Conducting Polymers for Tissue Engineering
Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and poly(3,4-ethylenedioxythiophene)) with good biocompatibility find wide applications in biomedical fields including bioactuators, biosensors, neural implants, drug deli...
Uložené v:
| Vydané v: | Biomacromolecules Ročník 19; číslo 6; s. 1764 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
11.06.2018
|
| Predmet: | |
| ISSN: | 1526-4602, 1526-4602 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and poly(3,4-ethylenedioxythiophene)) with good biocompatibility find wide applications in biomedical fields including bioactuators, biosensors, neural implants, drug delivery systems, and tissue engineering scaffolds. This review focuses on these conductive polymers for tissue engineering applications. Conductive polymers exhibit promising conductivity as bioactive scaffolds for tissue regeneration, and their conductive nature allows cells or tissue cultured on them to be stimulated by electrical signals. However, their mechanical brittleness and poor processability restrict their application. Therefore, conductive polymeric composites based on conductive polymers and biocompatible biodegradable polymers (natural or synthetic) were developed. The major objective of this review is to summarize the conductive biomaterials used in tissue engineering including conductive composite films, conductive nanofibers, conductive hydrogels, and conductive composite scaffolds fabricated by various methods such as electrospinning, coating, or deposition by in situ polymerization. Furthermore, recent progress in tissue engineering applications using these conductive biomaterials including bone tissue engineering, muscle tissue engineering, nerve tissue engineering, cardiac tissue engineering, and wound healing application are discussed in detail. |
|---|---|
| AbstractList | Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and poly(3,4-ethylenedioxythiophene)) with good biocompatibility find wide applications in biomedical fields including bioactuators, biosensors, neural implants, drug delivery systems, and tissue engineering scaffolds. This review focuses on these conductive polymers for tissue engineering applications. Conductive polymers exhibit promising conductivity as bioactive scaffolds for tissue regeneration, and their conductive nature allows cells or tissue cultured on them to be stimulated by electrical signals. However, their mechanical brittleness and poor processability restrict their application. Therefore, conductive polymeric composites based on conductive polymers and biocompatible biodegradable polymers (natural or synthetic) were developed. The major objective of this review is to summarize the conductive biomaterials used in tissue engineering including conductive composite films, conductive nanofibers, conductive hydrogels, and conductive composite scaffolds fabricated by various methods such as electrospinning, coating, or deposition by in situ polymerization. Furthermore, recent progress in tissue engineering applications using these conductive biomaterials including bone tissue engineering, muscle tissue engineering, nerve tissue engineering, cardiac tissue engineering, and wound healing application are discussed in detail.Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and poly(3,4-ethylenedioxythiophene)) with good biocompatibility find wide applications in biomedical fields including bioactuators, biosensors, neural implants, drug delivery systems, and tissue engineering scaffolds. This review focuses on these conductive polymers for tissue engineering applications. Conductive polymers exhibit promising conductivity as bioactive scaffolds for tissue regeneration, and their conductive nature allows cells or tissue cultured on them to be stimulated by electrical signals. However, their mechanical brittleness and poor processability restrict their application. Therefore, conductive polymeric composites based on conductive polymers and biocompatible biodegradable polymers (natural or synthetic) were developed. The major objective of this review is to summarize the conductive biomaterials used in tissue engineering including conductive composite films, conductive nanofibers, conductive hydrogels, and conductive composite scaffolds fabricated by various methods such as electrospinning, coating, or deposition by in situ polymerization. Furthermore, recent progress in tissue engineering applications using these conductive biomaterials including bone tissue engineering, muscle tissue engineering, nerve tissue engineering, cardiac tissue engineering, and wound healing application are discussed in detail. Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and poly(3,4-ethylenedioxythiophene)) with good biocompatibility find wide applications in biomedical fields including bioactuators, biosensors, neural implants, drug delivery systems, and tissue engineering scaffolds. This review focuses on these conductive polymers for tissue engineering applications. Conductive polymers exhibit promising conductivity as bioactive scaffolds for tissue regeneration, and their conductive nature allows cells or tissue cultured on them to be stimulated by electrical signals. However, their mechanical brittleness and poor processability restrict their application. Therefore, conductive polymeric composites based on conductive polymers and biocompatible biodegradable polymers (natural or synthetic) were developed. The major objective of this review is to summarize the conductive biomaterials used in tissue engineering including conductive composite films, conductive nanofibers, conductive hydrogels, and conductive composite scaffolds fabricated by various methods such as electrospinning, coating, or deposition by in situ polymerization. Furthermore, recent progress in tissue engineering applications using these conductive biomaterials including bone tissue engineering, muscle tissue engineering, nerve tissue engineering, cardiac tissue engineering, and wound healing application are discussed in detail. |
| Author | Ma, Peter X Guo, Baolin |
| Author_xml | – sequence: 1 givenname: Baolin orcidid: 0000-0001-6756-1441 surname: Guo fullname: Guo, Baolin organization: Frontier Institute of Science and Technology and State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , China – sequence: 2 givenname: Peter X orcidid: 0000-0002-0191-9487 surname: Ma fullname: Ma, Peter X organization: Departments of Biologic and Materials Sciences, Biomedical Engineering, and Materials Science and Engineering and Macromolecular Science and Engineering Center , University of Michigan , Ann Arbor , Michigan 48109 , United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29684268$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNj0tLxDAUhYOMOA_9Ay6kSxFab27SNF3KMD5gQBfjuiTt7VBpkzFpF_PvHXAEV-eD83HgLNnMeUeM3XLIOCB_NHXMbOcHU2faAmChLtiC56hSqQBn_3jOljF-AUApZH7F5lgqLVHpBXtYe9dM9di5ffLh--NAISatD8mui3GiZOP2nSMKp_6aXbamj3RzzhX7fN7s1q_p9v3lbf20TY0UMKZcGFBESmlBQlFBtikU1yQLMg1Co2WTt2jbXOeIVnAsNIEsc4nWSkDCFbv_3T0E_z1RHKuhizX1vXHkp1ghCA4CSg0n9e6sTnagpjqEbjDhWP39wx8gsFQ3 |
| CitedBy_id | crossref_primary_10_1016_j_polymer_2019_121858 crossref_primary_10_1080_00914037_2020_1825086 crossref_primary_10_3390_biom9090448 crossref_primary_10_1016_j_ceramint_2023_08_274 crossref_primary_10_1002_mabi_202000149 crossref_primary_10_3390_biology14050497 crossref_primary_10_1039_D3RA02336B crossref_primary_10_1089_bioe_2020_0021 crossref_primary_10_1016_j_ijbiomac_2020_03_155 crossref_primary_10_1039_D0BM01268H crossref_primary_10_3390_pharmaceutics16010134 crossref_primary_10_3390_ma16155459 crossref_primary_10_1016_j_jcis_2024_09_182 crossref_primary_10_1039_C9SC02033K crossref_primary_10_1016_j_compscitech_2022_109793 crossref_primary_10_3390_jfb13010001 crossref_primary_10_1007_s43032_022_01048_0 crossref_primary_10_3390_gels11040269 crossref_primary_10_1039_D3MH01588B crossref_primary_10_1016_j_bioactmat_2022_10_014 crossref_primary_10_3389_fmedt_2021_669763 crossref_primary_10_1007_s00289_025_05937_7 crossref_primary_10_1088_1758_5090_ac57a6 crossref_primary_10_1016_j_jpcs_2022_110949 crossref_primary_10_1093_rb_rbad099 crossref_primary_10_1002_adma_201806712 crossref_primary_10_1155_2021_8868431 crossref_primary_10_1039_D4BM01109K crossref_primary_10_1016_j_jcis_2021_02_107 crossref_primary_10_1016_j_bbiosy_2025_100116 crossref_primary_10_1016_j_diamond_2023_110483 crossref_primary_10_1016_j_heliyon_2022_e12193 crossref_primary_10_1016_j_compositesb_2019_107415 crossref_primary_10_1016_j_matchemphys_2022_126205 crossref_primary_10_1080_09205063_2022_2104600 crossref_primary_10_1039_D1RA00413A crossref_primary_10_3389_fbioe_2024_1294238 crossref_primary_10_1002_marc_202300246 crossref_primary_10_1002_adhm_201901358 crossref_primary_10_1002_adhm_202001571 crossref_primary_10_1016_j_mattod_2023_06_011 crossref_primary_10_3389_fchem_2022_1051678 crossref_primary_10_1002_cphc_201900545 crossref_primary_10_3390_gels7010024 crossref_primary_10_1016_j_cis_2024_103099 crossref_primary_10_3389_fbioe_2021_613787 crossref_primary_10_1016_j_jmps_2025_106050 crossref_primary_10_3390_pr8121680 crossref_primary_10_1088_1748_605X_acadc3 crossref_primary_10_1007_s11696_025_03908_w crossref_primary_10_1002_smtd_202001060 crossref_primary_10_1126_science_abb0216 crossref_primary_10_1007_s10853_023_08291_z crossref_primary_10_1002_adhm_202200941 crossref_primary_10_3390_cryst14110959 crossref_primary_10_1002_jbm_a_37016 crossref_primary_10_1039_C9QM00788A crossref_primary_10_1016_j_actbio_2020_12_033 crossref_primary_10_1016_j_cej_2020_126387 crossref_primary_10_3390_polym12030709 crossref_primary_10_1016_j_cej_2019_121999 crossref_primary_10_26599_NR_2025_94907818 crossref_primary_10_1002_mabi_202300248 crossref_primary_10_1134_S1995421221030205 crossref_primary_10_3389_fbioe_2020_00414 crossref_primary_10_1088_1748_605X_ad0d85 crossref_primary_10_1016_j_mtcomm_2023_105704 crossref_primary_10_1016_j_polymer_2021_123694 crossref_primary_10_1007_s40820_021_00751_y crossref_primary_10_1016_j_ijbiomac_2019_10_086 crossref_primary_10_1002_EXP_20210157 crossref_primary_10_3389_fbioe_2021_591838 crossref_primary_10_1088_2053_1591_abd826 crossref_primary_10_3390_bioengineering11030218 crossref_primary_10_3390_ma14174837 crossref_primary_10_1002_advs_202105586 crossref_primary_10_1016_j_porgcoat_2018_10_018 crossref_primary_10_1177_08853282231200963 crossref_primary_10_1007_s41745_019_00126_8 crossref_primary_10_1080_00914037_2021_1981319 crossref_primary_10_1177_09673911211028398 crossref_primary_10_3389_fmats_2022_1018815 crossref_primary_10_3390_polym13030474 crossref_primary_10_1007_s00289_021_03707_9 crossref_primary_10_1016_j_jelechem_2020_114754 crossref_primary_10_1039_D0QM00279H crossref_primary_10_1002_smll_202309575 crossref_primary_10_3390_polym11020350 crossref_primary_10_1016_j_progpolymsci_2025_101994 crossref_primary_10_1021_acs_chemrev_4c00811 crossref_primary_10_1016_j_nwnano_2025_100151 crossref_primary_10_1016_j_eurpolymj_2021_110388 crossref_primary_10_1016_j_actbio_2021_08_031 crossref_primary_10_1002_adhm_202100012 crossref_primary_10_3390_ijms24031836 crossref_primary_10_1038_s41467_024_55401_9 crossref_primary_10_1080_00914037_2019_1581200 crossref_primary_10_1002_adhm_202401297 crossref_primary_10_1016_j_cirp_2024_04_018 crossref_primary_10_1002_adhm_202301759 crossref_primary_10_1021_acsbiomaterials_9b01601 crossref_primary_10_2147_IJN_S514978 crossref_primary_10_3389_fneur_2022_991099 crossref_primary_10_1039_D1BM00147G crossref_primary_10_1016_j_colsurfb_2022_112455 crossref_primary_10_2147_IJN_S475320 crossref_primary_10_1002_adhm_202502497 crossref_primary_10_3390_ma18132965 crossref_primary_10_1016_j_tet_2018_12_035 crossref_primary_10_1002_jbm_a_37220 crossref_primary_10_1134_S1990793124701355 crossref_primary_10_1016_j_eurpolymj_2024_113187 crossref_primary_10_3390_ijms241713203 crossref_primary_10_1002_jbm_b_34253 crossref_primary_10_1016_j_polymertesting_2020_106672 crossref_primary_10_1016_j_jcis_2018_10_056 crossref_primary_10_3390_polym15183685 crossref_primary_10_1016_j_bioactmat_2025_02_034 crossref_primary_10_1016_j_biomaterials_2019_119708 crossref_primary_10_1002_mame_202000130 crossref_primary_10_1016_j_mtbio_2025_101805 crossref_primary_10_1016_j_carbpol_2019_115161 crossref_primary_10_1002_adhm_202201856 crossref_primary_10_1002_adhm_202200526 crossref_primary_10_1002_adfm_202508859 crossref_primary_10_1016_j_cej_2022_141110 crossref_primary_10_1016_j_snb_2021_130167 crossref_primary_10_1016_j_eurpolymj_2020_110051 crossref_primary_10_2147_IJN_S360670 crossref_primary_10_1016_j_electacta_2019_135142 crossref_primary_10_1016_j_actbio_2021_04_018 crossref_primary_10_1016_j_jddst_2023_105062 crossref_primary_10_1039_D3NR02527F crossref_primary_10_3390_gels10020137 crossref_primary_10_1039_D1BM01104A crossref_primary_10_1002_adfm_202211023 crossref_primary_10_3390_jfb16010010 crossref_primary_10_3390_polym15183783 crossref_primary_10_1089_ten_teb_2022_0217 crossref_primary_10_1002_adhm_202404484 crossref_primary_10_1016_j_jcis_2021_02_099 crossref_primary_10_2147_IJN_S436871 crossref_primary_10_1007_s10853_020_04561_2 crossref_primary_10_1007_s42242_021_00169_w crossref_primary_10_1002_adfm_202203430 crossref_primary_10_1016_j_actbio_2021_05_052 crossref_primary_10_1016_j_actbio_2021_04_027 crossref_primary_10_3390_ma15248820 crossref_primary_10_1039_D0RA09620B crossref_primary_10_1007_s12195_021_00702_y crossref_primary_10_1038_s41563_023_01569_2 crossref_primary_10_1002_app_54641 crossref_primary_10_1016_j_ccr_2020_213378 crossref_primary_10_1016_j_carbpol_2023_121348 crossref_primary_10_1016_j_chemosphere_2019_125067 crossref_primary_10_2147_IJN_S436867 crossref_primary_10_1002_jbm_a_37418 crossref_primary_10_1186_s12951_022_01599_z crossref_primary_10_1016_j_bios_2020_112620 crossref_primary_10_1016_j_jcis_2019_08_083 crossref_primary_10_2217_nnm_2021_0224 crossref_primary_10_1016_j_bioactmat_2022_06_001 crossref_primary_10_1016_j_biomaterials_2024_122770 crossref_primary_10_3390_molecules24163019 crossref_primary_10_1016_j_cej_2020_125335 crossref_primary_10_1002_admt_202401513 crossref_primary_10_1186_s11671_020_03457_z crossref_primary_10_1002_jbm_a_36659 crossref_primary_10_1016_j_carbpol_2021_118531 crossref_primary_10_1016_j_colsurfa_2024_135597 crossref_primary_10_1039_D0MH01317J crossref_primary_10_1038_s41583_021_00496_y crossref_primary_10_1007_s12221_022_4374_y crossref_primary_10_1007_s11706_022_0614_8 crossref_primary_10_18311_jnr_2025_47373 crossref_primary_10_1002_jbm_a_36894 crossref_primary_10_1021_acsbiomaterials_9b00812 crossref_primary_10_1080_10601325_2022_2132168 crossref_primary_10_3389_fbioe_2025_1533944 crossref_primary_10_1016_j_actbio_2022_08_048 crossref_primary_10_1039_D5RA01821H crossref_primary_10_1002_app_50062 crossref_primary_10_1039_C9BM01203F crossref_primary_10_1155_2020_5659682 crossref_primary_10_3390_polym11091437 crossref_primary_10_1002_app_52365 crossref_primary_10_1080_21691401_2019_1593850 crossref_primary_10_3390_polysaccharides5030024 crossref_primary_10_1002_slct_202201765 crossref_primary_10_1007_s12010_023_04526_6 crossref_primary_10_1016_j_cej_2019_05_043 crossref_primary_10_1002_advs_202205381 crossref_primary_10_1007_s42235_022_00284_z crossref_primary_10_1002_admi_202000057 crossref_primary_10_1016_j_cej_2023_144634 crossref_primary_10_1016_j_cej_2020_126329 crossref_primary_10_1016_j_jconrel_2020_04_048 crossref_primary_10_1016_j_carbpol_2021_118871 crossref_primary_10_1038_s41598_020_78650_2 crossref_primary_10_1016_j_bioactmat_2025_03_017 crossref_primary_10_1007_s00441_022_03691_0 crossref_primary_10_1016_j_matpr_2023_03_804 crossref_primary_10_1016_j_ijbiomac_2025_142105 crossref_primary_10_1016_j_biomaterials_2024_122623 crossref_primary_10_1002_cbdv_202300622 crossref_primary_10_1016_j_bioactmat_2020_03_010 crossref_primary_10_1016_j_actbio_2024_01_016 crossref_primary_10_1002_marc_202100125 crossref_primary_10_3390_ma13010152 crossref_primary_10_3390_ijms222111543 crossref_primary_10_1016_j_brainresbull_2019_02_015 crossref_primary_10_1039_D3PY00191A crossref_primary_10_1002_smll_202206487 crossref_primary_10_1016_j_eurpolymj_2021_110773 crossref_primary_10_1016_j_bprint_2018_e00035 crossref_primary_10_4103_1673_5374_272573 crossref_primary_10_1002_marc_202300683 crossref_primary_10_1016_j_eurpolymj_2019_109290 crossref_primary_10_1002_cphc_202200371 crossref_primary_10_1002_pat_4655 crossref_primary_10_1016_j_cej_2024_152530 crossref_primary_10_3389_fbioe_2023_1245897 crossref_primary_10_1016_j_bioadv_2024_214169 crossref_primary_10_1016_j_mtcomm_2024_109775 crossref_primary_10_1007_s10853_022_07336_z crossref_primary_10_1016_j_colsurfb_2019_110549 crossref_primary_10_1007_s00289_021_03840_5 crossref_primary_10_1007_s10965_021_02498_x crossref_primary_10_3390_polym13223880 crossref_primary_10_3389_fbioe_2021_718377 crossref_primary_10_1002_adma_202001439 crossref_primary_10_3390_ma12152491 crossref_primary_10_1016_j_ijbiomac_2024_134424 crossref_primary_10_1016_j_synthmet_2024_117700 crossref_primary_10_1063_5_0238817 crossref_primary_10_1016_j_biopha_2021_111422 crossref_primary_10_1016_j_cej_2022_139782 crossref_primary_10_1016_j_matchemphys_2019_122528 crossref_primary_10_1088_1361_665X_ad10bf crossref_primary_10_3390_ijms232315016 crossref_primary_10_1016_j_mtcomm_2024_110828 crossref_primary_10_3390_electrochem3020022 crossref_primary_10_1007_s13204_021_02012_1 crossref_primary_10_1039_C9NR09283H crossref_primary_10_1089_ten_tea_2023_0344 crossref_primary_10_1016_j_colsurfb_2020_111347 crossref_primary_10_1016_j_biomaterials_2019_119672 crossref_primary_10_1002_admi_202100929 crossref_primary_10_1002_adhm_202101838 crossref_primary_10_1016_j_actbio_2025_03_047 crossref_primary_10_1134_S1063784223900279 crossref_primary_10_1002_admt_202000384 crossref_primary_10_1007_s40883_021_00227_w crossref_primary_10_3389_fbioe_2023_1180073 crossref_primary_10_1016_j_mattod_2023_09_005 crossref_primary_10_1021_acsaenm_4c00685 crossref_primary_10_1039_D5TB01588J crossref_primary_10_1016_j_actbio_2021_11_038 crossref_primary_10_1016_j_bioelechem_2022_108127 crossref_primary_10_1016_j_porgcoat_2025_109105 crossref_primary_10_1002_celc_202400506 crossref_primary_10_1002_smsc_202200076 crossref_primary_10_1002_wnan_1568 crossref_primary_10_1039_D3SC00145H crossref_primary_10_1002_mame_202500031 crossref_primary_10_1002_mabi_202200051 crossref_primary_10_1002_advs_202415601 crossref_primary_10_1016_j_addr_2025_115658 crossref_primary_10_1016_j_jallcom_2020_154147 crossref_primary_10_1002_adhm_202304300 crossref_primary_10_3390_ijms23084440 crossref_primary_10_1002_pat_6641 crossref_primary_10_1016_j_compositesb_2022_110098 crossref_primary_10_1002_smll_202508454 crossref_primary_10_1038_s41578_021_00394_w crossref_primary_10_3390_fib7070066 crossref_primary_10_3390_polym11061068 crossref_primary_10_1016_j_tice_2019_06_003 crossref_primary_10_1016_j_jconrel_2022_03_014 crossref_primary_10_1016_j_matdes_2021_109484 crossref_primary_10_1016_j_ijbiomac_2022_10_255 crossref_primary_10_3390_nano12091521 crossref_primary_10_1016_j_cej_2021_129129 crossref_primary_10_3390_molecules25225296 crossref_primary_10_1016_j_actbio_2019_06_035 crossref_primary_10_1088_2053_1591_abf284 crossref_primary_10_3390_molecules27238326 crossref_primary_10_1016_j_mtcomm_2025_113281 crossref_primary_10_1002_pat_4579 crossref_primary_10_3390_polym12010111 crossref_primary_10_1155_2022_6042137 crossref_primary_10_3390_ijms252011183 crossref_primary_10_1007_s00249_021_01568_8 crossref_primary_10_1016_j_biomaterials_2019_119584 crossref_primary_10_3390_catal12020128 crossref_primary_10_1039_C9SC02555C crossref_primary_10_3390_biomedicines12020289 crossref_primary_10_1016_j_progpolymsci_2022_101573 crossref_primary_10_3390_gels10020115 crossref_primary_10_1016_j_cej_2020_124888 crossref_primary_10_1016_j_mattod_2025_07_031 crossref_primary_10_1002_mabi_202200111 crossref_primary_10_1016_j_cej_2019_122043 crossref_primary_10_3389_fbioe_2022_904629 crossref_primary_10_1002_mabi_202100355 crossref_primary_10_1016_j_jcis_2024_04_209 crossref_primary_10_1016_j_biomaterials_2018_08_044 crossref_primary_10_1039_D0QM00868K crossref_primary_10_1016_j_colsurfb_2022_112902 crossref_primary_10_1016_j_polymer_2022_125502 crossref_primary_10_1016_j_eurpolymj_2022_111068 crossref_primary_10_3389_fbioe_2022_876696 crossref_primary_10_1016_j_synthmet_2023_117515 crossref_primary_10_1016_j_tibtech_2023_11_017 crossref_primary_10_3389_fbioe_2022_912497 crossref_primary_10_1080_24701556_2020_1835974 crossref_primary_10_3389_fonc_2022_846917 crossref_primary_10_1080_15421406_2020_1860625 crossref_primary_10_1016_j_matchemphys_2019_121972 crossref_primary_10_3390_polym17162227 crossref_primary_10_1007_s12221_023_00285_7 crossref_primary_10_1016_j_cej_2021_130148 crossref_primary_10_1557_mrc_2020_10 crossref_primary_10_1002_pat_5483 crossref_primary_10_1007_s10856_020_06476_5 crossref_primary_10_1093_rb_rbab035 crossref_primary_10_3390_polym15010072 crossref_primary_10_1016_j_carbpol_2023_121773 crossref_primary_10_1002_adfm_202003542 crossref_primary_10_3390_molecules27020379 crossref_primary_10_1016_j_eurpolymj_2024_112895 crossref_primary_10_3390_gels6020013 crossref_primary_10_1002_mds3_10152 crossref_primary_10_1007_s40843_023_2799_7 crossref_primary_10_1016_j_synthmet_2022_117118 crossref_primary_10_1016_j_synthmet_2022_117239 crossref_primary_10_1002_adhm_202304117 crossref_primary_10_1016_j_jconrel_2024_08_040 crossref_primary_10_1002_adma_201806133 crossref_primary_10_1016_j_colsurfb_2023_113152 crossref_primary_10_1016_j_carbpol_2023_121308 crossref_primary_10_1002_app_52663 crossref_primary_10_1002_agt2_176 crossref_primary_10_1016_j_bioadv_2023_213616 crossref_primary_10_1088_2516_1091_ac93d3 crossref_primary_10_1002_adfm_202417280 crossref_primary_10_1016_j_biomaterials_2025_123385 crossref_primary_10_3389_fbioe_2021_794769 crossref_primary_10_1002_macp_202100331 crossref_primary_10_3390_gels9010039 crossref_primary_10_1021_acs_nanolett_5c02326 crossref_primary_10_1134_S156009042001008X crossref_primary_10_1002_smll_201900046 crossref_primary_10_3390_polym11122008 crossref_primary_10_35414_akufemubid_1555391 crossref_primary_10_3390_membranes10090217 crossref_primary_10_1134_S1995421221020209 crossref_primary_10_1155_2020_4794982 crossref_primary_10_1016_j_est_2020_101821 crossref_primary_10_1002_adem_202301297 crossref_primary_10_1063_5_0218251 crossref_primary_10_1002_adhm_202101556 crossref_primary_10_1016_j_ijbiomac_2024_131549 crossref_primary_10_1002_anbr_202100075 crossref_primary_10_1016_j_bioactmat_2021_02_016 crossref_primary_10_1002_app_57578 crossref_primary_10_1039_D3MH01403G crossref_primary_10_1088_1748_605X_ad792c crossref_primary_10_3390_app11157168 crossref_primary_10_1002_adhm_202401875 crossref_primary_10_1002_advs_202204502 crossref_primary_10_1080_25740881_2023_2181703 crossref_primary_10_1016_j_ijbiomac_2025_142738 crossref_primary_10_1016_j_reactfunctpolym_2021_105064 crossref_primary_10_1016_j_heliyon_2024_e24584 crossref_primary_10_1186_s11671_018_2694_z crossref_primary_10_1002_adhm_202001384 crossref_primary_10_1016_j_bprint_2022_e00234 crossref_primary_10_1016_j_msec_2021_112559 crossref_primary_10_1016_j_cej_2019_123464 crossref_primary_10_1016_j_cclet_2024_110442 crossref_primary_10_1002_adhm_202400675 crossref_primary_10_3389_fbioe_2024_1450267 crossref_primary_10_3390_polym16152131 crossref_primary_10_1002_admi_202200709 crossref_primary_10_1016_j_jconrel_2022_02_002 crossref_primary_10_1016_j_apsusc_2020_148827 crossref_primary_10_1016_j_colcom_2025_100856 crossref_primary_10_1002_app_49115 crossref_primary_10_1002_pat_5159 crossref_primary_10_1016_j_bios_2019_04_001 crossref_primary_10_1016_j_eurpolymj_2024_113096 crossref_primary_10_1016_j_neulet_2018_10_031 crossref_primary_10_1080_09205063_2021_2019366 crossref_primary_10_3389_fbioe_2021_641371 crossref_primary_10_1016_j_eurpolymj_2019_02_005 crossref_primary_10_1016_j_ijbiomac_2022_09_267 crossref_primary_10_1016_j_mtcomm_2025_112596 crossref_primary_10_1016_j_ijbiomac_2019_12_249 crossref_primary_10_1016_j_ijbiomac_2023_128458 crossref_primary_10_1007_s42452_022_05056_2 crossref_primary_10_1080_00914037_2022_2060219 crossref_primary_10_1002_mabi_202300132 crossref_primary_10_1039_D4BM00317A crossref_primary_10_3390_app10186614 crossref_primary_10_1002_btm2_10347 crossref_primary_10_1016_j_actbio_2018_12_008 crossref_primary_10_1016_j_bioactmat_2023_05_014 crossref_primary_10_1016_j_brainres_2022_148163 crossref_primary_10_1002_elsa_202100165 crossref_primary_10_1039_D5CP01414J crossref_primary_10_1038_s41598_019_51513_1 crossref_primary_10_1109_TUFFC_2020_3020283 crossref_primary_10_1016_j_ceramint_2021_07_038 crossref_primary_10_1088_1742_6596_2169_1_012036 crossref_primary_10_3390_gels8070454 crossref_primary_10_3390_nano15141080 crossref_primary_10_1007_s11936_025_01074_6 crossref_primary_10_1016_j_matchar_2023_112852 crossref_primary_10_1002_advs_201802077 crossref_primary_10_1002_app_57117 crossref_primary_10_1016_j_ijbiomac_2023_126041 crossref_primary_10_1002_advs_202416085 crossref_primary_10_1016_j_rsurfi_2025_100610 crossref_primary_10_1002_mabi_201800173 crossref_primary_10_1002_pen_25339 crossref_primary_10_1016_j_cej_2019_02_072 crossref_primary_10_1016_j_cej_2021_128449 crossref_primary_10_1016_j_eurpolymj_2022_111454 crossref_primary_10_1016_j_biomaterials_2025_123103 crossref_primary_10_1016_j_cej_2019_01_028 crossref_primary_10_1016_j_polymer_2024_127535 crossref_primary_10_1080_09506608_2021_1971428 crossref_primary_10_3389_fbioe_2023_1306184 crossref_primary_10_1007_s00396_023_05120_2 crossref_primary_10_1016_j_bioactmat_2025_06_003 crossref_primary_10_1016_j_carbpol_2022_120345 crossref_primary_10_1016_j_bioactmat_2020_08_015 crossref_primary_10_3390_ma13030512 crossref_primary_10_1016_j_apmt_2021_101117 crossref_primary_10_1016_j_ijbiomac_2020_08_054 crossref_primary_10_1002_app_49332 crossref_primary_10_1042_EBC20210003 crossref_primary_10_1002_adhm_202202699 crossref_primary_10_1016_j_colsurfb_2022_112756 crossref_primary_10_1002_adhm_201901372 crossref_primary_10_1016_j_apsusc_2022_155416 crossref_primary_10_1016_j_ijbiomac_2024_129323 crossref_primary_10_1016_j_mtchem_2020_100249 crossref_primary_10_1007_s00396_022_04997_9 crossref_primary_10_1016_j_mtchem_2024_102258 crossref_primary_10_1088_1748_605X_ad651d crossref_primary_10_1016_j_coco_2022_101268 crossref_primary_10_1007_s10854_021_06481_6 crossref_primary_10_1016_j_synthmet_2024_117695 crossref_primary_10_1016_j_eurpolymj_2022_111225 crossref_primary_10_3389_fmats_2021_752813 crossref_primary_10_1002_admt_202301874 crossref_primary_10_3389_fchem_2019_00363 crossref_primary_10_1039_D0RA03579C crossref_primary_10_1177_08853282221112999 crossref_primary_10_1002_adhm_202100784 crossref_primary_10_1016_j_synthmet_2020_116642 crossref_primary_10_3390_polym11030459 crossref_primary_10_1080_00914037_2019_1695209 crossref_primary_10_1016_j_eurpolymj_2022_111473 crossref_primary_10_1007_s41061_022_00395_5 crossref_primary_10_1088_1758_5090_ac59f2 crossref_primary_10_1016_j_smmf_2022_100011 crossref_primary_10_1016_j_matlet_2020_127401 crossref_primary_10_1016_j_bioelechem_2023_108484 crossref_primary_10_1016_j_polymdegradstab_2020_109232 crossref_primary_10_1016_j_biomaterials_2020_120164 crossref_primary_10_1021_acsbiomaterials_9b01682 crossref_primary_10_1039_C8PY00762D crossref_primary_10_3390_bioengineering9110621 crossref_primary_10_1002_adfm_202406376 crossref_primary_10_1016_j_chemosphere_2023_139203 crossref_primary_10_1039_D0BM02077J crossref_primary_10_1002_cbic_202400733 crossref_primary_10_1039_D1RA01338F crossref_primary_10_1016_j_mseb_2025_118685 crossref_primary_10_1002_adhm_202403995 crossref_primary_10_1088_2058_8585_ab71e1 crossref_primary_10_1002_advs_202305347 crossref_primary_10_1016_j_coelec_2023_101297 crossref_primary_10_1039_D5PM00068H crossref_primary_10_1016_j_mtcomm_2023_105791 crossref_primary_10_1002_brx2_70012 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acs.biomac.8b00276 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1526-4602 |
| ExternalDocumentID | 29684268 |
| Genre | Review Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL136231 |
| GroupedDBID | --- -~X 23N 4.4 53G 55A 5GY 5VS 7~N AABXI AAHBH ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CGR CS3 CUPRZ CUY CVF DU5 EBS ECM ED~ EIF EJD F5P GGK GNL IH9 JG~ NPM P2P RNS ROL TN5 UI2 VF5 VG9 W1F XKZ ZCA ~02 7X8 |
| ID | FETCH-LOGICAL-a430t-13a06ee6683e36e7ebd7618e47ead20d84d5f2bf58522b31278e049542bb402e2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 634 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000435226200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1526-4602 |
| IngestDate | Fri Jul 11 15:19:35 EDT 2025 Mon Jul 21 06:06:10 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a430t-13a06ee6683e36e7ebd7618e47ead20d84d5f2bf58522b31278e049542bb402e2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| ORCID | 0000-0001-6756-1441 0000-0002-0191-9487 |
| PMID | 29684268 |
| PQID | 2031030980 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2031030980 pubmed_primary_29684268 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-06-11 |
| PublicationDateYYYYMMDD | 2018-06-11 |
| PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-11 day: 11 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Biomacromolecules |
| PublicationTitleAlternate | Biomacromolecules |
| PublicationYear | 2018 |
| SSID | ssj0009345 |
| Score | 2.6965053 |
| SecondaryResourceType | review_article |
| Snippet | Electrically conducting polymers such as polyaniline, polypyrrole, polythiophene, and their derivatives (mainly aniline oligomer and... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1764 |
| SubjectTerms | Animals Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Humans Hydrogels - chemistry Nanofibers - chemistry Polymers - chemical synthesis Polymers - chemistry Tissue Engineering - instrumentation Tissue Engineering - methods Tissue Scaffolds - chemistry Wound Healing |
| Title | Conducting Polymers for Tissue Engineering |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/29684268 https://www.proquest.com/docview/2031030980 |
| Volume | 19 |
| WOSCitedRecordID | wos000435226200006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8RADA7qCnrx_dj1QQVPQrWdmWamJ5HFxYvLHlbYW-m0UxCkXa0K_nuTtst6EQQvvbVMk0zyJZPJB3ApFKYYZOiz7_dV4YxvEbkGT-g0owgeF7Yhm9DjsZnN4klXcKu7tsqFT2wcdV5lXCOnJL1hxIpNcDt_9Zk1ik9XOwqNVehJgjJs1Xq2nBYey4akmEIU-gq5k2fQDisIb9KsvuYL7rRow4FK4-8Qswk1o-3_LnIHtjqQ6d21VrELK67cg43hgtttH66GVcmDXilueZPq5YuL1x7BV2_a6MH7MaXwAJ5G99Phg9-xJvipkgFzy6cBOodopJPotLO5xtA4pcloRJAblUeFsAXlCUJYGQptHKUJkRLWUjLpxCGslVXpjsGLpIgxC_juqialoS2EzpW1KGxOaZTrw8VCDAn9AB81pKWrPupkKYg-HLWyTObt-IyEvmkIF5jBH94-gU1CKIZ7s8LwFHoF7Ul3BuvZ5_tz_XbeqJue48njN0Xnsrg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conducting+Polymers+for+Tissue+Engineering&rft.jtitle=Biomacromolecules&rft.au=Guo%2C+Baolin&rft.au=Ma%2C+Peter+X&rft.date=2018-06-11&rft.eissn=1526-4602&rft.volume=19&rft.issue=6&rft.spage=1764&rft_id=info:doi/10.1021%2Facs.biomac.8b00276&rft_id=info%3Apmid%2F29684268&rft_id=info%3Apmid%2F29684268&rft.externalDocID=29684268 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-4602&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-4602&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-4602&client=summon |