Printed, Wireless, Soft Bioelectronics and Deep Learning Algorithm for Smart Human-Machine Interfaces
Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease diagnosis, and machine interfaces. Current device-manufacturing methods, however, still heavily rely on the conventional cleanroom microfabric...
Uloženo v:
| Vydáno v: | ACS applied materials & interfaces Ročník 12; číslo 44; s. 49398 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
04.11.2020
|
| Témata: | |
| ISSN: | 1944-8252, 1944-8252 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease diagnosis, and machine interfaces. Current device-manufacturing methods, however, still heavily rely on the conventional cleanroom microfabrication that requires expensive, time-consuming, and complicated processes. Here, we introduce an additive nanomanufacturing technology that explores a contactless direct printing of aerosol nanomaterials and polymers to fabricate stretchable sensors and multilayered wearable electronics. Computational and experimental studies prove the mechanical flexibility and reliability of soft electronics, considering direct mounting to the deformable human skin with a curvilinear surface. The dry, skin-conformal graphene biosensor, without the use of conductive gels and aggressive tapes, offers an enhanced biopotential recording on the skin and multiple uses (over ten times) with consistent measurement of electromyograms. The combination of soft bioelectronics and deep learning algorithm allows classifying six classes of muscle activities with an accuracy of over 97%, which enables wireless, real-time, continuous control of external machines such as a robotic hand and a robotic arm. Collectively, the comprehensive study of nanomaterials, flexible mechanics, system integration, and machine learning shows the potential of the printed bioelectronics for portable, smart, and persistent human-machine interfaces. |
|---|---|
| AbstractList | Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease diagnosis, and machine interfaces. Current device-manufacturing methods, however, still heavily rely on the conventional cleanroom microfabrication that requires expensive, time-consuming, and complicated processes. Here, we introduce an additive nanomanufacturing technology that explores a contactless direct printing of aerosol nanomaterials and polymers to fabricate stretchable sensors and multilayered wearable electronics. Computational and experimental studies prove the mechanical flexibility and reliability of soft electronics, considering direct mounting to the deformable human skin with a curvilinear surface. The dry, skin-conformal graphene biosensor, without the use of conductive gels and aggressive tapes, offers an enhanced biopotential recording on the skin and multiple uses (over ten times) with consistent measurement of electromyograms. The combination of soft bioelectronics and deep learning algorithm allows classifying six classes of muscle activities with an accuracy of over 97%, which enables wireless, real-time, continuous control of external machines such as a robotic hand and a robotic arm. Collectively, the comprehensive study of nanomaterials, flexible mechanics, system integration, and machine learning shows the potential of the printed bioelectronics for portable, smart, and persistent human-machine interfaces.Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease diagnosis, and machine interfaces. Current device-manufacturing methods, however, still heavily rely on the conventional cleanroom microfabrication that requires expensive, time-consuming, and complicated processes. Here, we introduce an additive nanomanufacturing technology that explores a contactless direct printing of aerosol nanomaterials and polymers to fabricate stretchable sensors and multilayered wearable electronics. Computational and experimental studies prove the mechanical flexibility and reliability of soft electronics, considering direct mounting to the deformable human skin with a curvilinear surface. The dry, skin-conformal graphene biosensor, without the use of conductive gels and aggressive tapes, offers an enhanced biopotential recording on the skin and multiple uses (over ten times) with consistent measurement of electromyograms. The combination of soft bioelectronics and deep learning algorithm allows classifying six classes of muscle activities with an accuracy of over 97%, which enables wireless, real-time, continuous control of external machines such as a robotic hand and a robotic arm. Collectively, the comprehensive study of nanomaterials, flexible mechanics, system integration, and machine learning shows the potential of the printed bioelectronics for portable, smart, and persistent human-machine interfaces. Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease diagnosis, and machine interfaces. Current device-manufacturing methods, however, still heavily rely on the conventional cleanroom microfabrication that requires expensive, time-consuming, and complicated processes. Here, we introduce an additive nanomanufacturing technology that explores a contactless direct printing of aerosol nanomaterials and polymers to fabricate stretchable sensors and multilayered wearable electronics. Computational and experimental studies prove the mechanical flexibility and reliability of soft electronics, considering direct mounting to the deformable human skin with a curvilinear surface. The dry, skin-conformal graphene biosensor, without the use of conductive gels and aggressive tapes, offers an enhanced biopotential recording on the skin and multiple uses (over ten times) with consistent measurement of electromyograms. The combination of soft bioelectronics and deep learning algorithm allows classifying six classes of muscle activities with an accuracy of over 97%, which enables wireless, real-time, continuous control of external machines such as a robotic hand and a robotic arm. Collectively, the comprehensive study of nanomaterials, flexible mechanics, system integration, and machine learning shows the potential of the printed bioelectronics for portable, smart, and persistent human-machine interfaces. |
| Author | Demolder, Carl Kim, Hojoong Kwon, Young-Tae Mahmood, Musa Kim, Yun-Soung Yeo, Woon-Hong |
| Author_xml | – sequence: 1 givenname: Young-Tae surname: Kwon fullname: Kwon, Young-Tae organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States – sequence: 2 givenname: Hojoong surname: Kim fullname: Kim, Hojoong organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States – sequence: 3 givenname: Musa surname: Mahmood fullname: Mahmood, Musa organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States – sequence: 4 givenname: Yun-Soung surname: Kim fullname: Kim, Yun-Soung organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States – sequence: 5 givenname: Carl surname: Demolder fullname: Demolder, Carl organization: George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, Georgia 30332, United States – sequence: 6 givenname: Woon-Hong orcidid: 0000-0002-5526-3882 surname: Yeo fullname: Yeo, Woon-Hong organization: Center for Human-Centric Interfaces and Engineering, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, Georgia 30332, United States |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33085453$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkMtLw0AYxBdR7EOvHmWPHpq6j2yaHGt9tFBRaMFj-Lr5tl1JdutucvC_N2AFTzMDPwZmRuTceYeE3HA25Uzwe9ARGjtlmqe8kGdkyIs0TXKhxPk_PyCjGD8Zy6Rg6pIMpGS5SpUcEnwP1rVYTeiHDVhjjBO68aalD9b3UbfBO6sjBVfRR8QjXSMEZ92ezuu9D7Y9NNT4QDcNhJYuuwZc8gr6YB3SVV8cDGiMV-TCQB3x-qRjsn1-2i6WyfrtZbWYrxNIRdEmwLHgrFAVKm2KTEHBhFRSSAAtmDQmN8woqDK9y2YgZgKY5FpgtZulQmsxJne_tcfgvzqMbdnYqLGuwaHvYin6yVme51nWo7cntNs1WJXHYPsF3-XfM-IH1floWQ |
| CitedBy_id | crossref_primary_10_1002_advs_202101037 crossref_primary_10_1016_j_bios_2021_113290 crossref_primary_10_1016_j_nanoen_2023_109143 crossref_primary_10_1002_admt_202101633 crossref_primary_10_1002_adfm_202419489 crossref_primary_10_1002_admt_202300030 crossref_primary_10_1002_anse_202200062 crossref_primary_10_1089_ten_tea_2022_0119 crossref_primary_10_1016_j_eml_2021_101443 crossref_primary_10_1007_s40964_025_01257_4 crossref_primary_10_1093_nsr_nwad298 crossref_primary_10_1088_2058_8585_ac6a96 crossref_primary_10_3390_mi15070884 crossref_primary_10_1016_j_cej_2025_159659 crossref_primary_10_1002_admi_202200594 crossref_primary_10_1016_j_device_2023_100252 crossref_primary_10_1016_j_nanoen_2023_108971 crossref_primary_10_1038_s42256_023_00760_z crossref_primary_10_3390_mi12121505 crossref_primary_10_1002_advs_202101129 crossref_primary_10_1016_j_mattod_2024_03_005 crossref_primary_10_1038_s41528_024_00297_0 crossref_primary_10_1002_adma_202406424 crossref_primary_10_3390_s21051642 crossref_primary_10_1016_j_bios_2024_116378 crossref_primary_10_3390_nano11040842 crossref_primary_10_1109_JSEN_2022_3142328 crossref_primary_10_3390_polym14183766 crossref_primary_10_1002_aelm_202201294 crossref_primary_10_1016_j_jmst_2022_09_050 crossref_primary_10_1002_adhm_202303563 crossref_primary_10_1016_j_bios_2021_113777 crossref_primary_10_1007_s40820_023_01029_1 crossref_primary_10_3390_bios12080562 crossref_primary_10_1002_adem_202401432 crossref_primary_10_1002_adma_202310006 crossref_primary_10_1002_smll_202412846 crossref_primary_10_1002_adma_202402542 crossref_primary_10_1039_D4SD00140K crossref_primary_10_1016_j_biomaterials_2024_122579 crossref_primary_10_1002_smm2_1320 crossref_primary_10_1016_j_sna_2023_114359 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/acsami.0c14193 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1944-8252 |
| ExternalDocumentID | 33085453 |
| Genre | Journal Article |
| GroupedDBID | --- .K2 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 7~N AABXI AAHBH ABJNI ABMVS ABQRX ABUCX ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CGR CUPRZ CUY CVF EBS ECM ED~ EIF F5P GGK GNL IH9 JG~ NPM P2P RNS ROL UI2 VF5 VG9 W1F XKZ 7X8 ABBLG ABLBI |
| ID | FETCH-LOGICAL-a429t-a1e91095de5cf965a90235323aac203ff8f0f5ad6cb67a272a031c2edb742cc2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 60 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000589384100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1944-8252 |
| IngestDate | Fri Jul 11 14:28:41 EDT 2025 Thu Jan 02 22:58:04 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 44 |
| Keywords | deep learning algorithm additive nanomanufacturing printed bioelectronics electromyograms (EMGs) human−machine interface |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a429t-a1e91095de5cf965a90235323aac203ff8f0f5ad6cb67a272a031c2edb742cc2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-5526-3882 |
| PMID | 33085453 |
| PQID | 2453688866 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2453688866 pubmed_primary_33085453 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-11-04 |
| PublicationDateYYYYMMDD | 2020-11-04 |
| PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | ACS applied materials & interfaces |
| PublicationTitleAlternate | ACS Appl Mater Interfaces |
| PublicationYear | 2020 |
| SSID | ssj0063205 |
| Score | 2.5584643 |
| Snippet | Recent advances in flexible materials and wearable electronics offer a noninvasive, high-fidelity recording of biopotentials for portable healthcare, disease... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 49398 |
| SubjectTerms | Algorithms Deep Learning Electronics Humans Nanotechnology Particle Size Surface Properties Wearable Electronic Devices |
| Title | Printed, Wireless, Soft Bioelectronics and Deep Learning Algorithm for Smart Human-Machine Interfaces |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/33085453 https://www.proquest.com/docview/2453688866 |
| Volume | 12 |
| WOSCitedRecordID | wos000589384100010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWAcoAD-1I2GYljLRo7ceITKkvFgVaVWqHeIsdLqdSmpSl8P2M3pVyQkLjkYkWJ7PHMezOjNwjdcGZikfCIKKMFgXgrSBIGlgB5Dqy2LBRep_v1JW63k35fdMqEW1G2VS59onfUeqJcjvyWhhHjQNc4v5u-Ezc1ylVXyxEa66jCAMo4q47731UEzqhvYQSeHhJgQnQp2kiDW6kKN2CnroLQF51_g5c-zDR3__uDe2inBJi4sbCIfbRm8gO0_UN28BCZzsypROgadr2vI_B1NdwFd4zvh5PVWJwCy1zjR2OmuBRhHeDGaACfnL-NMWBd3B2D3WFfBiAt35RpsM8wWtfndYR6zafewzMpxy0QCUFpTmRgADuISJtIWcEjKZwWDqNMOhlHZm1i6zaSmquMx5LGVIJDUNToDOi1UvQYbeST3JwizCnNrMtS1q0IE21FAqQTwmJGNRNAx6voermFKVizK1HI3Ew-inS1iVV0sjiHdLqQ3UgZA3gI62d_ePscbVFHjF3-N7xAFQt32VyiTfU5HxazK28m8Gx3Wl8_YMdw |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Printed%2C+Wireless%2C+Soft+Bioelectronics+and+Deep+Learning+Algorithm+for+Smart+Human-Machine+Interfaces&rft.jtitle=ACS+applied+materials+%26+interfaces&rft.au=Kwon%2C+Young-Tae&rft.au=Kim%2C+Hojoong&rft.au=Mahmood%2C+Musa&rft.au=Kim%2C+Yun-Soung&rft.date=2020-11-04&rft.eissn=1944-8252&rft.volume=12&rft.issue=44&rft.spage=49398&rft_id=info:doi/10.1021%2Facsami.0c14193&rft_id=info%3Apmid%2F33085453&rft_id=info%3Apmid%2F33085453&rft.externalDocID=33085453 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1944-8252&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1944-8252&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1944-8252&client=summon |