Printed, Wireless, Soft Bioelectronics and Deep Learning Algorithm for Smart Human-Machine Interfaces

Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease diagnosis, and machine interfaces. Current device-manufacturing methods, however, still heavily rely on the conventional cleanroom microfabric...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ACS applied materials & interfaces Ročník 12; číslo 44; s. 49398
Hlavní autoři: Kwon, Young-Tae, Kim, Hojoong, Mahmood, Musa, Kim, Yun-Soung, Demolder, Carl, Yeo, Woon-Hong
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 04.11.2020
Témata:
ISSN:1944-8252, 1944-8252
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease diagnosis, and machine interfaces. Current device-manufacturing methods, however, still heavily rely on the conventional cleanroom microfabrication that requires expensive, time-consuming, and complicated processes. Here, we introduce an additive nanomanufacturing technology that explores a contactless direct printing of aerosol nanomaterials and polymers to fabricate stretchable sensors and multilayered wearable electronics. Computational and experimental studies prove the mechanical flexibility and reliability of soft electronics, considering direct mounting to the deformable human skin with a curvilinear surface. The dry, skin-conformal graphene biosensor, without the use of conductive gels and aggressive tapes, offers an enhanced biopotential recording on the skin and multiple uses (over ten times) with consistent measurement of electromyograms. The combination of soft bioelectronics and deep learning algorithm allows classifying six classes of muscle activities with an accuracy of over 97%, which enables wireless, real-time, continuous control of external machines such as a robotic hand and a robotic arm. Collectively, the comprehensive study of nanomaterials, flexible mechanics, system integration, and machine learning shows the potential of the printed bioelectronics for portable, smart, and persistent human-machine interfaces.
AbstractList Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease diagnosis, and machine interfaces. Current device-manufacturing methods, however, still heavily rely on the conventional cleanroom microfabrication that requires expensive, time-consuming, and complicated processes. Here, we introduce an additive nanomanufacturing technology that explores a contactless direct printing of aerosol nanomaterials and polymers to fabricate stretchable sensors and multilayered wearable electronics. Computational and experimental studies prove the mechanical flexibility and reliability of soft electronics, considering direct mounting to the deformable human skin with a curvilinear surface. The dry, skin-conformal graphene biosensor, without the use of conductive gels and aggressive tapes, offers an enhanced biopotential recording on the skin and multiple uses (over ten times) with consistent measurement of electromyograms. The combination of soft bioelectronics and deep learning algorithm allows classifying six classes of muscle activities with an accuracy of over 97%, which enables wireless, real-time, continuous control of external machines such as a robotic hand and a robotic arm. Collectively, the comprehensive study of nanomaterials, flexible mechanics, system integration, and machine learning shows the potential of the printed bioelectronics for portable, smart, and persistent human-machine interfaces.Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease diagnosis, and machine interfaces. Current device-manufacturing methods, however, still heavily rely on the conventional cleanroom microfabrication that requires expensive, time-consuming, and complicated processes. Here, we introduce an additive nanomanufacturing technology that explores a contactless direct printing of aerosol nanomaterials and polymers to fabricate stretchable sensors and multilayered wearable electronics. Computational and experimental studies prove the mechanical flexibility and reliability of soft electronics, considering direct mounting to the deformable human skin with a curvilinear surface. The dry, skin-conformal graphene biosensor, without the use of conductive gels and aggressive tapes, offers an enhanced biopotential recording on the skin and multiple uses (over ten times) with consistent measurement of electromyograms. The combination of soft bioelectronics and deep learning algorithm allows classifying six classes of muscle activities with an accuracy of over 97%, which enables wireless, real-time, continuous control of external machines such as a robotic hand and a robotic arm. Collectively, the comprehensive study of nanomaterials, flexible mechanics, system integration, and machine learning shows the potential of the printed bioelectronics for portable, smart, and persistent human-machine interfaces.
Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease diagnosis, and machine interfaces. Current device-manufacturing methods, however, still heavily rely on the conventional cleanroom microfabrication that requires expensive, time-consuming, and complicated processes. Here, we introduce an additive nanomanufacturing technology that explores a contactless direct printing of aerosol nanomaterials and polymers to fabricate stretchable sensors and multilayered wearable electronics. Computational and experimental studies prove the mechanical flexibility and reliability of soft electronics, considering direct mounting to the deformable human skin with a curvilinear surface. The dry, skin-conformal graphene biosensor, without the use of conductive gels and aggressive tapes, offers an enhanced biopotential recording on the skin and multiple uses (over ten times) with consistent measurement of electromyograms. The combination of soft bioelectronics and deep learning algorithm allows classifying six classes of muscle activities with an accuracy of over 97%, which enables wireless, real-time, continuous control of external machines such as a robotic hand and a robotic arm. Collectively, the comprehensive study of nanomaterials, flexible mechanics, system integration, and machine learning shows the potential of the printed bioelectronics for portable, smart, and persistent human-machine interfaces.
Author Demolder, Carl
Kim, Hojoong
Kwon, Young-Tae
Mahmood, Musa
Kim, Yun-Soung
Yeo, Woon-Hong
Author_xml – sequence: 1
  givenname: Young-Tae
  surname: Kwon
  fullname: Kwon, Young-Tae
  organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
– sequence: 2
  givenname: Hojoong
  surname: Kim
  fullname: Kim, Hojoong
  organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
– sequence: 3
  givenname: Musa
  surname: Mahmood
  fullname: Mahmood, Musa
  organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
– sequence: 4
  givenname: Yun-Soung
  surname: Kim
  fullname: Kim, Yun-Soung
  organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
– sequence: 5
  givenname: Carl
  surname: Demolder
  fullname: Demolder, Carl
  organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
– sequence: 6
  givenname: Woon-Hong
  orcidid: 0000-0002-5526-3882
  surname: Yeo
  fullname: Yeo, Woon-Hong
  organization: Center for Human-Centric Interfaces and Engineering, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33085453$$D View this record in MEDLINE/PubMed
BookMark eNpNkMtLw0AYxBdR7EOvHmWPHpq6j2yaHGt9tFBRaMFj-Lr5tl1JdutucvC_N2AFTzMDPwZmRuTceYeE3HA25Uzwe9ARGjtlmqe8kGdkyIs0TXKhxPk_PyCjGD8Zy6Rg6pIMpGS5SpUcEnwP1rVYTeiHDVhjjBO68aalD9b3UbfBO6sjBVfRR8QjXSMEZ92ezuu9D7Y9NNT4QDcNhJYuuwZc8gr6YB3SVV8cDGiMV-TCQB3x-qRjsn1-2i6WyfrtZbWYrxNIRdEmwLHgrFAVKm2KTEHBhFRSSAAtmDQmN8woqDK9y2YgZgKY5FpgtZulQmsxJne_tcfgvzqMbdnYqLGuwaHvYin6yVme51nWo7cntNs1WJXHYPsF3-XfM-IH1floWQ
CitedBy_id crossref_primary_10_1002_advs_202101037
crossref_primary_10_1016_j_bios_2021_113290
crossref_primary_10_1016_j_nanoen_2023_109143
crossref_primary_10_1002_admt_202101633
crossref_primary_10_1002_adfm_202419489
crossref_primary_10_1002_admt_202300030
crossref_primary_10_1002_anse_202200062
crossref_primary_10_1089_ten_tea_2022_0119
crossref_primary_10_1016_j_eml_2021_101443
crossref_primary_10_1007_s40964_025_01257_4
crossref_primary_10_1093_nsr_nwad298
crossref_primary_10_1088_2058_8585_ac6a96
crossref_primary_10_3390_mi15070884
crossref_primary_10_1016_j_cej_2025_159659
crossref_primary_10_1002_admi_202200594
crossref_primary_10_1016_j_device_2023_100252
crossref_primary_10_1016_j_nanoen_2023_108971
crossref_primary_10_1038_s42256_023_00760_z
crossref_primary_10_3390_mi12121505
crossref_primary_10_1002_advs_202101129
crossref_primary_10_1016_j_mattod_2024_03_005
crossref_primary_10_1038_s41528_024_00297_0
crossref_primary_10_1002_adma_202406424
crossref_primary_10_3390_s21051642
crossref_primary_10_1016_j_bios_2024_116378
crossref_primary_10_3390_nano11040842
crossref_primary_10_1109_JSEN_2022_3142328
crossref_primary_10_3390_polym14183766
crossref_primary_10_1002_aelm_202201294
crossref_primary_10_1016_j_jmst_2022_09_050
crossref_primary_10_1002_adhm_202303563
crossref_primary_10_1016_j_bios_2021_113777
crossref_primary_10_1007_s40820_023_01029_1
crossref_primary_10_3390_bios12080562
crossref_primary_10_1002_adem_202401432
crossref_primary_10_1002_adma_202310006
crossref_primary_10_1002_smll_202412846
crossref_primary_10_1002_adma_202402542
crossref_primary_10_1039_D4SD00140K
crossref_primary_10_1016_j_biomaterials_2024_122579
crossref_primary_10_1002_smm2_1320
crossref_primary_10_1016_j_sna_2023_114359
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/acsami.0c14193
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Engineering
EISSN 1944-8252
ExternalDocumentID 33085453
Genre Journal Article
GroupedDBID ---
.K2
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
7~N
AABXI
AAHBH
ABJNI
ABMVS
ABQRX
ABUCX
ACGFS
ACS
ADHLV
AEESW
AENEX
AFEFF
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CGR
CUPRZ
CUY
CVF
EBS
ECM
ED~
EIF
F5P
GGK
GNL
IH9
JG~
NPM
P2P
RNS
ROL
UI2
VF5
VG9
W1F
XKZ
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a429t-a1e91095de5cf965a90235323aac203ff8f0f5ad6cb67a272a031c2edb742cc2
IEDL.DBID 7X8
ISICitedReferencesCount 60
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589384100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1944-8252
IngestDate Fri Jul 11 14:28:41 EDT 2025
Thu Jan 02 22:58:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 44
Keywords deep learning algorithm
additive nanomanufacturing
printed bioelectronics
electromyograms (EMGs)
human−machine interface
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a429t-a1e91095de5cf965a90235323aac203ff8f0f5ad6cb67a272a031c2edb742cc2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5526-3882
PMID 33085453
PQID 2453688866
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2453688866
pubmed_primary_33085453
PublicationCentury 2000
PublicationDate 2020-11-04
PublicationDateYYYYMMDD 2020-11-04
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle ACS applied materials & interfaces
PublicationTitleAlternate ACS Appl Mater Interfaces
PublicationYear 2020
SSID ssj0063205
Score 2.5584643
Snippet Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 49398
SubjectTerms Algorithms
Deep Learning
Electronics
Humans
Nanotechnology
Particle Size
Surface Properties
Wearable Electronic Devices
Title Printed, Wireless, Soft Bioelectronics and Deep Learning Algorithm for Smart Human-Machine Interfaces
URI https://www.ncbi.nlm.nih.gov/pubmed/33085453
https://www.proquest.com/docview/2453688866
Volume 12
WOSCitedRecordID wos000589384100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAcoAD-1I2GYljLRo7ceITKkvFgVaVWqHeIsdLqdSmpSl8P2M3pVyQkLjkYkWJ7PHMezOjNwjdcGZikfCIKKMFgXgrSBIGlgB5Dqy2LBRep_v1JW63k35fdMqEW1G2VS59onfUeqJcjvyWhhHjQNc4v5u-Ezc1ylVXyxEa66jCAMo4q47731UEzqhvYQSeHhJgQnQp2kiDW6kKN2CnroLQF51_g5c-zDR3__uDe2inBJi4sbCIfbRm8gO0_UN28BCZzsypROgadr2vI_B1NdwFd4zvh5PVWJwCy1zjR2OmuBRhHeDGaACfnL-NMWBd3B2D3WFfBiAt35RpsM8wWtfndYR6zafewzMpxy0QCUFpTmRgADuISJtIWcEjKZwWDqNMOhlHZm1i6zaSmquMx5LGVIJDUNToDOi1UvQYbeST3JwizCnNrMtS1q0IE21FAqQTwmJGNRNAx6voermFKVizK1HI3Ew-inS1iVV0sjiHdLqQ3UgZA3gI62d_ePscbVFHjF3-N7xAFQt32VyiTfU5HxazK28m8Gx3Wl8_YMdw
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Printed%2C+Wireless%2C+Soft+Bioelectronics+and+Deep+Learning+Algorithm+for+Smart+Human-Machine+Interfaces&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Kwon%2C+Young-Tae&rft.au=Kim%2C+Hojoong&rft.au=Mahmood%2C+Musa&rft.au=Kim%2C+Yun-Soung&rft.date=2020-11-04&rft.eissn=1944-8252&rft.volume=12&rft.issue=44&rft.spage=49398&rft_id=info:doi/10.1021%2Facsami.0c14193&rft_id=info%3Apmid%2F33085453&rft_id=info%3Apmid%2F33085453&rft.externalDocID=33085453
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8252&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8252&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8252&client=summon