Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor

On the basis of the thermoreversible sol-gel transition behavior of κ-carrageenan in water, a double-network (DN) hydrogel has been fabricated by combining an ionically cross-linked κ-carrageenan network with a covalently cross-linked polyacrylamide (PAAm) network. The κ-carrageenan/PAAm DN hydrogel...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces Vol. 9; no. 31; p. 26429
Main Authors: Liu, Sijun, Li, Lin
Format: Journal Article
Language:English
Published: United States 09.08.2017
Subjects:
ISSN:1944-8252, 1944-8252
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:On the basis of the thermoreversible sol-gel transition behavior of κ-carrageenan in water, a double-network (DN) hydrogel has been fabricated by combining an ionically cross-linked κ-carrageenan network with a covalently cross-linked polyacrylamide (PAAm) network. The κ-carrageenan/PAAm DN hydrogel demonstrated an excellent recoverability and significant self-healing capability (even when notched). More importantly, the warm pregel solution of κ-carrageenan/AAm can be used as an ink of a three-dimensional (3D) printer to print complex 3D structures with remarkable mechanical strength after UV exposure. Furthermore, the κ-carrageenan/PAAm DN hydrogel exhibited a great strain sensitivity with a gauge factor of 0.63 at the strain of 1000%, and thus, the hydrogel can be used as sensitive strain sensors for applications in robotics and human motion detection.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1944-8252
1944-8252
DOI:10.1021/acsami.7b07445