Probability and random processes

The second edition enhanced with new chapters, figures, and appendices to cover the new developments in applied mathematical functions This book examines the topics of applied mathematical functions to problems that engineers and researchers solve daily in the course of their work. The text covers s...

Full description

Saved in:
Bibliographic Details
Main Authors: Krishnan, Venkatarama, Chandra, Kavitha
Format: eBook Book
Language:English
Published: New York Wiley 2015
John Wiley & Sons, Incorporated
Wiley-Blackwell
Edition:2nd ed
Subjects:
ISBN:1118923138, 9781118923139, 1119011906, 9781119011903
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The second edition enhanced with new chapters, figures, and appendices to cover the new developments in applied mathematical functions This book examines the topics of applied mathematical functions to problems that engineers and researchers solve daily in the course of their work. The text covers set theory, combinatorics, random variables, discrete and continuous probability, distribution functions, convergence of random variables, computer generation of random variates, random processes and stationarity concepts with associated autocovariance and cross covariance functions, estimation theory and Wiener and Kalman filtering ending with two applications of probabilistic methods. Probability tables with nine decimal place accuracy and graphical Fourier transform tables are included for quick reference. The author facilitates understanding of probability concepts for both students and practitioners by presenting over 450 carefully detailed figures and illustrations, and over 350 examples with every step explained clearly and some with multiple solutions. Additional features of the second edition of Probability and Random Processes are: * Updated chapters with new sections on Newton-Pepys' problem; Pearson, Spearman, and Kendal correlation coefficients; adaptive estimation techniques; birth and death processes; and renewal processes with generalizations * A new chapter on Probability Modeling in Teletraffic Engineering written by Kavitha Chandra * An eighth appendix examining the computation of the roots of discrete probability-generating functions With new material on theory and applications of probability, Probability and Random Processes, Second Edition is a thorough and comprehensive reference for commonly occurring problems in probabilistic methods and their applications.
AbstractList The second edition enhanced with new chapters, figures, and appendices to cover the new developments in applied mathematical functions This book examines the topics of applied mathematical functions to problems that engineers and researchers solve daily in the course of their work. The text covers set theory, combinatorics, random variables, discrete and continuous probability, distribution functions, convergence of random variables, computer generation of random variates, random processes and stationarity concepts with associated autocovariance and cross covariance functions, estimation theory and Wiener and Kalman filtering ending with two applications of probabilistic methods. Probability tables with nine decimal place accuracy and graphical Fourier transform tables are included for quick reference. The author facilitates understanding of probability concepts for both students and practitioners by presenting over 450 carefully detailed figures and illustrations, and over 350 examples with every step explained clearly and some with multiple solutions. Additional features of the second edition of Probability and Random Processes are: Updated chapters with new sections on Newton-Pepys' problem; Pearson, Spearman, and Kendal correlation coefficients; adaptive estimation techniques; birth and death processes; and renewal processes with generalizations A new chapter on Probability Modeling in Teletraffic Engineering written by Kavitha Chandra An eighth appendix examining the computation of the roots of discrete probability-generating functions With new material on theory and applications of probability, Probability and Random Processes, Second Edition is a thorough and comprehensive reference for commonly occurring problems in probabilistic methods and their applications.
The second edition enhanced with new chapters, figures, and appendices to cover the new developments in applied mathematical functions This book examines the topics of applied mathematical functions to problems that engineers and researchers solve daily in the course of their work. The text covers set theory, combinatorics, random variables, discrete and continuous probability, distribution functions, convergence of random variables, computer generation of random variates, random processes and stationarity concepts with associated autocovariance and cross covariance functions, estimation theory and Wiener and Kalman filtering ending with two applications of probabilistic methods. Probability tables with nine decimal place accuracy and graphical Fourier transform tables are included for quick reference. The author facilitates understanding of probability concepts for both students and practitioners by presenting over 450 carefully detailed figures and illustrations, and over 350 examples with every step explained clearly and some with multiple solutions. Additional features of the second edition of Probability and Random Processes are: * Updated chapters with new sections on Newton-Pepys' problem; Pearson, Spearman, and Kendal correlation coefficients; adaptive estimation techniques; birth and death processes; and renewal processes with generalizations * A new chapter on Probability Modeling in Teletraffic Engineering written by Kavitha Chandra * An eighth appendix examining the computation of the roots of discrete probability-generating functions With new material on theory and applications of probability, Probability and Random Processes, Second Edition is a thorough and comprehensive reference for commonly occurring problems in probabilistic methods and their applications.
Author Krishnan, Venkatarama
Chandra, Kavitha
Author_xml – sequence: 1
  fullname: Krishnan, Venkatarama
– sequence: 2
  fullname: Chandra, Kavitha
BackLink https://cir.nii.ac.jp/crid/1130282271053641472$$DView record in CiNii
BookMark eNqN0TtPwzAQAGAjHqIt_QUsQUJCDJXuzo4dj1CVh1QJBsQaOYkDoWkMcQoqvx63qZg7-Py4TyefPWRHjWvsARsiooYwUBxuN4kmjjw5YYNwxEnHCKds7P0HAGBMIaoBi55bl5msqqtuHZmmiNoQ3DL6bF1uvbf-jB2XpvZ2vJtH7PVu9jJ9mMyf7h-nN_OJEaQ1TMpc6pKKjMhImQFYXpIBqTMhpcw1t9YoUpgDFaQSKlDLPClKTBRYIWTBR-y6L2z8wv74d1d3Pv2ubebcwqdaJf_9wf4WeLBXvQ0tfa2s79Ity23TtaZOZ7dThSA4V3tIAQJiwj0kIVFMMsjznbRtbd9curuiTqTYZC_7bFNVaV5tIiIHSig8FcRcChSKArvo2dK0q1_bpJ9tFZbrlG--ElFyzv8AVhGTuw
ContentType eBook
Book
DBID MOSFZ
PS5
RYH
YSPEL
DEWEY 519.2
DatabaseName Maruzen eBook Library
Maruzen eBook Library (Global)
CiNii Complete
Perlego
DatabaseTitleList



DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Engineering
Applied Sciences
Statistics
DocumentTitleAlternate Probability and random processes
EISBN 1119011914
9781119011910
1119011906
9781119011903
Edition 2nd ed
2
1
Second edition.
ExternalDocumentID 9781119011910
9781119011903
EBC7104337
EBC4040521
EBC2122526
998646
BB19590396
3000111633
Genre Electronic books
GroupedDBID 20A
38.
AABBV
ABARN
ABIAV
ABQPQ
ACBYE
ACCPI
ACLGV
ADVEM
AERYV
AFOJC
AHWGJ
AJFER
ALMA_UNASSIGNED_HOLDINGS
AMYDA
AZZ
BBABE
CZZ
GEOUK
JJU
MOSFZ
MYL
PQQKQ
PS5
WLZGU
WYBTS
YSPEL
RYH
ID FETCH-LOGICAL-a42990-fc69f2db22a66b00e3f2a069b4666c93eea7271c02d2782d196c8df1870e446d3
ISBN 1118923138
9781118923139
1119011906
9781119011903
IngestDate Mon Sep 15 23:49:30 EDT 2025
Fri Nov 08 05:18:48 EST 2024
Wed Dec 10 12:50:57 EST 2025
Fri May 30 22:20:51 EDT 2025
Sat May 31 00:05:06 EDT 2025
Tue Dec 02 18:47:33 EST 2025
Thu Jun 26 22:03:59 EDT 2025
Tue Nov 18 20:23:07 EST 2025
IsPeerReviewed false
IsScholarly false
LCCallNum_Ident QA273 .K757 2016
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a42990-fc69f2db22a66b00e3f2a069b4666c93eea7271c02d2782d196c8df1870e446d3
Notes With contribution from Kavitha Chandra
Includes bibliographical references and index
OCLC 914329510
911200077
1347028886
PQID EBC2122526
PageCount 528
ParticipantIDs askewsholts_vlebooks_9781119011910
askewsholts_vlebooks_9781119011903
proquest_ebookcentral_EBC7104337
proquest_ebookcentral_EBC4040521
proquest_ebookcentral_EBC2122526
perlego_books_998646
nii_cinii_1130282271053641472
maruzen_primary_3000111633
PublicationCentury 2000
PublicationDate 2016/01/01
c2016
2015
2015-07-15
PublicationDateYYYYMMDD 2016-01-01
2015-01-01
2015-07-15
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: Hoboken, N.J
– name: New York
– name: Newark
PublicationYear 2016
2015
Publisher Wiley
John Wiley & Sons, Incorporated
Wiley-Blackwell
Publisher_xml – name: Wiley
– name: John Wiley & Sons, Incorporated
– name: Wiley-Blackwell
SSID ssj0001520007
Score 1.9627852
Snippet The second edition enhanced with new chapters, figures, and appendices to cover the new developments in applied mathematical functions This book examines the...
The second edition enhanced with new chapters, figures, and appendices to cover the new developments in applied mathematical functions This book examines the...
SourceID askewsholts
proquest
perlego
nii
maruzen
SourceType Aggregation Database
Publisher
SubjectTerms Engineering
Engineering -- Statistical methods
MATHEMATICS
Probabilities
Science
Science -- Statistical methods
Statistical methods
Stochastic processes
TableOfContents 14.4 Chernoff Bound -- 14.5 Cauchy-Schwartz Inequality -- 14.6 Jensen's Inequality -- 14.7 Convergence Concepts -- 14.8 Limit Theorems -- Chapter 15 Computer Methods for Generating Random Variates -- 15.1 Uniform-Distribution Random Variates -- 15.2 Histograms -- 15.3 Inverse Transformation Techniques -- 15.4 Convolution Techniques -- 15.5 Acceptance-Rejection Techniques -- Chapter 16 Elements of Matrix Algebra -- 16.1 Basic Theory of Matrices -- 16.2 Eigenvalues and Eigenvectors of Matrices -- 16.3 Vector and Matrix Differentiation -- 16.4 Block Matrices -- Chapter 17 Random Vectors and Mean-Square Estimation -- 17.1 Distributions and Densities -- 17.2 Moments of Random Vectors -- 17.3 Vector Gaussian Random Variables -- 17.4 Diagonalization of Covariance Matrices -- 17.5 Simultaneous Diagonalization of Covariance Matrices -- 17.6 Linear Estimation of Vector Variables -- Chapter 18 Estimation Theory -- 18.1 Criteria of Estimators -- 18.2 Estimation of Random Variables -- 18.3 Estimation of Parameters (Point Estimation) -- 18.4 Interval Estimation (Confidence Intervals) -- 18.5 Hypothesis Testing (Binary) -- 18.6 Bayesian Estimation -- Chapter 19 Random Processes -- 19.1 Basic Definitions -- 19.2 Stationary Random Processes -- 19.3 Ergodic Processes -- 19.4 Estimation of Parameters of Random Processes -- 19.4.1 Continuous-Time Processes -- 19.4.2 Discrete-Time Processes -- 19.5 Power Spectral Density -- 19.5.1 Continuous Time -- 19.5.2 Discrete Time -- 19.6 Adaptive Estimation -- Chapter 20 Classification of Random Processes -- 20.1 Specifications of Random Processes -- 20.1.1 Discrete-State Discrete-Time (DSDT) Process -- 20.1.2 Discrete-State Continuous-Time (DSCT) Process -- 20.1.3 Continuous-State Discrete-Time (CSDT) Process -- 20.1.4 Continuous-State Continuous-Time (CSCT) Process -- 20.2 Poisson Process -- 20.3 Binomial Process
7.17 Summary of Distributions of Continuous Random Variables -- Chapter 8 Conditional Densities and Distributions -- 8.1 Conditional Distribution and Density for P{A}≠0 -- 8.2 Conditional Distribution and Density for P{A}=0 -- 8.3 Total Probability and Bayes' Theorem for Densities -- Chapter 9 Joint Densities and Distributions -- 9.1 Joint Discrete Distribution Functions -- 9.2 Joint Continuous Distribution Functions -- 9.3 Bivariate Gaussian Distributions -- Chapter 10 Moments and Conditional Moments -- 10.1 Expectations -- 10.2 Variance -- 10.3 Means and Variances of Some Distributions -- 10.4 Higher-Order Moments -- 10.5 Correlation and Partial Correlation Coefficients -- 10.5.1 Correlation Coefficients -- 10.5.2 Partial Correlation Coefficients -- Chapter 11 Characteristic Functions and Generating Functions -- 11.1 Characteristic Functions -- 11.2 Examples of Characteristic Functions -- 11.3 Generating Functions -- 11.4 Examples of Generating Functions -- 11.5 Moment Generating Functions -- 11.6 Cumulant Generating Functions -- 11.7 Table of Means and Variances -- Chapter 12 Functions of a Single Random Variable -- 12.1 Random Variable g(X) -- 12.2 Distribution of Y=g(X) -- 12.3 Direct Determination of Density fY(y) from fX(x) -- 12.4 Inverse Problem: Finding g(x) given fX(x) and fY(y) -- 12.5 Moments of a Function of a Random Variable -- Chapter 13 Functions of Multiple Random Variables -- 13.1 Function of Two Random Variables, Z=g(X,Y) -- 13.2 Two Functions of Two Random Variables, Z=g(X,Y), W=h(X,Y) -- 13.3 Direct Determination of Joint Density fZW(z,w) from fXY(x,y) -- 13.4 Solving Z=g(X,Y) Using an Auxiliary Random Variable -- 13.5 Multiple Functions of Random Variables -- Chapter 14 Inequalities, Convergences, and Limit Theorems -- 14.1 Degenerate Random Variables -- 14.2 Chebyshev and Allied Inequalities -- 14.3 Markov Inequality
20.4 Independent Increment Process -- 20.5 Random-Walk Process -- 20.6 Gaussian Process -- 20.7 Wiener Process (Brownian Motion) -- 20.8 Markov Process -- 20.9 Markov Chains -- 20.10 Birth and Death Processes -- 20.11 Renewal Processes and Generalizations -- 20.12 Martingale Process -- 20.13 Periodic Random Process -- 20.14 Aperiodic Random Process (Karhunen-Loeve Expansion) -- Chapter 21 Random Processes and Linear Systems -- 21.1 Review of Linear Systems -- 21.2 Random Processes through Linear Systems -- 21.3 Linear Filters -- 21.4 Bandpass Stationary Random Processes -- Chapter 22 Wiener and Kalman Filters -- 22.1 Review of Orthogonality Principle -- 22.2 Wiener Filtering -- 22.3 Discrete Kalman Filter -- 22.4 Continuous Kalman Filter -- Chapter 23 Probability Modeling in Traffic Engineering -- 23.1 Introduction -- 23.2 Teletraffic Models -- 23.3 Blocking Systems -- 23.4 State Probabilities for Systems with Delays -- 23.5 Waiting-Time Distribution for M/M/c/∞ Systems -- 23.6 State Probabilities for M/D/c Systems -- 23.7 Waiting-time distribution for M/D/c/∞ System -- 23.8 Comparison of M/M/c and M/D/c -- References -- Chapter 24 Probabilistic Methods in Transmission Tomography -- 24.1 Introduction -- 24.2 Stochastic Model -- 24.3 Stochastic Estimation Algorithm -- 24.4 Prior Distribution P{M} -- 24.5 Computer Simulation -- 24.6 Results and Conclusions -- 24.7 Discussion of Results -- References -- Appendix -- Appendix A Fourier Transform Tables -- Appendix B Cumulative Gaussian Tables -- Appendix C Inverse Cumulative Gaussian Tables -- Appendix D Inverse Chi-Square Tables -- Appendix E Inverse Student-t Tables -- Appendix F Cumulative Poisson Distribution -- Appendix G Cumulative Binomial Distribution -- Appendix H Computation of Roots of D(Z) = 0 -- References -- Web References -- Index -- EULA
Intro -- Title Page -- Copyright Page -- Contents -- Preface for the Second Edition -- Preface for the First Edition -- Chapter 1 Sets, Fields, and Events -- 1.1 Set Definitions -- 1.2 Set Operations -- 1.3 Set Algebras, Fields, and Events -- Chapter 2 Probability Space and Axioms -- 2.1 Probability Space -- 2.2 Conditional Probability -- 2.3 Independence -- 2.4 Total Probability and Bayes´ Theorem -- Chapter 3 Basic Combinatorics -- 3.1 Basic Counting Principles -- 3.2 Permutations -- 3.3 Combinations -- Chapter 4 Discrete Distributions -- 4.1 Bernoulli Trials -- 4.2 Binomial Distribution -- 4.3 Multinomial Distribution -- 4.4 Geometric Distribution -- 4.5 Negative Binomial Distribution -- 4.6 Hypergeometric Distribution -- 4.7 Poisson Distribution -- 4.8 Newton-Pepys Problem and its Extensions -- 4.9 Logarithmic Distribution -- 4.9.1 Finite Law (Benford's Law) -- 4.9.2 Infinite Law -- 4.10 Summary of Discrete Distributions -- Chapter 5 Random Variables -- 5.1 Definition of Random Variables -- 5.2 Determination of Distribution and Density Functions -- 5.3 Properties of Distribution and Density Functions -- 5.4 Distribution Functions from Density Functions -- Chapter 6 Continuous Random Variables and Basic Distributions -- 6.1 Introduction -- 6.2 Uniform Distribution -- 6.3 Exponential Distribution -- 6.4 Normal or Gaussian Distribution -- Chapter 7 Other Continuous Distributions -- 7.1 Introduction -- 7.2 Triangular Distribution -- 7.3 Laplace Distribution -- 7.4 Erlang Distribution -- 7.5 Gamma Distribution -- 7.6 Weibull Distribution -- 7.7 Chi-Square Distribution -- 7.8 Chi and Other Allied Distributions -- 7.9 Student-t DENSITY -- 7.10 Snedecor F Distribution -- 7.11 Lognormal Distribution -- 7.12 Beta Distribution -- 7.13 Cauchy Distribution -- 7.14 Pareto Distribution -- 7.15 Gibbs Distribution -- 7.16 Mixed Distributions
15.2 HISTOGRAMS -- 15.3 INVERSE TRANSFORMATION TECHNIQUES -- 15.4 CONVOLUTION TECHNIQUES -- 15.5 ACCEPTANCE-REJECTION TECHNIQUES -- 16 ELEMENTS OF MATRIX ALGEBRA -- 16.1 BASIC THEORY OF MATRICES -- 16.2 EIGENVALUES AND EIGENVECTORS OF MATRICES -- 16.3 VECTOR AND MATRIX DIFFERENTIATION -- 16.4 BLOCK MATRICES -- 17 RANDOM VECTORS AND MEAN-SQUARE ESTIMATION -- 17.1 DISTRIBUTIONS AND DENSITIES -- 17.2 MOMENTS OF RANDOM VECTORS -- 17.3 VECTOR GAUSSIAN RANDOM VARIABLES -- 17.4 DIAGONALIZATION OF COVARIANCE MATRICES -- 17.5 SIMULTANEOUS DIAGONALIZATION OF COVARIANCE MATRICES -- 17.6 LINEAR ESTIMATION OF VECTOR VARIABLES -- 18 ESTIMATION THEORY -- 18.1 CRITERIA OF ESTIMATORS -- 18.2 ESTIMATION OF RANDOM VARIABLES -- 18.3 ESTIMATION OF PARAMETERS (POINT ESTIMATION) -- 18.4 INTERVAL ESTIMATION (CONFIDENCE INTERVALS) -- 18.5 HYPOTHESIS TESTING (BINARY) -- 18.6 BAYESIAN ESTIMATION -- 19 RANDOM PROCESSES -- 19.1 BASIC DEFINITIONS -- 19.2 STATIONARY RANDOM PROCESSES -- 19.3 ERGODIC PROCESSES -- 19.4 ESTIMATION OF PARAMETERS OF RANDOM PROCESSES -- 19.5 POWER SPECTRAL DENSITY -- 19.6 ADAPTIVE ESTIMATION -- 20 CLASSIFICATION OF RANDOM PROCESSES -- 20.1 SPECIFICATIONS OF RANDOM PROCESSES -- 20.2 POISSON PROCESS -- 20.3 BINOMIAL PROCESS -- 20.4 INDEPENDENT INCREMENT PROCESS -- 20.5 RANDOM-WALK PROCESS -- 20.6 GAUSSIAN PROCESS -- 20.7 WIENER PROCESS (BROWNIAN MOTION) -- 20.8 MARKOV PROCESS -- 20.9 MARKOV CHAINS -- 20.10 BIRTH AND DEATH PROCESSES -- 20.11 RENEWAL PROCESSES AND GENERALIZATIONS -- 20.12 MARTINGALE PROCESS -- 20.13 PERIODIC RANDOM PROCESS -- 20.14 APERIODIC RANDOM PROCESS (KARHUNEN-LOEVE EXPANSION) -- 21 RANDOM PROCESSES AND LINEAR SYSTEMS -- 21.1 REVIEW OF LINEAR SYSTEMS -- 21.2 RANDOM PROCESSES THROUGH LINEAR SYSTEMS -- 21.3 LINEAR FILTERS -- 21.4 BANDPASS STATIONARY RANDOM PROCESSES -- 22 WIENER AND KALMAN FILTERS
8.1 CONDITIONAL DISTRIBUTION AND DENSITY FOR P{A} -- 8.2 CONDITIONAL DISTRIBUTION AND DENSITY FOR P{A} = 0 -- 8.3 TOTAL PROBABILITY AND BAYES' THEOREM FOR DENSITIES -- 9 JOINT DENSITIES AND DISTRIBUTIONS -- 9.1 JOINT DISCRETE DISTRIBUTION FUNCTIONS -- 9.2 JOINT CONTINUOUS DISTRIBUTION FUNCTIONS -- 9.3 BIVARIATE GAUSSIAN DISTRIBUTIONS -- 10 MOMENTS AND CONDITIONAL MOMENTS -- 10.1 EXPECTATIONS -- 10.2 VARIANCE -- 10.3 MEANS AND VARIANCES OF SOME DISTRIBUTIONS -- 10.4 HIGHER-ORDER MOMENTS -- 10.5 CORRELATION AND PARTIAL CORRELATION COEFFICIENTS -- 11 CHARACTERISTIC FUNCTIONS AND GENERATING FUNCTIONS -- 11.1 CHARACTERISTIC FUNCTIONS -- 11.2 EXAMPLES OF CHARACTERISTIC FUNCTIONS -- 11.3 GENERATING FUNCTIONS -- 11.4 EXAMPLES OF GENERATING FUNCTIONS -- 11.5 MOMENT GENERATING FUNCTIONS -- 11.6 CUMULANT GENERATING FUNCTIONS -- 11.7 TABLE OF MEANS AND VARIANCES -- 12 FUNCTIONS OF A SINGLE RANDOM VARIABLE -- 12.1 RANDOM VARIABLE g(X) -- 12.2 DISTRIBUTION OF Y = g(X) -- 12.3 DIRECT DETERMINATION OF DENSITY fY(y) from fX(x) -- 12.4 INVERSE PROBLEM: FINDING g(x) GIVEN fX(x) AND fY(y) -- 12.5 MOMENTS OF A FUNCTION OF A RANDOM VARIABLE -- 13 FUNCTIONS OF MULTIPLE RANDOM VARIABLES -- 13.1 FUNCTION OF TWO RANDOM VARIABLES, Z = g(X,Y) -- 13.2 TWO FUNCTIONS OF TWO RANDOM VARIABLES, Z = g(X,Y), W = h(X,Y) -- 13.3 DIRECT DETERMINATION OF JOINT DENSITY fZW(z,w) FROM fXY(x,y) -- 13.4 SOLVING Z = g(X,Y) USING AN AUXILIARY RANDOM VARIABLE -- 13.5 MULTIPLE FUNCTIONS OF RANDOM VARIABLES -- 14 INEQUALITIES, CONVERGENCES, AND LIMIT THEOREMS -- 14.1 DEGENERATE RANDOM VARIABLES -- 14.2 CHEBYSHEV AND ALLIED INEQUALITIES -- 14.3 MARKOV INEQUALITY -- 14.4 CHERNOFF BOUND -- 14.5 CAUCHY-SCHWARTZ INEQUALITY -- 14.6 JENSEN'S INEQUALITY -- 14.7 CONVERGENCE CONCEPTS -- 14.8 LIMIT THEOREMS -- 15 COMPUTER METHODS FOR GENERATING RANDOM VARIATES -- 15.1 UNIFORM-DISTRIBUTION RANDOM VARIATES
Intro -- TITLE PAGE -- TABLE OF CONTENTS -- PREFACE FOR THE SECOND EDITION -- PREFACE FOR THE FIRST EDITION -- 1 SETS, FIELDS, AND EVENTS -- 1.1 SET DEFINITIONS -- 1.2 SET OPERATIONS -- 1.3 SET ALGEBRAS, FIELDS, AND EVENTS -- 2 PROBABILITY SPACE AND AXIOMS -- 2.1 PROBABILITY SPACE -- 2.2 CONDITIONAL PROBABILITY -- 2.3 INDEPENDENCE -- 2.4 TOTAL PROBABILITY AND BAYES' THEOREM -- 3 BASIC COMBINATORICS -- 3.1 BASIC COUNTING PRINCIPLES -- 3.2 PERMUTATIONS -- 3.3 COMBINATIONS -- 4 DISCRETE DISTRIBUTIONS -- 4.1 BERNOULLI TRIALS -- 4.2 BINOMIAL DISTRIBUTION -- 4.3 MULTINOMIAL DISTRIBUTION -- 4.4 GEOMETRIC DISTRIBUTION -- 4.5 NEGATIVE BINOMIAL DISTRIBUTION -- 4.6 HYPERGEOMETRIC DISTRIBUTION -- 4.7 POISSON DISTRIBUTION -- 4.8 NEWTON-PEPYS PROBLEM AND ITS EXTENSIONS -- 4.9 LOGARITHMIC DISTRIBUTION -- 4.10 SUMMARY OF DISCRETE DISTRIBUTIONS -- 5 RANDOM VARIABLES -- 5.1 DEFINITION OF RANDOM VARIABLES -- 5.2 DETERMINATION OF DISTRIBUTION AND DENSITY FUNCTIONS -- 5.3 PROPERTIES OF DISTRIBUTION AND DENSITY FUNCTIONS -- 5.4 DISTRIBUTION FUNCTIONS FROM DENSITY FUNCTIONS -- 6 CONTINUOUS RANDOM VARIABLES AND BASIC DISTRIBUTIONS -- 6.1 INTRODUCTION -- 6.2 UNIFORM DISTRIBUTION -- 6.3 EXPONENTIAL DISTRIBUTION -- 6.4 NORMAL OR GAUSSIAN DISTRIBUTION -- 7 OTHER CONTINUOUS DISTRIBUTIONS -- 7.1 INTRODUCTION -- 7.2 TRIANGULAR DISTRIBUTION -- 7.3 LAPLACE DISTRIBUTION -- 7.4 ERLANG DISTRIBUTION -- 7.5 GAMMA DISTRIBUTION -- 7.6 WEIBULL DISTRIBUTION -- 7.7 CHI-SQUARE DISTRIBUTION -- 7.8 CHI AND OTHER ALLIED DISTRIBUTIONS -- 7.9 STUDENT-t DENSITY -- 7.10 SNEDECOR F DISTRIBUTION -- 7.11 LOGNORMAL DISTRIBUTION -- 7.12 BETA DISTRIBUTION -- 7.13 CAUCHY DISTRIBUTION -- 7.14 PARETO DISTRIBUTION -- 7.15 GIBBS DISTRIBUTION -- 7.16 MIXED DISTRIBUTIONS -- 7.17 SUMMARY OF DISTRIBUTIONS OF CONTINUOUS RANDOM VARIABLES -- 8 CONDITIONAL DENSITIES AND DISTRIBUTIONS
22.1 REVIEW OF ORTHOGONALITY PRINCIPLE -- 22.2 WIENER FILTERING -- 22.3 DISCRETE KALMAN FILTER1 -- 22.4 CONTINUOUS KALMAN FILTER -- 23 PROBABILITY MODELING IN TRAFFIC ENGINEERING -- 23.1 INTRODUCTION -- 23.2 TELETRAFFIC MODELS -- 23.3 BLOCKING SYSTEMS -- 23.4 STATE PROBABILITIES FOR SYSTEMS WITH DELAYS -- 23.5 WAITING-TIME DISTRIBUTION FOR M/M/c/∞ SYSTEMS -- 23.6 STATE PROBABILITIES FOR M/D/c SYSTEMS -- 23.7 WAITING-TIME DISTRIBUTION FOR M/D/c/∞ SYSTEM -- 23.8 COMPARISON OF M/M/c AND M/D/c -- REFERENCES -- 24 PROBABILISTIC METHODS IN TRANSMISSION TOMOGRAPHY -- 24.1 INTRODUCTION -- 24.2 STOCHASTIC MODEL -- 24.3 STOCHASTIC ESTIMATION ALGORITHM -- 24.4 PRIOR DISTRIBUTION P{} -- 24.5 COMPUTER SIMULATION -- 24.6 RESULTS AND CONCLUSIONS -- 24.7 DISCUSSION OF RESULTS -- REFERENCES -- APPENDIX A A FOURIER TRANSFORM TABLES -- APPENDIX B CUMULATIVE GAUSSIAN TABLES -- APPENDIX C INVERSE CUMULATIVE GAUSSIAN TABLES -- APPENDIX D INVERSE CHI-SQUARE TABLES -- APPENDIX E INVERSE STUDENT-t TABLES -- APPENDIX F CUMULATIVE POISSON DISTRIBUTION -- APPENDIX G CUMULATIVE BINOMIAL DISTRIBUTION -- APPENDIX H COMPUTATION OF ROOTS OF D(z) = 0 -- REFERENCES -- WEB REFERENCES -- INDEX -- END USER LICENSE AGREEMENT
Title Probability and random processes
URI https://elib.maruzen.co.jp/elib/html/BookDetail/Id/3000111633
https://cir.nii.ac.jp/crid/1130282271053641472
https://www.perlego.com/book/998646/probability-and-random-processes-pdf
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=2122526
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=4040521
https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=7104337
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781119011903
https://www.vlebooks.com/vleweb/product/openreader?id=none&isbn=9781119011910&uid=none
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Bb9MwFLZY4UBPwEB0MBQhbihSYrtxfO1UQALGDmPaLXJth0Xb0irJqolfz2fHpKVIAw5crCayXpP3kve-5_h9j5A3luWiXBggt5KrmFvLYukKdYE2tEE4FFx5dv1P4vg4Pz-XJ6EDWOvbCYi6zm9v5eq_mhrnYGxXOvsP5h6E4gR-w-gYYXaMO4h4OOwtftLg3fR7XXtOJUQhs7x-u-pLATZ7Bd17fRHaEp_Z-lJ1qlEb9-zqDUwTKsXWVXehtlcG0t2VAe9WfkkX4ddyB-h6-qAdnunZzPHMJExme2RPZEhk77-ff_n6cbNi5RiaEuHbLQU5eSDNGuSOyVi1l3DPcN1d65oyqebmu60RueuqwvHKNlf22_K3yOfD-ekjMnIlHo_JPVs_IePPA3Ntu0-iLS1GUETUazEatPiUnL2bnx59iEMXiVj5WBuXOpMlNQtKVZbBy1hWUpVkcsGRumnJrFUAcalOqKHASwY-SeemTOHJLJJlw56RUb2s7XMSJVQJI4DApppxLbgUKpFIIPNFNhWc6wl5vXX7xfrKf_Fui15HrsoXCv6LSWkyIQdBdcWqpx0pmMfvwM-QcAhtFrpyY-o-PQPmASpOWcZTLuiE7Ac9F0G0I-HPJiT6qfTC_2fY_1vMZ0dAMHRK75zC4e8B9u6agmvgjImDP1zfC_Jw87y-JKOuubGH5IFed1XbvArP3Q8gg0he
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Probability+and+random+processes&rft.au=Krishnan%2C+Venkatarama&rft.au=Chandra%2C+Kavitha&rft.date=2016-01-01&rft.pub=Wiley&rft.isbn=9781118923139&rft.externalDocID=BB19590396
thumbnail_l http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fwww.perlego.com%2Fbooks%2FRM_Books%2Fwiley_hlvwyirv%2F9781119011903.jpg
thumbnail_m http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811190%2F9781119011903.jpg
http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fvle.dmmserver.com%2Fmedia%2F640%2F97811190%2F9781119011910.jpg