Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor

On the basis of the thermoreversible sol-gel transition behavior of κ-carrageenan in water, a double-network (DN) hydrogel has been fabricated by combining an ionically cross-linked κ-carrageenan network with a covalently cross-linked polyacrylamide (PAAm) network. The κ-carrageenan/PAAm DN hydrogel...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ACS applied materials & interfaces Ročník 9; číslo 31; s. 26429
Hlavní autoři: Liu, Sijun, Li, Lin
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 09.08.2017
Témata:
ISSN:1944-8252, 1944-8252
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract On the basis of the thermoreversible sol-gel transition behavior of κ-carrageenan in water, a double-network (DN) hydrogel has been fabricated by combining an ionically cross-linked κ-carrageenan network with a covalently cross-linked polyacrylamide (PAAm) network. The κ-carrageenan/PAAm DN hydrogel demonstrated an excellent recoverability and significant self-healing capability (even when notched). More importantly, the warm pregel solution of κ-carrageenan/AAm can be used as an ink of a three-dimensional (3D) printer to print complex 3D structures with remarkable mechanical strength after UV exposure. Furthermore, the κ-carrageenan/PAAm DN hydrogel exhibited a great strain sensitivity with a gauge factor of 0.63 at the strain of 1000%, and thus, the hydrogel can be used as sensitive strain sensors for applications in robotics and human motion detection.
AbstractList On the basis of the thermoreversible sol-gel transition behavior of κ-carrageenan in water, a double-network (DN) hydrogel has been fabricated by combining an ionically cross-linked κ-carrageenan network with a covalently cross-linked polyacrylamide (PAAm) network. The κ-carrageenan/PAAm DN hydrogel demonstrated an excellent recoverability and significant self-healing capability (even when notched). More importantly, the warm pregel solution of κ-carrageenan/AAm can be used as an ink of a three-dimensional (3D) printer to print complex 3D structures with remarkable mechanical strength after UV exposure. Furthermore, the κ-carrageenan/PAAm DN hydrogel exhibited a great strain sensitivity with a gauge factor of 0.63 at the strain of 1000%, and thus, the hydrogel can be used as sensitive strain sensors for applications in robotics and human motion detection.
On the basis of the thermoreversible sol-gel transition behavior of κ-carrageenan in water, a double-network (DN) hydrogel has been fabricated by combining an ionically cross-linked κ-carrageenan network with a covalently cross-linked polyacrylamide (PAAm) network. The κ-carrageenan/PAAm DN hydrogel demonstrated an excellent recoverability and significant self-healing capability (even when notched). More importantly, the warm pregel solution of κ-carrageenan/AAm can be used as an ink of a three-dimensional (3D) printer to print complex 3D structures with remarkable mechanical strength after UV exposure. Furthermore, the κ-carrageenan/PAAm DN hydrogel exhibited a great strain sensitivity with a gauge factor of 0.63 at the strain of 1000%, and thus, the hydrogel can be used as sensitive strain sensors for applications in robotics and human motion detection.On the basis of the thermoreversible sol-gel transition behavior of κ-carrageenan in water, a double-network (DN) hydrogel has been fabricated by combining an ionically cross-linked κ-carrageenan network with a covalently cross-linked polyacrylamide (PAAm) network. The κ-carrageenan/PAAm DN hydrogel demonstrated an excellent recoverability and significant self-healing capability (even when notched). More importantly, the warm pregel solution of κ-carrageenan/AAm can be used as an ink of a three-dimensional (3D) printer to print complex 3D structures with remarkable mechanical strength after UV exposure. Furthermore, the κ-carrageenan/PAAm DN hydrogel exhibited a great strain sensitivity with a gauge factor of 0.63 at the strain of 1000%, and thus, the hydrogel can be used as sensitive strain sensors for applications in robotics and human motion detection.
Author Liu, Sijun
Li, Lin
Author_xml – sequence: 1
  givenname: Sijun
  surname: Liu
  fullname: Liu, Sijun
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
– sequence: 2
  givenname: Lin
  orcidid: 0000-0002-9840-8367
  surname: Li
  fullname: Li, Lin
  organization: School of Mechanical and Aerospace Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798, Singapore
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28707465$$D View this record in MEDLINE/PubMed
BookMark eNpNkL1PwzAUxC1URD9gZUQZWVJsx46bEbVAkSpAgk4MkZ08l4BjF9sR6n9PCkViuvdOv7vhxmhgnQWEzgmeEkzJlayCbJupUFgwxo_QiBSMpTPK6eDfPUTjEN4xzjOK-Qka0pno-ZyP0OvaRC9D9BCrN6kMJNLWyTMYnS5BmsZukoXrej99gPjl_Eey3NXebcAk2vkkWyRPvrFxz_0E-7LG9nkbnD9Fx1qaAGcHnaD17c3LfJmuHu_u59erVDJaxBSgqnWhJOeUFkQTVWlVCDGD_sFEZDnVmuRcippQwoAxoYQAJZggRDOd0Qm6_O3devfZQYhl24QKjJEWXBdKUlBMcUb5Hr04oJ1qoS63vmml35V_g9Bv4J1kuQ
CitedBy_id crossref_primary_10_1002_adma_202305537
crossref_primary_10_1002_marc_202100579
crossref_primary_10_1007_s10853_021_06242_0
crossref_primary_10_1002_marc_201800691
crossref_primary_10_1016_j_matpr_2023_01_101
crossref_primary_10_3390_gels7020056
crossref_primary_10_1007_s11664_022_09743_z
crossref_primary_10_1016_j_compstruct_2024_118820
crossref_primary_10_1016_j_polymertesting_2021_107087
crossref_primary_10_1016_j_carbpol_2022_120267
crossref_primary_10_1002_adfm_202108548
crossref_primary_10_1016_j_reactfunctpolym_2022_105197
crossref_primary_10_1007_s11814_022_1311_0
crossref_primary_10_1002_adma_202503245
crossref_primary_10_1016_j_carbpol_2021_118210
crossref_primary_10_1002_aelm_202000527
crossref_primary_10_3390_biomedicines9111537
crossref_primary_10_1002_adfm_202205315
crossref_primary_10_1002_adma_202104798
crossref_primary_10_1016_j_actbio_2019_05_032
crossref_primary_10_1016_j_nanoen_2020_105288
crossref_primary_10_1089_3dp_2024_0004
crossref_primary_10_1088_1361_6528_ab2440
crossref_primary_10_1016_j_carbpol_2022_119161
crossref_primary_10_1016_j_matpr_2022_04_960
crossref_primary_10_1007_s10570_019_02797_z
crossref_primary_10_1002_admt_202400751
crossref_primary_10_1038_s41378_020_0154_2
crossref_primary_10_1002_smll_202204365
crossref_primary_10_1002_admt_201800307
crossref_primary_10_1002_marc_202000185
crossref_primary_10_1007_s42114_021_00396_w
crossref_primary_10_1007_s10853_020_05644_w
crossref_primary_10_1002_adfm_202010465
crossref_primary_10_1002_app_51993
crossref_primary_10_1016_j_carbpol_2019_01_094
crossref_primary_10_1021_acsbiomaterials_9b00047
crossref_primary_10_1002_adem_202101337
crossref_primary_10_1002_app_50308
crossref_primary_10_1016_j_carbpol_2020_116686
crossref_primary_10_3390_s23010091
crossref_primary_10_1016_j_mtchem_2021_100459
crossref_primary_10_1016_j_nanoen_2020_105035
crossref_primary_10_1002_mame_202000080
crossref_primary_10_1016_j_polymer_2019_121837
crossref_primary_10_3390_molecules24050834
crossref_primary_10_1016_j_carbpol_2019_115596
crossref_primary_10_1002_adhm_202101021
crossref_primary_10_1016_j_mser_2023_100734
crossref_primary_10_1016_j_cej_2020_124503
crossref_primary_10_57634_RCR5062
crossref_primary_10_1016_j_polymer_2023_126588
crossref_primary_10_1016_j_nantod_2019_100826
crossref_primary_10_1007_s10854_021_07540_8
crossref_primary_10_1007_s40820_023_01079_5
crossref_primary_10_1016_j_nanoen_2020_105389
crossref_primary_10_1088_1758_5090_ad1b20
crossref_primary_10_1002_admt_201800464
crossref_primary_10_1007_s42250_023_00689_1
crossref_primary_10_3390_technologies7020035
crossref_primary_10_1007_s10853_020_04653_z
crossref_primary_10_1016_j_ijbiomac_2023_127401
crossref_primary_10_1002_adfm_201907290
crossref_primary_10_1002_adma_202003387
crossref_primary_10_1002_VIW_20230005
crossref_primary_10_1016_j_polymer_2019_122138
crossref_primary_10_3389_fmats_2021_658046
crossref_primary_10_1007_s40883_022_00267_w
crossref_primary_10_1002_adfm_202305499
crossref_primary_10_1002_advs_202305702
crossref_primary_10_1039_D0BM01528H
crossref_primary_10_1007_s11431_022_2255_0
crossref_primary_10_1007_s42114_025_01395_x
crossref_primary_10_1016_j_foodhyd_2023_108851
crossref_primary_10_1016_j_cej_2024_153704
crossref_primary_10_1016_j_progpolymsci_2019_03_002
crossref_primary_10_1016_j_eurpolymj_2023_112022
crossref_primary_10_1016_j_colsurfa_2021_127336
crossref_primary_10_1038_s41598_018_36828_9
crossref_primary_10_3390_s24103038
crossref_primary_10_1016_j_compositesa_2019_105730
crossref_primary_10_1088_1361_665X_ab548b
crossref_primary_10_1103_PhysRevApplied_17_044032
crossref_primary_10_1016_j_ijbiomac_2024_136128
crossref_primary_10_1016_j_addma_2022_103343
crossref_primary_10_1063_5_0098621
crossref_primary_10_1002_app_54499
crossref_primary_10_1002_mame_201900621
crossref_primary_10_1016_j_solidstatesciences_2025_107924
crossref_primary_10_1016_j_cej_2021_131900
crossref_primary_10_1016_j_colsurfa_2023_132409
crossref_primary_10_1016_j_sna_2023_114823
crossref_primary_10_1016_j_apmt_2020_100700
crossref_primary_10_3389_fchem_2021_758844
crossref_primary_10_1038_s41427_019_0109_y
crossref_primary_10_1016_j_molliq_2023_123705
crossref_primary_10_1016_j_eurpolymj_2024_113641
crossref_primary_10_3390_ma16196491
crossref_primary_10_3390_nano9070937
crossref_primary_10_1016_j_coco_2021_100837
crossref_primary_10_1016_j_eurpolymj_2019_01_043
crossref_primary_10_1016_j_ijbiomac_2021_06_054
crossref_primary_10_1007_s11051_021_05333_y
crossref_primary_10_1039_D3RA00546A
crossref_primary_10_1016_j_trac_2020_116130
crossref_primary_10_1002_jsfa_14163
crossref_primary_10_1016_j_matdes_2020_108759
crossref_primary_10_1039_D5MH00381D
crossref_primary_10_1002_adfm_202000187
crossref_primary_10_1038_s41467_024_45485_8
crossref_primary_10_1039_D2CP02478K
crossref_primary_10_1039_D5MA00019J
crossref_primary_10_3390_md22120546
crossref_primary_10_3390_nano11071854
crossref_primary_10_1002_adfm_202101696
crossref_primary_10_1016_j_colsurfa_2023_131656
crossref_primary_10_1039_D0PY00770F
crossref_primary_10_1016_j_cej_2019_123912
crossref_primary_10_1038_s41427_022_00357_9
crossref_primary_10_1016_j_cej_2019_02_014
crossref_primary_10_1080_15583724_2019_1691590
crossref_primary_10_1039_C8MH01188E
crossref_primary_10_3762_bjnano_10_47
crossref_primary_10_1002_adfm_202107437
crossref_primary_10_1016_j_jconrel_2022_04_010
crossref_primary_10_1016_j_snb_2020_127874
crossref_primary_10_1016_j_compstruct_2022_115214
crossref_primary_10_1016_j_nanoen_2022_107449
crossref_primary_10_1016_j_cej_2020_126162
crossref_primary_10_1007_s11465_024_0787_1
crossref_primary_10_1016_j_compscitech_2022_109771
crossref_primary_10_1016_j_carbpol_2019_114977
crossref_primary_10_1557_s43578_020_00022_3
crossref_primary_10_1007_s10853_019_03438_3
crossref_primary_10_1007_s10853_019_03729_9
crossref_primary_10_1016_j_ijbiomac_2024_134712
crossref_primary_10_1016_j_mser_2025_100989
crossref_primary_10_1002_app_47885
crossref_primary_10_1016_j_colsurfa_2020_124587
crossref_primary_10_1109_JSEN_2025_3564978
crossref_primary_10_3390_gels8050301
crossref_primary_10_1016_j_cej_2019_122832
crossref_primary_10_1039_D1NR02826J
crossref_primary_10_1016_j_eurpolymj_2023_112471
crossref_primary_10_1016_j_addma_2021_102088
crossref_primary_10_1016_j_ijbiomac_2025_140571
crossref_primary_10_1021_acs_langmuir_5c00926
crossref_primary_10_1038_s41524_021_00509_5
crossref_primary_10_1016_j_sna_2025_116527
crossref_primary_10_1016_j_cej_2021_130722
crossref_primary_10_1016_j_jcis_2022_03_037
crossref_primary_10_1002_adma_202004782
crossref_primary_10_1016_j_cej_2020_124448
crossref_primary_10_1002_mame_202100309
crossref_primary_10_1016_j_cej_2018_08_053
crossref_primary_10_1016_j_compositesa_2023_107572
crossref_primary_10_1002_admi_202102024
crossref_primary_10_1016_j_ijfatigue_2024_108766
crossref_primary_10_1126_scirobotics_abk2119
crossref_primary_10_1016_j_ijbiomac_2025_144228
crossref_primary_10_1088_2053_1591_ab8cfb
crossref_primary_10_1002_cplu_202100074
crossref_primary_10_1016_j_carbpol_2022_119787
crossref_primary_10_1002_advs_202306784
crossref_primary_10_1002_adfm_201910080
crossref_primary_10_1002_admt_202000426
crossref_primary_10_1016_j_compositesb_2022_110116
crossref_primary_10_1016_j_cej_2021_129865
crossref_primary_10_1016_j_polymer_2022_125145
crossref_primary_10_1039_D0MH01514H
crossref_primary_10_1016_j_bprint_2024_e00353
crossref_primary_10_1007_s10965_022_03163_7
crossref_primary_10_1016_j_polymertesting_2025_108912
crossref_primary_10_1002_adhm_202501332
crossref_primary_10_1016_j_colsurfa_2020_125692
crossref_primary_10_1007_s12274_022_5129_1
crossref_primary_10_1002_adfm_202203761
crossref_primary_10_1016_j_ijbiomac_2024_135909
crossref_primary_10_1007_s10853_020_05252_8
crossref_primary_10_1007_s10924_022_02516_z
crossref_primary_10_3390_bioengineering8090127
crossref_primary_10_1002_wnan_1961
crossref_primary_10_1016_j_cej_2020_125555
crossref_primary_10_1002_admt_201800739
crossref_primary_10_1016_j_colsurfa_2022_129733
crossref_primary_10_1016_j_polymer_2020_122469
crossref_primary_10_1016_j_coco_2025_102566
crossref_primary_10_1016_j_matdes_2019_107874
crossref_primary_10_1016_j_eurpolymj_2019_05_024
crossref_primary_10_1016_j_mtcomm_2023_105807
crossref_primary_10_3390_gels10030187
crossref_primary_10_1186_s12951_018_0409_3
crossref_primary_10_1021_acsbiomaterials_9b00554
crossref_primary_10_1016_j_cej_2021_129528
crossref_primary_10_3389_fphy_2022_890845
crossref_primary_10_1002_admt_201900535
crossref_primary_10_1016_j_cej_2020_125540
crossref_primary_10_1016_j_ijbiomac_2019_05_053
crossref_primary_10_1016_j_ijbiomac_2023_126954
crossref_primary_10_1002_mame_202200389
crossref_primary_10_1039_D3MH00056G
crossref_primary_10_1002_advs_202207237
crossref_primary_10_1016_j_compstruct_2023_116768
crossref_primary_10_3389_fmed_2020_00456
crossref_primary_10_1002_adma_202004190
crossref_primary_10_1002_adfm_202413368
crossref_primary_10_1002_smll_202303949
crossref_primary_10_1007_s10853_017_1929_1
crossref_primary_10_1016_j_scitotenv_2020_144351
crossref_primary_10_1016_j_cej_2023_146160
crossref_primary_10_1002_aisy_202000271
crossref_primary_10_1016_j_carbpol_2020_116743
crossref_primary_10_3390_technologies10020045
crossref_primary_10_1007_s10570_021_04321_8
crossref_primary_10_1039_C8EN00552D
crossref_primary_10_3390_polym12071534
crossref_primary_10_1002_mame_202300085
crossref_primary_10_1016_j_mtchem_2023_101696
crossref_primary_10_1016_j_device_2024_100559
crossref_primary_10_1002_marc_202100011
crossref_primary_10_1016_j_ijbiomac_2023_126847
crossref_primary_10_1016_j_cej_2020_126307
crossref_primary_10_1016_j_polymer_2021_124387
crossref_primary_10_1016_j_mtphys_2020_100246
crossref_primary_10_1088_2058_8585_ac20bf
crossref_primary_10_1016_j_carbpol_2020_117443
crossref_primary_10_3390_s24020683
crossref_primary_10_1088_2399_7532_abe929
crossref_primary_10_1016_j_carbpol_2022_119905
crossref_primary_10_1038_s41467_021_22802_z
crossref_primary_10_3389_frobt_2017_00048
crossref_primary_10_1002_mame_201900227
crossref_primary_10_1016_j_apmt_2022_101638
crossref_primary_10_1002_adfm_201907145
crossref_primary_10_1016_j_ijbiomac_2023_127146
crossref_primary_10_1016_j_mser_2025_101080
crossref_primary_10_1021_acsami_5c05168
crossref_primary_10_1002_mame_202200248
crossref_primary_10_1016_j_polymer_2023_125887
crossref_primary_10_1002_app_52483
crossref_primary_10_1016_j_cej_2020_126777
crossref_primary_10_1016_j_nxmate_2025_100799
crossref_primary_10_1039_C9QM00055K
crossref_primary_10_1002_marc_202300661
crossref_primary_10_3390_polym16192715
crossref_primary_10_1016_j_carbpol_2023_121728
crossref_primary_10_1002_adma_201706539
crossref_primary_10_1002_pol_20210812
crossref_primary_10_1002_adma_202006111
crossref_primary_10_1016_j_addma_2023_103598
crossref_primary_10_1016_j_colcom_2021_100498
crossref_primary_10_1016_j_biomaterials_2024_122632
crossref_primary_10_1039_C8QM00659H
crossref_primary_10_1016_j_compositesb_2022_109895
crossref_primary_10_3390_ma13183947
crossref_primary_10_1002_admt_202000171
crossref_primary_10_1039_D4TA08803D
crossref_primary_10_1016_j_bej_2022_108606
crossref_primary_10_3390_gels10040220
crossref_primary_10_1016_j_carbpol_2018_06_081
crossref_primary_10_1016_j_cherd_2022_08_049
crossref_primary_10_1002_mame_202100486
crossref_primary_10_1016_j_reactfunctpolym_2021_105054
crossref_primary_10_3390_bios14020060
crossref_primary_10_3390_bioengineering9030109
crossref_primary_10_1016_j_colsurfb_2021_111568
crossref_primary_10_1016_j_jmapro_2023_05_017
crossref_primary_10_1016_j_cej_2018_09_078
crossref_primary_10_1002_adem_202100379
crossref_primary_10_1002_pol_20200567
crossref_primary_10_1002_sstr_202100131
crossref_primary_10_1177_15589250221114641
crossref_primary_10_3390_polym10060629
crossref_primary_10_1002_macp_202200272
crossref_primary_10_1002_macp_202100061
crossref_primary_10_1016_j_carbpol_2023_120610
crossref_primary_10_1016_j_eurpolymj_2021_110779
crossref_primary_10_1109_LRA_2021_3072600
crossref_primary_10_3390_gels9010020
crossref_primary_10_1016_j_carbpol_2025_124215
crossref_primary_10_1002_app_50645
crossref_primary_10_3390_nano9121737
crossref_primary_10_1016_j_cej_2022_135057
crossref_primary_10_1089_3dp_2020_0239
crossref_primary_10_1016_j_ijbiomac_2023_126082
crossref_primary_10_1016_j_matdes_2018_08_023
crossref_primary_10_3390_polym16010102
crossref_primary_10_3390_ma16052085
crossref_primary_10_1016_j_jiec_2022_07_048
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acsami.7b07445
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
ExternalDocumentID 28707465
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CUPRZ
EBS
ED~
EJD
F5P
GGK
GNL
IH9
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a429t-eecdf9ba552291f1bcfb9778e91f017362ff165a7d1214e447b77eb74711f4f32
IEDL.DBID 7X8
ISICitedReferencesCount 408
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000407540400086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1944-8252
IngestDate Thu Oct 02 11:35:33 EDT 2025
Thu Jan 02 23:09:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords recoverability
strain sensor
3D printing
double-network hydrogel
self-healing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-eecdf9ba552291f1bcfb9778e91f017362ff165a7d1214e447b77eb74711f4f32
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9840-8367
PMID 28707465
PQID 1920203253
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1920203253
pubmed_primary_28707465
PublicationCentury 2000
PublicationDate 2017-08-09
PublicationDateYYYYMMDD 2017-08-09
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-09
  day: 09
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl Mater Interfaces
PublicationYear 2017
SSID ssj0063205
Score 2.65169
Snippet On the basis of the thermoreversible sol-gel transition behavior of κ-carrageenan in water, a double-network (DN) hydrogel has been fabricated by combining an...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 26429
Title Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor
URI https://www.ncbi.nlm.nih.gov/pubmed/28707465
https://www.proquest.com/docview/1920203253
Volume 9
WOSCitedRecordID wos000407540400086&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_qfNAHv6fziwi-hi1t0rRPIurYi2Wgg4EPJWkSEUY72yn433tJO_VFEHwptORKuV5yv8td7ofQJTOa2YEJiFLJgDDLtSNyZ4RxaSQAaJpL68kmRJrG02kybjfc6rascrkm-oVal7nbI-8DEvFs3zy8mr8SxxrlsqsthcYq6oQAZZxVi-lXFiEKA1_CCHE6IxAJBcumjQHty7x2BDtCgQtl_Hd46d3McPu_H7iDtlqAia8bi9hFK6bYQ5s_2g7uo6fJbFFJd0oEfpk7OoVlofGDmVniTiXBGAy4Gp6TtCkSx6MPXZXPZoYB4uLwFo_hRa5euhH0NBMgX9RldYAmw7vHmxFpSRaIBFe0IMbk2iZKcgBiCbVU5VYBJowN3MBsBf9mLY24FJoGlBnGhBLCKBfLUstsGHTRWlEW5gjhyA5CzSCgYhDjSc1jGykYbmKIeoTWcQ9dLDWXgRG7zIQsTPlWZ9-666HDRv3ZvOm2kblMrGARP_6D9AnaCJzb9SUdp6hjYQqbM7Sevy9e6urcWwdc0_H9J86wxQA
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrastretchable+and+Self-Healing+Double-Network+Hydrogel+for+3D+Printing+and+Strain+Sensor&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Liu%2C+Sijun&rft.au=Li%2C+Lin&rft.date=2017-08-09&rft.issn=1944-8252&rft.eissn=1944-8252&rft.volume=9&rft.issue=31&rft.spage=26429&rft_id=info:doi/10.1021%2Facsami.7b07445&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8252&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8252&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8252&client=summon