_1016_j_colsurfb_2022_112455
crossref_primary_10_2147_IJN_S475320
crossref_primary_10_1002_adhm_202502497
crossref_primary_10_3390_ma18132965
crossref_primary_10_1016_j_tet_2018_12_035
crossref_primary_10_1002_jbm_a_37220
crossref_primary_10_1134_S1990793124701355
crossref_primary_10_1016_j_eurpolymj_2024_113187
crossref_primary_10_3390_ijms241713203
crossref_primary_10_1002_jbm_b_34253
crossref_primary_10_1016_j_polymertesting_2020_106672
crossref_primary_10_1016_j_jcis_2018_10_056
crossref_primary_10_3390_polym15183685
crossref_primary_10_1016_j_bioactmat_2025_02_034
crossref_primary_10_1016_j_biomaterials_2019_119708
crossref_primary_10_1002_mame_202000130
crossref_primary_10_1016_j_mtbio_2025_101805
crossref_primary_10_1016_j_carbpol_2019_115161
crossref_primary_10_1002_adhm_202201856
crossref_primary_10_1002_adhm_202200526
crossref_primary_10_1002_adfm_202508859
crossref_primary_10_1016_j_cej_2022_141110
crossref_primary_10_1016_j_snb_2021_130167
crossref_primary_10_1016_j_eurpolymj_2020_110051
crossref_primary_10_2147_IJN_S360670
crossref_primary_10_1016_j_electacta_2019_135142
crossref_primary_10_1016_j_actbio_2021_04_018
crossref_primary_10_1016_j_jddst_2023_105062
crossref_primary_10_1039_D3NR02527F
crossref_primary_10_3390_gels10020137
crossref_primary_10_1039_D1BM01104A
crossref_primary_10_1002_adfm_202211023
crossref_primary_10_3390_jfb16010010
crossref_primary_10_3390_polym15183783
crossref_primary_10_1089_ten_teb_2022_0217
crossref_primary_10_1002_adhm_202404484
crossref_primary_10_1016_j_jcis_2021_02_099
crossref_primary_10_2147_IJN_S436871
crossref_primary_10_1007_s10853_020_04561_2
crossref_primary_10_1007_s42242_021_00169_w
crossref_primary_10_1002_adfm_202203430
crossref_primary_10_1016_j_actbio_2021_05_052
crossref_primary_10_1016_j_actbio_2021_04_027
crossref_primary_10_3390_ma15248820
crossref_primary_10_1039_D0RA09620B
crossref_primary_10_1007_s12195_021_00702_y
crossref_primary_10_1038_s41563_023_01569_2
crossref_primary_10_1002_app_54641
crossref_primary_10_1016_j_ccr_2020_213378
crossref_primary_10_1016_j_carbpol_2023_121348
crossref_primary_10_1016_j_chemosphere_2019_125067
crossref_primary_10_2147_IJN_S436867
crossref_primary_10_1002_jbm_a_37418
crossref_primary_10_1186_s12951_022_01599_z
crossref_primary_10_1016_j_bios_2020_112620
crossref_primary_10_1016_j_jcis_2019_08_083
crossref_primary_10_2217_nnm_2021_0224
crossref_primary_10_1016_j_bioactmat_2022_06_001
crossref_primary_10_1016_j_biomaterials_2024_122770
crossref_primary_10_3390_molecules24163019
crossref_primary_10_1016_j_cej_2020_125335
crossref_primary_10_1002_admt_202401513
crossref_primary_10_1186_s11671_020_03457_z
crossref_primary_10_1002_jbm_a_36659
crossref_primary_10_1016_j_carbpol_2021_118531
crossref_primary_10_1016_j_colsurfa_2024_135597
crossref_primary_10_1039_D0MH01317J
crossref_primary_10_1038_s41583_021_00496_y
crossref_primary_10_1007_s12221_022_4374_y
crossref_primary_10_1007_s11706_022_0614_8
crossref_primary_10_18311_jnr_2025_47373
crossref_primary_10_1002_jbm_a_36894
crossref_primary_10_1021_acsbiomaterials_9b00812
crossref_primary_10_1080_10601325_2022_2132168
crossref_primary_10_3389_fbioe_2025_1533944
crossref_primary_10_1016_j_actbio_2022_08_048
crossref_primary_10_1039_D5RA01821H
crossref_primary_10_1002_app_50062
crossref_primary_10_1039_C9BM01203F
crossref_primary_10_1155_2020_5659682
crossref_primary_10_3390_polym11091437
crossref_primary_10_1002_app_52365
crossref_primary_10_1080_21691401_2019_1593850
crossref_primary_10_3390_polysaccharides5030024
crossref_primary_10_1002_slct_202201765
crossref_primary_10_1007_s12010_023_04526_6
crossref_primary_10_1016_j_cej_2019_05_043
crossref_primary_10_1002_advs_202205381
crossref_primary_10_1007_s42235_022_00284_z
crossref_primary_10_1002_admi_202000057
crossref_primary_10_1016_j_cej_2023_144634
crossref_primary_10_1016_j_cej_2020_126329
crossref_primary_10_1016_j_jconrel_2020_04_048
crossref_primary_10_1016_j_carbpol_2021_118871
crossref_primary_10_1038_s41598_020_78650_2
crossref_primary_10_1016_j_bioactmat_2025_03_017
crossref_primary_10_1007_s00441_022_03691_0
crossref_primary_10_1016_j_matpr_2023_03_804
crossref_primary_10_1016_j_ijbiomac_2025_142105
crossref_primary_10_1016_j_biomaterials_2024_122623
crossref_primary_10_1002_cbdv_202300622
crossref_primary_10_1016_j_bioactmat_2020_03_010
crossref_primary_10_1016_j_actbio_2024_01_016
crossref_primary_10_1002_marc_202100125
crossref_primary_10_3390_ma13010152
crossref_primary_10_3390_ijms222111543
crossref_primary_10_1016_j_brainresbull_2019_02_015
crossref_primary_10_1039_D3PY00191A
crossref_primary_10_1002_smll_202206487
crossref_primary_10_1016_j_eurpolymj_2021_110773
crossref_primary_10_1016_j_bprint_2018_e00035
crossref_primary_10_4103_1673_5374_272573
crossref_primary_10_1002_marc_202300683
crossref_primary_10_1016_j_eurpolymj_2019_109290
crossref_primary_10_1002_cphc_202200371
crossref_primary_10_1002_pat_4655
crossref_primary_10_1016_j_cej_2024_152530
crossref_primary_10_3389_fbioe_2023_1245897
crossref_primary_10_1016_j_bioadv_2024_214169
crossref_primary_10_1016_j_mtcomm_2024_109775
crossref_primary_10_1007_s10853_022_07336_z
crossref_primary_10_1016_j_colsurfb_2019_110549
crossref_primary_10_1007_s00289_021_03840_5
crossref_primary_10_1007_s10965_021_02498_x
crossref_primary_10_3390_polym13223880
crossref_primary_10_3389_fbioe_2021_718377
crossref_primary_10_1002_adma_202001439
crossref_primary_10_3390_ma12152491
crossref_primary_10_1016_j_ijbiomac_2024_134424
crossref_primary_10_1016_j_synthmet_2024_117700
crossref_primary_10_1063_5_0238817
crossref_primary_10_1016_j_biopha_2021_111422
crossref_primary_10_1016_j_cej_2022_139782
crossref_primary_10_1016_j_matchemphys_2019_122528
crossref_primary_10_1088_1361_665X_ad10bf
crossref_primary_10_3390_ijms232315016
crossref_primary_10_1016_j_mtcomm_2024_110828
crossref_primary_10_3390_electrochem3020022
crossref_primary_10_1007_s13204_021_02012_1
crossref_primary_10_1039_C9NR09283H
crossref_primary_10_1089_ten_tea_2023_0344
crossref_primary_10_1016_j_colsurfb_2020_111347
crossref_primary_10_1016_j_biomaterials_2019_119672
crossref_primary_10_1002_admi_202100929
crossref_primary_10_1002_adhm_202101838
crossref_primary_10_1016_j_actbio_2025_03_047
crossref_primary_10_1134_S1063784223900279
crossref_primary_10_1002_admt_202000384
crossref_primary_10_1007_s40883_021_00227_w
crossref_primary_10_3389_fbioe_2023_1180073
crossref_primary_10_1016_j_mattod_2023_09_005
crossref_primary_10_1021_acsaenm_4c00685
crossref_primary_10_1039_D5TB01588J
crossref_primary_10_1016_j_actbio_2021_11_038
crossref_primary_10_1016_j_bioelechem_2022_108127
crossref_primary_10_1016_j_porgcoat_2025_109105
crossref_primary_10_1002_celc_202400506
crossref_primary_10_1002_smsc_202200076
crossref_primary_10_1002_wnan_1568
crossref_primary_10_1039_D3SC00145H
crossref_primary_10_1002_mame_202500031
crossref_primary_10_1002_mabi_202200051
crossref_primary_10_1002_advs_202415601
crossref_primary_10_1016_j_addr_2025_115658
crossref_primary_10_1016_j_jallcom_2020_154147
crossref_primary_10_1002_adhm_202304300
crossref_primary_10_3390_ijms23084440
crossref_primary_10_1002_pat_6641
crossref_primary_10_1016_j_compositesb_2022_110098
crossref_primary_10_1002_smll_202508454
crossref_primary_10_1038_s41578_021_00394_w
crossref_primary_10_3390_fib7070066
crossref_primary_10_3390_polym11061068
crossref_primary_10_1016_j_tice_2019_06_003
crossref_primary_10_1016_j_jconrel_2022_03_014
crossref_primary_10_1016_j_matdes_2021_109484
crossref_primary_10_1016_j_ijbiomac_2022_10_255
crossref_primary_10_3390_nano12091521
crossref_primary_10_1016_j_cej_2021_129129
crossref_primary_10_3390_molecules25225296
crossref_primary_10_1016_j_actbio_2019_06_035
crossref_primary_10_1088_2053_1591_abf284
crossref_primary_10_3390_molecules27238326
crossref_primary_10_1016_j_mtcomm_2025_113281
crossref_primary_10_1002_pat_4579
crossref_primary_10_3390_polym12010111
crossref_primary_10_1155_2022_6042137
crossref_primary_10_3390_ijms252011183
crossref_primary_10_1007_s00249_021_01568_8
crossref_primary_10_1016_j_biomaterials_2019_119584
crossref_primary_10_3390_catal12020128
crossref_primary_10_1039_C9SC02555C
crossref_primary_10_3390_biomedicines12020289
crossref_primary_10_1016_j_progpolymsci_2022_101573
crossref_primary_10_3390_gels10020115
crossref_primary_10_1016_j_cej_2020_124888
crossref_primary_10_1016_j_mattod_2025_07_031
crossref_primary_10_1002_mabi_202200111
crossref_primary_10_1016_j_cej_2019_122043
crossref_primary_10_3389_fbioe_2022_904629
crossref_primary_10_1002_mabi_202100355
crossref_primary_10_1016_j_jcis_2024_04_209
crossref_primary_10_1016_j_biomaterials_2018_08_044
crossref_primary_10_1039_D0QM00868K
crossref_primary_10_1016_j_colsurfb_2022_112902
crossref_primary_10_1016_j_polymer_2022_125502
crossref_primary_10_1016_j_eurpolymj_2022_111068
crossref_primary_10_3389_fbioe_2022_876696
crossref_primary_10_1016_j_synthmet_2023_117515
crossref_primary_10_1016_j_tibtech_2023_11_017
crossref_primary_10_3389_fbioe_2022_912497
crossref_primary_10_1080_24701556_2020_1835974
crossref_primary_10_3389_fonc_2022_846917
crossref_primary_10_1080_15421406_2020_1860625
crossref_primary_10_1016_j_matchemphys_2019_121972
crossref_primary_10_3390_polym17162227
crossref_primary_10_1007_s12221_023_00285_7
crossref_primary_10_1016_j_cej_2021_130148
crossref_primary_10_1557_mrc_2020_10
crossref_primary_10_1002_pat_5483
crossref_primary_10_1007_s10856_020_06476_5
crossref_primary_10_1093_rb_rbab035
crossref_primary_10_3390_polym15010072
crossref_primary_10_1016_j_carbpol_2023_121773
crossref_primary_10_1002_adfm_202003542
crossref_primary_10_3390_molecules27020379
crossref_primary_10_1016_j_eurpolymj_2024_112895
crossref_primary_10_3390_gels6020013
crossref_primary_10_1002_mds3_10152
crossref_primary_10_1007_s40843_023_2799_7
crossref_primary_10_1016_j_synthmet_2022_117118
crossref_primary_10_1016_j_synthmet_2022_117239
crossref_primary_10_1002_adhm_202304117
crossref_primary_10_1016_j_jconrel_2024_08_040
crossref_primary_10_1002_adma_201806133
crossref_primary_10_1016_j_colsurfb_2023_113152
crossref_primary_10_1016_j_carbpol_2023_121308
crossref_primary_10_1002_app_52663
crossref_primary_10_1002_agt2_176
crossref_primary_10_1016_j_bioadv_2023_213616
crossref_primary_10_1088_2516_1091_ac93d3
crossref_primary_10_1002_adfm_202417280
crossref_primary_10_1016_j_biomaterials_2025_123385
crossref_primary_10_3389_fbioe_2021_794769
crossref_primary_10_1002_macp_202100331
crossref_primary_10_3390_gels9010039
crossref_primary_10_1021_acs_nanolett_5c02326
crossref_primary_10_1134_S156009042001008X
crossref_primary_10_1002_smll_201900046
crossref_primary_10_3390_polym11122008
crossref_primary_10_35414_akufemubid_1555391
crossref_primary_10_3390_membranes10090217
crossref_primary_10_1134_S1995421221020209
crossref_primary_10_1155_2020_4794982
crossref_primary_10_1016_j_est_2020_101821
crossref_primary_10_1002_adem_202301297
crossref_primary_10_1063_5_0218251
crossref_primary_10_1002_adhm_202101556
crossref_primary_10_1016_j_ijbiomac_2024_131549
crossref_primary_10_1002_anbr_202100075
crossref_primary_10_1016_j_bioactmat_2021_02_016
crossref_primary_10_1002_app_57578
crossref_primary_10_1039_D3MH01403G
crossref_primary_10_1088_1748_605X_ad792c
crossref_primary_10_3390_app11157168
crossref_primary_10_1002_adhm_202401875
crossref_primary_10_1002_advs_202204502
crossref_primary_10_1080_25740881_2023_2181703
crossref_primary_10_1016_j_ijbiomac_2025_142738
crossref_primary_10_1016_j_reactfunctpolym_2021_105064
crossref_primary_10_1016_j_heliyon_2024_e24584
crossref_primary_10_1186_s11671_018_2694_z
crossref_primary_10_1002_adhm_202001384
crossref_primary_10_1016_j_bprint_2022_e00234
crossref_primary_10_1016_j_msec_2021_112559
crossref_primary_10_1016_j_cej_2019_123464
crossref_primary_10_1016_j_cclet_2024_110442
crossref_primary_10_1002_adhm_202400675
crossref_primary_10_3389_fbioe_2024_1450267
crossref_primary_10_3390_polym16152131
crossref_primary_10_1002_admi_202200709
crossref_primary_10_1016_j_jconrel_2022_02_002
crossref_primary_10_1016_j_apsusc_2020_148827
crossref_primary_10_1016_j_colcom_2025_100856
crossref_primary_10_1002_app_49115
crossref_primary_10_1002_pat_5159
crossref_primary_10_1016_j_bios_2019_04_001
crossref_primary_10_1016_j_eurpolymj_2024_113096
crossref_primary_10_1016_j_neulet_2018_10_031
crossref_primary_10_1080_09205063_2021_2019366
crossref_primary_10_3389_fbioe_2021_641371
crossref_primary_10_1016_j_eurpolymj_2019_02_005
crossref_primary_10_1016_j_ijbiomac_2022_09_267
crossref_primary_10_1016_j_mtcomm_2025_112596
crossref_primary_10_1016_j_ijbiomac_2019_12_249
crossref_primary_10_1016_j_ijbiomac_2023_128458
crossref_primary_10_1007_s42452_022_05056_2
crossref_primary_10_1080_00914037_2022_2060219
crossref_primary_10_1002_mabi_202300132
crossref_primary_10_1039_D4BM00317A
crossref_primary_10_3390_app10186614
crossref_primary_10_1002_btm2_10347
crossref_primary_10_1016_j_actbio_2018_12_008
crossref_primary_10_1016_j_bioactmat_2023_05_014
crossref_primary_10_1016_j_brainres_2022_148163
crossref_primary_10_1002_elsa_202100165
crossref_primary_10_1039_D5CP01414J
crossref_primary_10_1038_s41598_019_51513_1
crossref_primary_10_1109_TUFFC_2020_3020283
crossref_primary_10_1016_j_ceramint_2021_07_038
crossref_primary_10_1088_1742_6596_2169_1_012036
crossref_primary_10_3390_gels8070454
crossref_primary_10_3390_nano15141080
crossref_primary_10_1007_s11936_025_01074_6
crossref_primary_10_1016_j_matchar_2023_112852
crossref_primary_10_1002_advs_201802077
crossref_primary_10_1002_app_57117
crossref_primary_10_1016_j_ijbiomac_2023_126041
crossref_primary_10_1002_advs_202416085
crossref_primary_10_1016_j_rsurfi_2025_100610
crossref_primary_10_1002_mabi_201800173
crossref_primary_10_1002_pen_25339
crossref_primary_10_1016_j_cej_2019_02_072
crossref_primary_10_1016_j_cej_2021_128449
crossref_primary_10_1016_j_eurpolymj_2022_111454
crossref_primary_10_1016_j_biomaterials_2025_123103
crossref_primary_10_1016_j_cej_2019_01_028
crossref_primary_10_1016_j_polymer_2024_127535
crossref_primary_10_1080_09506608_2021_1971428
crossref_primary_10_3389_fbioe_2023_1306184
crossref_primary_10_1007_s00396_023_05120_2
crossref_primary_10_1016_j_bioactmat_2025_06_003
crossref_primary_10_1016_j_carbpol_2022_120345
crossref_primary_10_1016_j_bioactmat_2020_08_015
crossref_primary_10_3390_ma13030512
crossref_primary_10_1016_j_apmt_2021_101117
crossref_primary_10_1016_j_ijbiomac_2020_08_054
crossref_primary_10_1002_app_49332
crossref_primary_10_1042_EBC20210003
crossref_primary_10_1002_adhm_202202699
crossref_primary_10_1016_j_colsurfb_2022_112756
crossref_primary_10_1002_adhm_201901372
crossref_primary_10_1016_j_apsusc_2022_155416
crossref_primary_10_1016_j_ijbiomac_2024_129323
crossref_primary_10_1016_j_mtchem_2020_100249
crossref_primary_10_1007_s00396_022_04997_9
crossref_primary_10_1016_j_mtchem_2024_102258
crossref_primary_10_1088_1748_605X_ad651d
crossref_primary_10_1016_j_coco_2022_101268
crossref_primary_10_1007_s10854_021_06481_6
crossref_primary_10_1016_j_synthmet_2024_117695
crossref_primary_10_1016_j_eurpolymj_2022_111225
crossref_primary_10_3389_fmats_2021_752813
crossref_primary_10_1002_admt_202301874
crossref_primary_10_3389_fchem_2019_00363
crossref_primary_10_1039_D0RA03579C
crossref_primary_10_1177_08853282221112999
crossref_primary_10_1002_adhm_202100784
crossref_primary_10_1016_j_synthmet_2020_116642
crossref_primary_10_3390_polym11030459
crossref_primary_10_1080_00914037_2019_1695209
crossref_primary_10_1016_j_eurpolymj_2022_111473
crossref_primary_10_1007_s41061_022_00395_5
crossref_primary_10_1088_1758_5090_ac59f2
crossref_primary_10_1016_j_smmf_2022_100011
crossref_primary_10_1016_j_matlet_2020_127401
crossref_primary_10_1016_j_bioelechem_2023_108484
crossref_primary_10_1016_j_polymdegradstab_2020_109232
crossref_primary_10_1016_j_biomaterials_2020_120164
crossref_primary_10_1021_acsbiomaterials_9b01682
crossref_primary_10_1039_C8PY00762D
crossref_primary_10_3390_bioengineering9110621
crossref_primary_10_1002_adfm_202406376
crossref_primary_10_1016_j_chemosphere_2023_139203
crossref_primary_10_1039_D0BM02077J
crossref_primary_10_1002_cbic_202400733
crossref_primary_10_1039_D1RA01338F
crossref_primary_10_1016_j_mseb_2025_118685
crossref_primary_10_1002_adhm_202403995
crossref_primary_10_1088_2058_8585_ab71e1
crossref_primary_10_1002_advs_202305347
crossref_primary_10_1016_j_coelec_2023_101297
crossref_primary_10_1039_D5PM00068H
crossref_primary_10_1016_j_mtcomm_2023_105791
crossref_primary_10_1002_brx2_70012
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acs.biomac.8b00276
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1526-4602
ExternalDocumentID 29684268
Genre Review
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL136231
GroupedDBID ---
-~X
23N
4.4
53G
55A
5GY
5VS
7~N
AABXI
AAHBH
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CGR
CS3
CUPRZ
CUY
CVF
DU5
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH9
JG~
NPM
P2P
RNS
ROL
TN5
UI2
VF5
VG9
W1F
XKZ
ZCA
~02
7X8
ID FETCH-LOGICAL-a430t-13a06ee6683e36e7ebd7618e47ead20d84d5f2bf58522b31278e049542bb402e2
IEDL.DBID 7X8
ISICitedReferencesCount 634
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435226200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1526-4602
IngestDate Fri Jul 11 15:19:35 EDT 2025
Mon Jul 21 06:06:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a430t-13a06ee6683e36e7ebd7618e47ead20d84d5f2bf58522b31278e049542bb402e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6756-1441
0000-0002-0191-9487
PMID 29684268
PQID 2031030980
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2031030980
pubmed_primary_29684268
PublicationCentury 2000
PublicationDate 2018-06-11
PublicationDateYYYYMMDD 2018-06-11
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-11
  day: 11
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biomacromolecules
PublicationTitleAlternate Biomacromolecules
PublicationYear 2018
SSID ssj0009345
Score 2.6965053
SecondaryResourceType review_article
Snippet Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1764
SubjectTerms Animals
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Humans
Hydrogels - chemistry
Nanofibers - chemistry
Polymers - chemical synthesis
Polymers - chemistry
Tissue Engineering - instrumentation
Tissue Engineering - methods
Tissue Scaffolds - chemistry
Wound Healing
Title Conducting Polymers for Tissue Engineering
URI https://www.ncbi.nlm.nih.gov/pubmed/29684268
https://www.proquest.com/docview/2031030980
Volume 19
WOSCitedRecordID wos000435226200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8RADA7qCnrx_dj1QQVPQrWdmWamJ5HFxYvLHlbYW-m0UxCkXa0K_nuTtst6EQQvvbVMk0zyJZPJB3ApFKYYZOiz7_dV4YxvEbkGT-g0owgeF7Yhm9DjsZnN4klXcKu7tsqFT2wcdV5lXCOnJL1hxIpNcDt_9Zk1ik9XOwqNVehJgjJs1Xq2nBYey4akmEIU-gq5k2fQDisIb9KsvuYL7rRow4FK4-8Qswk1o-3_LnIHtjqQ6d21VrELK67cg43hgtttH66GVcmDXilueZPq5YuL1x7BV2_a6MH7MaXwAJ5G99Phg9-xJvipkgFzy6cBOodopJPotLO5xtA4pcloRJAblUeFsAXlCUJYGQptHKUJkRLWUjLpxCGslVXpjsGLpIgxC_juqialoS2EzpW1KGxOaZTrw8VCDAn9AB81pKWrPupkKYg-HLWyTObt-IyEvmkIF5jBH94-gU1CKIZ7s8LwFHoF7Ul3BuvZ5_tz_XbeqJue48njN0Xnsrg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conducting+Polymers+for+Tissue+Engineering&rft.jtitle=Biomacromolecules&rft.au=Guo%2C+Baolin&rft.au=Ma%2C+Peter+X&rft.date=2018-06-11&rft.eissn=1526-4602&rft.volume=19&rft.issue=6&rft.spage=1764&rft_id=info:doi/10.1021%2Facs.biomac.8b00276&rft_id=info%3Apmid%2F29684268&rft_id=info%3Apmid%2F29684268&rft.externalDocID=29684268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-4602&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-4602&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-4602&client=summon