Deblending of Simultaneous-source Seismic Data using Fast Iterative Shrinkage-thresholding Algorithm with Firm-thresholding

In this paper, an improved algorithm is proposed to separate blended seismic data. We formulate the deblending problem as a regularization problem in both common receiver domain and frequency domain. It is suitable for different kinds of coding methods such as random time delay discussed in this pap...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Acta geophysica Ročník 64; číslo 4; s. 1064 - 1092
Hlavní autoři: Qu, Shan, Zhou, Hui, Liu, Renwu, Chen, Yangkang, Zu, Shaohuan, Yu, Sa, Yuan, Jiang, Yang, Yahui
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.08.2016
De Gruyter
Springer Nature B.V
Témata:
ISSN:1895-6572, 1895-7455
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, an improved algorithm is proposed to separate blended seismic data. We formulate the deblending problem as a regularization problem in both common receiver domain and frequency domain. It is suitable for different kinds of coding methods such as random time delay discussed in this paper. Two basic approximation frames, which are iterative shrinkage-thresholding algorithm (ISTA) and fast iterative shrinkage-thresholding algorithm (FISTA), are compared. We also derive the Lipschitz constant used in approximation frames. In order to achieve a faster convergence and higher accuracy, we propose to use firm-thresholding function as the thresholding function in ISTA and FISTA. Two synthetic blended examples demonstrate that the performances of four kinds of algorithms (ISTA with soft- and firm-thresholding, FISTA with soft- and firm-thresholding) are all effective, and furthermore FISTA with a firm-thresholding operator exhibits the most robust behavior. Finally, we show one numerically blended field data example processed by FISTA with firm-thresholding function.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:1895-6572
1895-7455
DOI:10.1515/acgeo-2016-0043