Hydrologically Informed Machine Learning for Rainfall‐Runoff Modeling: A Genetic Programming‐Based Toolkit for Automatic Model Induction

Models of water resources systems are conceived to capture the underlying environmental dynamics occurring within watersheds. All such models can be regarded as working hypotheses, differing in the aspects of process representation and conceptualization. Most of the associated efforts in the water r...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Water resources research Ročník 56; číslo 4
Hlavní autori: Chadalawada, Jayashree, Herath, H. M. V. V., Babovic, Vladan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Washington John Wiley & Sons, Inc 01.04.2020
Predmet:
ISSN:0043-1397, 1944-7973
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Models of water resources systems are conceived to capture the underlying environmental dynamics occurring within watersheds. All such models can be regarded as working hypotheses, differing in the aspects of process representation and conceptualization. Most of the associated efforts in the water resources research community is dedicated to development of new models that perform well under specific atmospheric conditions and catchment properties. In this context, flexible modeling frameworks are gaining importance as they facilitate the model building process by providing the model building blocks, whereby the hydrologist is free to assemble the model for task at hand. Such flexible models have high degree of transferability, which in turn aid in progressing toward a unified hydrological theory at catchment scale. However, in cases without sufficient insights regarding a catchment characteristics and/or lack of expert's knowledge, one may have to try a large number of model configurations based on available model building blocks to construct an appropriate model for the catchment of interest. Undoubtedly, this may be time consuming and computationally intensive. This paper proposes a novel model building algorithm, which uses the full potential of flexible modeling frameworks by searching the model space and inferring suitable model configurations relying on machine learning. Proposed machine learning algorithm is based on evolutionary computation approach using genetic programming (GP). State‐of‐art GP applications in rainfall‐runoff modeling so far used the algorithm as a short‐term forecasting tool that generates an expected future time series very similar to neural networks application. In this case, the proposed algorithm develops a physically meaningful rainfall‐runoff model. Although at the moment we learn models using two flexible modeling frameworks (SUPERFLEX and FUSE), the model induction toolkit can be armed with any internal coherence building blocks. The model induction capabilities of the proposed framework have been evaluated on the Blackwater River basin, Alabama, United States. The model configurations evolved through the model induction toolkit are consistent with the fieldwork investigations and previously reported research findings. Key Points This paper presents a novel machine learning algorithm, which is guided through the incorporation of existing hydrological knowledge Proposed machine learning algorithm is based on evolutionary computation approach using genetic programming In the present case, the building blocks of flexible hydrological modeling frameworks represent elements of the background knowledge
AbstractList Models of water resources systems are conceived to capture the underlying environmental dynamics occurring within watersheds. All such models can be regarded as working hypotheses, differing in the aspects of process representation and conceptualization. Most of the associated efforts in the water resources research community is dedicated to development of new models that perform well under specific atmospheric conditions and catchment properties. In this context, flexible modeling frameworks are gaining importance as they facilitate the model building process by providing the model building blocks, whereby the hydrologist is free to assemble the model for task at hand. Such flexible models have high degree of transferability, which in turn aid in progressing toward a unified hydrological theory at catchment scale. However, in cases without sufficient insights regarding a catchment characteristics and/or lack of expert's knowledge, one may have to try a large number of model configurations based on available model building blocks to construct an appropriate model for the catchment of interest. Undoubtedly, this may be time consuming and computationally intensive. This paper proposes a novel model building algorithm, which uses the full potential of flexible modeling frameworks by searching the model space and inferring suitable model configurations relying on machine learning. Proposed machine learning algorithm is based on evolutionary computation approach using genetic programming (GP). State‐of‐art GP applications in rainfall‐runoff modeling so far used the algorithm as a short‐term forecasting tool that generates an expected future time series very similar to neural networks application. In this case, the proposed algorithm develops a physically meaningful rainfall‐runoff model. Although at the moment we learn models using two flexible modeling frameworks (SUPERFLEX and FUSE), the model induction toolkit can be armed with any internal coherence building blocks. The model induction capabilities of the proposed framework have been evaluated on the Blackwater River basin, Alabama, United States. The model configurations evolved through the model induction toolkit are consistent with the fieldwork investigations and previously reported research findings. This paper presents a novel machine learning algorithm, which is guided through the incorporation of existing hydrological knowledge Proposed machine learning algorithm is based on evolutionary computation approach using genetic programming In the present case, the building blocks of flexible hydrological modeling frameworks represent elements of the background knowledge
Models of water resources systems are conceived to capture the underlying environmental dynamics occurring within watersheds. All such models can be regarded as working hypotheses, differing in the aspects of process representation and conceptualization. Most of the associated efforts in the water resources research community is dedicated to development of new models that perform well under specific atmospheric conditions and catchment properties. In this context, flexible modeling frameworks are gaining importance as they facilitate the model building process by providing the model building blocks, whereby the hydrologist is free to assemble the model for task at hand. Such flexible models have high degree of transferability, which in turn aid in progressing toward a unified hydrological theory at catchment scale. However, in cases without sufficient insights regarding a catchment characteristics and/or lack of expert's knowledge, one may have to try a large number of model configurations based on available model building blocks to construct an appropriate model for the catchment of interest. Undoubtedly, this may be time consuming and computationally intensive. This paper proposes a novel model building algorithm, which uses the full potential of flexible modeling frameworks by searching the model space and inferring suitable model configurations relying on machine learning. Proposed machine learning algorithm is based on evolutionary computation approach using genetic programming (GP). State‐of‐art GP applications in rainfall‐runoff modeling so far used the algorithm as a short‐term forecasting tool that generates an expected future time series very similar to neural networks application. In this case, the proposed algorithm develops a physically meaningful rainfall‐runoff model. Although at the moment we learn models using two flexible modeling frameworks (SUPERFLEX and FUSE), the model induction toolkit can be armed with any internal coherence building blocks. The model induction capabilities of the proposed framework have been evaluated on the Blackwater River basin, Alabama, United States. The model configurations evolved through the model induction toolkit are consistent with the fieldwork investigations and previously reported research findings.
Models of water resources systems are conceived to capture the underlying environmental dynamics occurring within watersheds. All such models can be regarded as working hypotheses, differing in the aspects of process representation and conceptualization. Most of the associated efforts in the water resources research community is dedicated to development of new models that perform well under specific atmospheric conditions and catchment properties. In this context, flexible modeling frameworks are gaining importance as they facilitate the model building process by providing the model building blocks, whereby the hydrologist is free to assemble the model for task at hand. Such flexible models have high degree of transferability, which in turn aid in progressing toward a unified hydrological theory at catchment scale. However, in cases without sufficient insights regarding a catchment characteristics and/or lack of expert's knowledge, one may have to try a large number of model configurations based on available model building blocks to construct an appropriate model for the catchment of interest. Undoubtedly, this may be time consuming and computationally intensive. This paper proposes a novel model building algorithm, which uses the full potential of flexible modeling frameworks by searching the model space and inferring suitable model configurations relying on machine learning. Proposed machine learning algorithm is based on evolutionary computation approach using genetic programming (GP). State‐of‐art GP applications in rainfall‐runoff modeling so far used the algorithm as a short‐term forecasting tool that generates an expected future time series very similar to neural networks application. In this case, the proposed algorithm develops a physically meaningful rainfall‐runoff model. Although at the moment we learn models using two flexible modeling frameworks (SUPERFLEX and FUSE), the model induction toolkit can be armed with any internal coherence building blocks. The model induction capabilities of the proposed framework have been evaluated on the Blackwater River basin, Alabama, United States. The model configurations evolved through the model induction toolkit are consistent with the fieldwork investigations and previously reported research findings. Key Points This paper presents a novel machine learning algorithm, which is guided through the incorporation of existing hydrological knowledge Proposed machine learning algorithm is based on evolutionary computation approach using genetic programming In the present case, the building blocks of flexible hydrological modeling frameworks represent elements of the background knowledge
Author Babovic, Vladan
Herath, H. M. V. V.
Chadalawada, Jayashree
Author_xml – sequence: 1
  givenname: Jayashree
  orcidid: 0000-0003-3224-1186
  surname: Chadalawada
  fullname: Chadalawada, Jayashree
  organization: National University of Singapore
– sequence: 2
  givenname: H. M. V. V.
  orcidid: 0000-0002-5350-2317
  surname: Herath
  fullname: Herath, H. M. V. V.
  organization: National University of Singapore
– sequence: 3
  givenname: Vladan
  orcidid: 0000-0003-4046-6473
  surname: Babovic
  fullname: Babovic, Vladan
  email: vladan@nus.edu.sg
  organization: National University of Singapore
BookMark eNp9kU1OHDEQhS1EJAbCLgewxIZFOvi33WY3GRFAGhTUImLZMrZ7MLhtYncrml0OkEXOmJPEw7BASMmqpFffe1Wq2ge7IQYLwAeMPmFE5AlBWN62iNSS0h0ww5KxSkhBd8EMIUYrTKXYA_s5PyCEGa_FDPy6WJsUfVw5rbxfw8vQxzRYA6-UvnfBwqVVKbiwgkWHrXKhL9yfn7_bKcS-h1fRWF_ap3AOz22wo9PwOsVVUsNQ5AJ-VrnE3cToH934nDKfxjioDfnsLjPNpEcXw3vwrqRne_hSD8C3L2c3i4tq-fX8cjFfVooRyatGaoPr2mhuMSGYaMS1wo0y_I7eKcs1sbJGFFPOlOyFJYZro6VupGhIUzf0ABxvc59S_D7ZPHaDy9p6r4KNU-5ILTgXgnFU0KM36EOcUijbdYRK1khCkSjUxy2lU8w52b57Sm5Qad1h1G1e071-TcHJG1y7UW0uMCbl_L9MdGv64bxd_3dAd9suWsI45fQvaeak2A
CitedBy_id crossref_primary_10_1016_j_enganabound_2025_106277
crossref_primary_10_1016_j_jhydrol_2025_132705
crossref_primary_10_1007_s11356_024_34245_2
crossref_primary_10_1016_j_jhydrol_2022_128323
crossref_primary_10_1007_s12040_024_02320_4
crossref_primary_10_3390_w16213030
crossref_primary_10_1029_2023WR035876
crossref_primary_10_1002_joc_7923
crossref_primary_10_1016_j_advwatres_2021_103920
crossref_primary_10_5194_hess_25_5517_2021
crossref_primary_10_1016_j_advwatres_2024_104694
crossref_primary_10_3846_jeelm_2022_16394
crossref_primary_10_1109_JSTARS_2024_3449441
crossref_primary_10_3390_w15142572
crossref_primary_10_1016_j_jhydrol_2021_127316
crossref_primary_10_1038_s41598_024_74269_9
crossref_primary_10_3390_hydrology8010006
crossref_primary_10_1016_j_jhydrol_2020_125659
crossref_primary_10_1016_j_jhydrol_2023_130038
crossref_primary_10_3390_hydrology8020067
crossref_primary_10_1007_s00477_023_02534_w
crossref_primary_10_1016_j_jhydrol_2022_128495
crossref_primary_10_1016_j_jhydrol_2023_130510
crossref_primary_10_1007_s10668_025_06284_3
crossref_primary_10_1007_s11269_024_03975_w
crossref_primary_10_1038_s41598_024_77678_y
crossref_primary_10_1109_JSTARS_2025_3528475
crossref_primary_10_2166_wst_2023_396
crossref_primary_10_3390_w13202871
crossref_primary_10_3390_rs15174153
crossref_primary_10_1016_j_jhydrol_2024_131504
crossref_primary_10_1016_j_ejrh_2025_102331
crossref_primary_10_1016_j_ejrh_2025_102450
crossref_primary_10_3390_w15193369
crossref_primary_10_2166_hydro_2021_111
crossref_primary_10_1038_s41598_024_75118_5
crossref_primary_10_1016_j_jhydrol_2022_128618
crossref_primary_10_1111_jfr3_70029
crossref_primary_10_2166_hydro_2021_115
crossref_primary_10_1016_j_envsoft_2024_106290
crossref_primary_10_3390_infrastructures7100137
crossref_primary_10_3390_w16020335
crossref_primary_10_1016_j_jhydrol_2023_130421
crossref_primary_10_1007_s11269_025_04093_x
crossref_primary_10_1016_j_jhydrol_2021_127255
crossref_primary_10_1016_j_jhydrol_2024_130907
crossref_primary_10_1111_jfr3_70022
crossref_primary_10_1016_j_jhydrol_2025_132766
crossref_primary_10_1016_j_jhydrol_2023_129990
crossref_primary_10_1016_j_jhydrol_2024_130862
crossref_primary_10_3389_fsufs_2024_1363744
crossref_primary_10_5194_hess_26_5449_2022
crossref_primary_10_1016_j_envsoft_2025_106699
crossref_primary_10_1016_j_jhydrol_2024_131996
crossref_primary_10_1029_2020WR028148
crossref_primary_10_1016_j_jhydrol_2025_133219
crossref_primary_10_1029_2023WR035139
crossref_primary_10_1080_02626667_2025_2456211
crossref_primary_10_1016_j_advwatres_2024_104796
crossref_primary_10_2166_hydro_2023_050
crossref_primary_10_1111_1752_1688_12964
crossref_primary_10_1371_journal_pone_0255684
crossref_primary_10_5194_hess_25_4373_2021
crossref_primary_10_1109_TNNLS_2025_3545967
crossref_primary_10_1016_j_jhydrol_2022_127781
crossref_primary_10_2166_hydro_2024_192
crossref_primary_10_1016_j_jhydrol_2023_129465
crossref_primary_10_1111_jfr3_70013
crossref_primary_10_1016_j_jhydrol_2023_129269
crossref_primary_10_2166_hydro_2024_196
crossref_primary_10_2166_hydro_2024_354
crossref_primary_10_1016_j_jhydrol_2025_133329
crossref_primary_10_3390_su16041376
crossref_primary_10_1007_s40899_021_00584_y
crossref_primary_10_3390_w14132053
crossref_primary_10_2166_hydro_2023_160
crossref_primary_10_1016_j_jhydrol_2024_131041
crossref_primary_10_2166_hydro_2021_011
crossref_primary_10_2166_hydro_2022_009
crossref_primary_10_1016_j_jenvman_2022_114700
crossref_primary_10_1016_j_rineng_2025_106345
crossref_primary_10_1109_ACCESS_2021_3107502
crossref_primary_10_1007_s11004_024_10167_0
crossref_primary_10_2166_hydro_2021_179
crossref_primary_10_2166_hydro_2023_246
crossref_primary_10_3390_w14050697
crossref_primary_10_2166_hydro_2023_127
Cites_doi 10.1016/j.jhydrol.2010.11.009
10.1109/ACCESS.2019.2936989
10.2166/hydro.2009.032
10.1002/hyp.3360060305
10.1007/s11269-009-9414-5
10.1061/(ASCE)1084-0699(2000)5:2(124)
10.1016/S0022-1694(03)00225-7
10.5194/tc-12-891-2018
10.5194/hess-10-139-2006
10.5194/adgeo-5-89-2005
10.1175/BAMS-D-18-0195.1
10.1002/joc.811
10.5194/hess-20-2611-2016
10.5194/hessd-10-5457-2013
10.2166/nh.2015.221
10.1007/s00477-018-1573-6
10.1002/hyp.7072
10.2166/hydro.2006.020b
10.1002/2015WR017198
10.1002/hyp.9726
10.2166/hydro.2017.078
10.1016/j.jhydrol.2016.06.026
10.1080/09715010.2015.1103201
10.1111/jawr.12259
10.1016/j.jhydrol.2015.04.032
10.1007/978-1-4757-2440-0
10.5194/hess-14-1931-2010
10.1061/(ASCE)WR.1943-5452.0000570
10.5194/hess-11-1563-2007
10.1002/2015WR017398
10.1007/978-3-319-09054-2_58
10.1109/TKDE.2017.2720168
10.1109/TKDE.2018.2861006
10.1061/40569(2001)64
10.1080/02626669609491511
10.1016/S0022-1694(01)00513-3
10.1073/pnas.1517384113
10.1016/j.jhydrol.2014.08.033
10.3808/jei.201400285
10.1126/sciadv.1602614
10.1080/02626669909492221
10.1016/j.jhydrol.2015.09.028
10.2166/hydro.2004.0016
10.5194/hess-19-209-2015
10.1016/j.jhydrol.2013.11.007
10.2166/hydro.2000.0004
10.1016/j.jher.2013.03.005
10.1029/2010WR010174
10.1007/s13369-016-2095-5
10.1029/2011WR010748
10.1016/j.jhydrol.2020.124700
10.2514/1.J055595
10.1016/j.geoderma.2017.03.013
10.1016/j.jhydrol.2009.08.003
10.2166/nh.2002.0012
10.1007/s11269-006-4007-z
10.1109/MC.2014.335
10.1017/CBO9780511627217
10.1029/2011WR010643
10.1080/02626667909491876
10.1029/2007WR006735
10.2166/hydro.2009.041
10.1023/A:1014596120381
10.1002/2014WR016731
10.1016/j.ejrh.2019.100642
10.1007/s10236-012-0524-x
10.2166/nh.1973.0013
10.1002/hyp.7902
10.1002/hyp.7936
10.1007/978-3-319-07494-8_13
10.1139/p07-037
10.1016/j.jhydrol.2018.09.043
10.1007/s00607-013-0298-0
10.1002/0470848944.hsa016
10.1016/0022-1694(70)90255-6
10.1002/9781119951001.ch1
10.1109/4235.996017
10.1111/j.1752-1688.2001.tb00980.x
10.5194/hess-5-13-2001
ContentType Journal Article
Copyright 2020. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2020. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
DOI 10.1029/2019WR026933
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage n/a
ExternalDocumentID 10_1029_2019WR026933
WRCR24535
Genre article
GeographicLocations Alabama
GeographicLocations_xml – name: Alabama
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
ID FETCH-LOGICAL-a4295-89cd166dc5e12212c05ca18ad5b3bae5c2e96031354a9f7e2d5cdc9c897828683
IEDL.DBID WIN
ISICitedReferencesCount 101
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000538987800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri Sep 05 17:13:53 EDT 2025
Thu Sep 11 05:40:54 EDT 2025
Tue Nov 18 22:41:04 EST 2025
Sat Nov 29 01:36:44 EST 2025
Wed Jan 22 16:35:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4295-89cd166dc5e12212c05ca18ad5b3bae5c2e96031354a9f7e2d5cdc9c897828683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4046-6473
0000-0002-5350-2317
0000-0003-3224-1186
PQID 2394892307
PQPubID 105507
PageCount 23
ParticipantIDs proquest_miscellaneous_2675577450
proquest_journals_2394892307
crossref_primary_10_1029_2019WR026933
crossref_citationtrail_10_1029_2019WR026933
wiley_primary_10_1029_2019WR026933_WRCR24535
PublicationCentury 2000
PublicationDate April 2020
2020-04-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: April 2020
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Water resources research
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2010; 14
2017; 3
2000; 5
2015; 142
2018; 566
1999; 44
2016; 540
2016; 188
2004; 6
2000; 2
2014; 28
2013; 7
2003; 279
2011; 397
1992; 6
2009; 11
1992; 92
1979; 24
2006; 20
2010; 25
2001
2013; 95
1999; 1173A
2019; 26
2016; 113
1986
2016; 41
2008; 22
2011; 25
2014; 51
2014; 8
2018; 32
2018; 31
1992; 1
2016; 47
1989
1992; 4
2012; 62
2017b; 21
2009; 23
2019; 7
2014; 519
2015; 19
2012
2015; 51
2006; 10
2002; 6
2002; 33
2002; 255
2009
2006; 8
2014; 47
2016; 52
2015; 529
2002; 3
1970; 10
2006
1995
2009; 377
2005
1994
2017; 29
2015; 525
1995; 2
2017; 299
2007; 11
2017a; 19
1999
2015; 25
2014; 508
2001; 5
2017; 55
2002; 22
2005; 5
2019
2016; 20
1996; 41
2015; NCAR Tech. Note NCAR/TN‐5141STR
2017
2001; 37
2008; 44
2015
2014
2011; 47
2007; 85
2013
2018; 12
2016; 9
2016; 22
1973; 4
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_40_1
e_1_2_10_93_1
e_1_2_10_2_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_97_1
e_1_2_10_6_1
e_1_2_10_55_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_32_1
e_1_2_10_51_1
e_1_2_10_82_1
e_1_2_10_29_1
e_1_2_10_86_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_101_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_41_1
Babovic V. (e_1_2_10_4_1) 1999
e_1_2_10_90_1
e_1_2_10_71_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_38_1
e_1_2_10_98_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_15_1
Quinlan J. R. (e_1_2_10_78_1) 1992
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_83_1
e_1_2_10_102_1
e_1_2_10_49_1
e_1_2_10_87_1
e_1_2_10_26_1
e_1_2_10_68_1
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
McClelland J. L. (e_1_2_10_64_1) 1986
Beven K. (e_1_2_10_14_1) 1995
e_1_2_10_42_1
Mast M. A. (e_1_2_10_63_1) 1999; 1173
Naghibi S. A. (e_1_2_10_70_1) 2016; 188
Koza J. R. (e_1_2_10_60_1) 1992
Oyebode O. K. (e_1_2_10_76_1) 2014; 8
Goldberg D. E. (e_1_2_10_47_1) 1989
e_1_2_10_91_1
Boukezzi Z. L. (e_1_2_10_16_1) 2016; 9
e_1_2_10_72_1
e_1_2_10_95_1
e_1_2_10_53_1
e_1_2_10_39_1
e_1_2_10_99_1
e_1_2_10_8_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_30_1
e_1_2_10_80_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_88_1
e_1_2_10_103_1
Babovic V. (e_1_2_10_7_1) 2005
Vapnik V. N. (e_1_2_10_94_1) 1992; 4
e_1_2_10_24_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_92_1
e_1_2_10_73_1
e_1_2_10_96_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_77_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_81_1
e_1_2_10_62_1
Bergström S. (e_1_2_10_11_1) 1995
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_66_1
e_1_2_10_100_1
e_1_2_10_89_1
References_xml – volume: 9
  start-page: 1
  issue: 20
  year: 2016
  end-page: 12
  article-title: Uncertainty analysis of HEC‐HMS model using the glue method for flash flood forecasting of Mekerra watershed, Algeria
  publication-title: Arabian Journal of Geosciences
– volume: 92
  start-page: 343
  year: 1992
  end-page: 348
– start-page: 331
  year: 2005
  end-page: 348
– year: 1989
– volume: 14
  start-page: 1931
  issue: 10
  year: 2010
  end-page: 1941
  article-title: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology—Part 1: Concepts and methodology
  publication-title: Hydrology and Earth System Sciences
– start-page: 1999
  year: 2005
  end-page: 2006
– volume: 47
  year: 2011
  article-title: Toward a reliable decomposition of predictive uncertainty in hydrological modeling: Characterizing rainfall errors using conditional simulation
  publication-title: Water Resources Research
– volume: 20
  start-page: 77
  year: 2006
  end-page: 90
  article-title: Groundwater level forecasting in a shallow aquifer using artificial neural network approach
  publication-title: Water Resources Management
– volume: 8
  start-page: 207
  issue: 3
  year: 2006
  end-page: 222
  article-title: A symbolic data‐driven technique based on evolutionary polynomial regression
  publication-title: Journal of Hydroinformatics
– year: 1986
– volume: 188
  start-page: 1
  issue: 44
  year: 2016
  end-page: 27
  article-title: GIS‐based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran
  publication-title: Environmental Monitoring and Assessment
– volume: 22
  start-page: 2723
  issue: 14
  year: 2008
  article-title: Do Nash values have value? Discussion and alternate proposals
  publication-title: Hydrological Processes
– volume: 31
  start-page: 1544
  issue: 8
  year: 2018
  end-page: 1554
  article-title: Machine learning for the geosciences: Challenges and opportunities
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 21
  start-page: 13
  year: 2017b
  end-page: 31
  article-title: Review and comparison of performance indices for automatic model induction
  publication-title: Journal of Hydroinformatics
– volume: 377
  start-page: 80
  issue: 1
  year: 2009
  end-page: 91
  article-title: Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling
  publication-title: Journal of Hydrology
– volume: 1
  year: 1992
– volume: 24
  start-page: 375
  issue: 3
  year: 1979
  end-page: 388
  article-title: Automatic calibration of the tank model/l'étalonnage automatique d'un modèle à cisterne
  publication-title: Hydrological Sciences Journal
– year: 2019
– volume: 23
  start-page: 2877
  year: 2009
  end-page: 2894
  article-title: A multivariate ANN‐wavelet approach for rainfall‐runoff modeling
  publication-title: Water Resources Management
– volume: 44
  start-page: 263
  issue: 2
  year: 1999
  end-page: 277
  article-title: GR3J: A daily watershed model with three free parameters
  publication-title: Hydrological Sciences Journal
– volume: 37
  start-page: 439
  issue: 2
  year: 2001
  end-page: 451
  article-title: Genetic programming and its application in real‐time runoff forecasting
  publication-title: Journal of the American Water Resources Association
– volume: 5
  start-page: 89
  year: 2005
  end-page: 97
  article-title: Comparison of different efficiency criteria for hydrological model assessment
  publication-title: Advances in Geosciences
– volume: 25
  start-page: 1784
  issue: 11
  year: 2011
  end-page: 1799
  article-title: Models as multiple working hypotheses: Hydrological simulation of tropical alpine wetlands
  publication-title: Hydrological Processes
– volume: 7
  start-page: 253
  issue: 4
  year: 2013
  end-page: 260
  article-title: Prediction and simulation of monthly groundwater levels by genetic programming
  publication-title: Journal of Hydro‐environment Research
– volume: 10
  start-page: 139
  year: 2006
  end-page: 150
  article-title: Is the groundwater reservoir linear? Learning from data in hydrological modelling
  publication-title: Hydrological and Earth System Sciences
– volume: 25
  start-page: 23
  issue: 1
  year: 2015
  end-page: 35
  article-title: The use of statistical weather generator, hybrid data driven and system dynamics models for water resources management under climate change
  publication-title: Journal of Environmental Informatics
– volume: 2
  start-page: 35
  issue: 1
  year: 2000
  end-page: 60
  article-title: Genetic programming as a model induction engine
  publication-title: Journal of Hydroinformatics
– volume: 7
  start-page: 11,9943
  year: 2019
  end-page: 11,9964
  article-title: A machine learning metasystem for robust probabilistic nonlinear regression‐based forecasting of seasonal water availability in the us west
  publication-title: IEEE Access
– volume: 33
  start-page: 331
  issue: 5
  year: 2002
  end-page: 346
  article-title: Rainfall runoff modelling based on genetic programming
  publication-title: Hydrology Research
– volume: 299
  start-page: 1
  year: 2017
  end-page: 12
  article-title: Machine learning performance for predicting soil salinity using different combinations of geomorphometric covariates
  publication-title: Geoderma
– volume: 22
  start-page: 148
  issue: 2
  year: 2016
  end-page: 162
  article-title: Short‐term and long‐term streamflow prediction by using ‘wavelet‐gene expression’ programming approach
  publication-title: ISH Journal of Hydraulic Engineering
– volume: 508
  start-page: 227
  year: 2014
  end-page: 239
  article-title: Comparing and combining physically‐based and empirically‐based approaches for estimating the hydrology of ungauged catchments
  publication-title: Journal of Hydrology
– volume: 6
  start-page: 209
  issue: 3
  year: 2004
  end-page: 223
  article-title: EC‐SVM approach for real‐time hydrologic forecasting
  publication-title: Journal of Hydroinformatics
– volume: 47
  start-page: 1
  issue: 1
  year: 2016
  end-page: 14
  article-title: Comparing classical performance measures with signature indices derived from flow duration curves to assess model structures as tools for catchment classification
  publication-title: Hydrology Research
– volume: 26
  start-page: 100,642
  year: 2019
  article-title: Estimating hydrologic vulnerabilities to climate change using simulated historical data: A proof‐of‐concept for a rapid assessment algorithm in the colorado river basin
  publication-title: Journal of Hydrology: Regional Studies
– start-page: 1025)
  year: 1994
– volume: 47
  year: 2011
  article-title: Elements of a flexible approach for conceptual hydrological modeling: 1. Motivation and theoretical development
  publication-title: Water Resources Research
– volume: 519
  start-page: 1031
  year: 2014
  end-page: 1041
  article-title: An empirical method for approximating stream baseflow time series using groundwater table fluctuations
  publication-title: Journal of Hydrology
– volume: 41
  start-page: 399
  issue: 3
  year: 1996
  end-page: 417
  article-title: Artificial neural networks as rainfall‐runoff models
  publication-title: Hydrological Sciences Journal
– volume: 47
  start-page: 74
  issue: 11
  year: 2014
  end-page: 78
  article-title: Theory‐guided data science for climate change
  publication-title: Computer
– volume: 41
  start-page: 4065
  issue: 10
  year: 2016
  end-page: 4076
  article-title: Rainfall‐runoff modeling using support vector machine in snow‐affected watershed
  publication-title: Arabian Journal for Science and Engineering
– volume: 1173A
  start-page: 158
  year: 1999
  article-title: Environmental characteristics and water quality of Hydrologic Benchmark Network stations in the eastern united states
  publication-title: U.S. Geological Survey Circular
– year: 2013
– volume: 55
  start-page: 2215
  issue: 7
  year: 2017
  end-page: 2227
  article-title: Machine‐learning‐augmented predictive modeling of turbulent separated flows over airfoils
  publication-title: AIAA Journal
– year: 2009
– volume: NCAR Tech. Note NCAR/TN‐5141STR
  year: 2015
– volume: 51
  start-page: 2498
  issue: 4
  year: 2015
  end-page: 2514
  article-title: A unified approach for process‐based hydrologic modeling: 1. Modeling concept
  publication-title: Water Resources Research
– start-page: 443
  year: 1995
  end-page: 476
– volume: 529
  start-page: 1060
  year: 2015
  end-page: 1069
  article-title: Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers
  publication-title: Journal of Hydrology
– volume: 95
  start-page: 363
  issue: 1
  year: 2013
  end-page: 380
  article-title: Incorporating basic hydrological concepts into genetic programming for rainfall‐runoff forecasting
  publication-title: Computing
– start-page: 627
  year: 1995
  end-page: 668)
– volume: 19
  start-page: 209
  year: 2015
  end-page: 223
  article-title: Development of a large‐sample watershed‐scale hydrometeorological dataset for the contiguous USA: Dataset characteristics and assessment of regional variability in hydrologic model performance
  publication-title: Hydrology and Earth System Sciences
– volume: 32
  start-page: 3207
  issue: 11
  year: 2018
  end-page: 3225
  article-title: Non‐crossing nonlinear regression quantiles by monotone composite quantile regression neural network, with application to rainfall extremes
  publication-title: Stochastic Environmental Research and Risk Assessment
– start-page: 42
  year: 2001
  end-page: 49
– volume: 85
  start-page: 279
  issue: 3
  year: 2007
  end-page: 294
  article-title: Artificial neural network forecasting of nonlinear Markov processes
  publication-title: Canadian Journal of Physics
– volume: 3
  start-page: p.e1602614
  issue: 4
  year: 2017
  article-title: Data‐driven discovery of partial differential equations
  publication-title: Science Advances
– start-page: 183
  year: 2014
  end-page: 199
– volume: 5
  start-page: 124
  issue: 2
  year: 2000
  end-page: 137
  article-title: Artificial neural networks in hydrology. II: Hydrologic applications
  publication-title: Journal of Hydrologic Engineering
– start-page: 1
  year: 2012
  end-page: 22
– volume: 540
  start-page: 623
  year: 2016
  end-page: 640
  article-title: A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network
  publication-title: Journal of Hydrology
– volume: 20
  start-page: 2611
  issue: 7
  year: 2016
  end-page: 2628
  article-title: Machine learning methods for empirical streamflow simulation: A comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds
  publication-title: Hydrology and Earth System Sciences
– volume: 19
  start-page: 15990
  year: 2017a
– start-page: 64
  year: 2001
– volume: 25
  start-page: 523
  issue: 4
  year: 2010
  end-page: 543
  article-title: Hydrological field data from a modeller's perspective: Part 2: Process‐based evaluation of model hypotheses
  publication-title: Hydrological Processes
– volume: 397
  start-page: 1
  issue: 1
  year: 2011
  end-page: 9
  article-title: Testing the structure of a hydrological model using genetic programming
  publication-title: Journal of Hydrology
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  end-page: 3937
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: In Proceedings of the National Academy of Sciences
– volume: 52
  start-page: 954
  year: 2016
  end-page: 989
  article-title: From spatially variable streamflow to distributed hydrological models: Analysis of key modeling decisions
  publication-title: Water Resources Research
– volume: 142
  start-page: 4,015,050
  issue: 2
  year: 2015
  article-title: Curses, tradeoffs, and scalable management: Advancing evolutionary multiobjective direct policy search to improve water reservoir operations
  publication-title: Journal of Water Resources Planning and Management
– volume: 29
  start-page: 2318
  issue: 10
  year: 2017
  end-page: 2331
  article-title: Theory‐guided data science: A new paradigm for scientific discovery from data
  publication-title: IEEE Transactions on Knowledge and Data Engineering
– volume: 566
  start-page: 643
  year: 2018
  end-page: 667
  article-title: Genetic programming in water resources engineering: A state‐of‐the‐art review
  publication-title: Journal of Hydrology
– volume: 62
  start-page: 661
  issue: 5
  year: 2012
  end-page: 669
  article-title: Artificial neural networks as routine for error correction with an application in singapore regional model
  publication-title: Ocean Dynamics
– volume: 51
  start-page: 502
  issue: 2
  year: 2014
  end-page: 5125
  article-title: Development and operational testing of a super‐ensemble artificial intelligence flood‐forecast model for a Pacific Northwest River
  publication-title: JAWRA Journal of the American Water Resources Association
– volume: 47
  year: 2011
  article-title: Elements of a flexible approach for conceptual hydrological modeling: 2. Application and experimental insights
  publication-title: Water Resources Research
– year: 2015
– volume: 28
  start-page: 2451
  issue: 4
  year: 2014
  end-page: 2467
  article-title: Catchment properties, function, and conceptual model representation: Is there a correspondence?
  publication-title: Hydrological Processes
– volume: 11
  start-page: 237
  issue: 3‐4
  year: 2009
  end-page: 251
  article-title: Investigating the capabilities of evolutionary data‐driven techniques using the challenging estimation of soil moisture content
  publication-title: Journal of Hydroinformatics
– volume: 4
  start-page: 171
  issue: 3
  year: 1973
  end-page: 190
  article-title: Numerical simulation of the rainfall‐runoff process on a daily basis
  publication-title: Hydrology Research
– volume: 525
  start-page: 711
  year: 2015
  end-page: 723
  article-title: Development of a modular streamflow model to quantify runoff contributions from different land uses in tropical urban environments using genetic programming
  publication-title: Journal of Hydrology
– volume: 279
  start-page: 275
  issue: 1
  year: 2003
  end-page: 289
  article-title: Improvement of a parsimonious model for streamflow simulation
  publication-title: Journal of Hydrology
– volume: 5
  start-page: 13
  issue: 1
  year: 2001
  end-page: 26
  article-title: A framework for development and application of hydrological models
  publication-title: Hydrology and Earth System Sciences Discussions
– volume: 44
  year: 2008
  article-title: Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models
  publication-title: Water Resources Research
– volume: 12
  start-page: 891
  issue: 3
  year: 2018
  end-page: 905
  article-title: Improving gridded snow water equivalent products in British Columbia, Canada: Multi‐source data fusion by neural network models
  publication-title: The Cryosphere
– start-page: 2175
  year: 2019
  end-page: 2199
  article-title: Making the black box more transparent: Understanding the physical implications of machine learning
  publication-title: Bulletin of the American Meteorological Society
– start-page: 35
  year: 2006
  end-page: 42)
– volume: 6
  start-page: 182
  issue: 2
  year: 2002
  end-page: 197
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA‐II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 11
  start-page: 181
  issue: 3‐4
  year: 2009
  end-page: 193
  article-title: Introducing knowledge into learning based on genetic programming
  publication-title: Journal of Hydroinformatics
– volume: 51
  start-page: 7777
  year: 2015
  end-page: 7784
  article-title: Do we need a community hydrological model?
  publication-title: Water Resources Research
– volume: 255
  start-page: 123
  issue: 1–4
  year: 2002
  end-page: 133
  article-title: Estimation of missing streamflow data using principles of chaos theory
  publication-title: Journal of Hydrology
– volume: 11
  start-page: 1563
  issue: 5
  year: 2007
  end-page: 1579
  article-title: Neural network modelling of non‐linear hydrological relationships
  publication-title: Hydrology and Earth System Sciences Discussions
– volume: 2
  year: 1995
– volume: 6
  start-page: 278
  year: 1992
  end-page: 298
  article-title: The future of distributed models: Model calibration and uncertainty prediction
  publication-title: Hydrological Processes
– volume: 22
  start-page: 1687
  issue: 13
  year: 2002
  end-page: 1708
  article-title: A graphical sensitivity analysis for statistical climate models: Application to indian monsoon rainfall prediction by artificial neural networks and multiple linear regression models
  publication-title: International Journal of Climatology
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  end-page: 290
  article-title: River flow forecasting through conceptual models Part I—A discussion of principles
  publication-title: Journal of hydrology
– volume: 8
  start-page: 348
  issue: 6
  year: 2014
  end-page: 354
  article-title: Genetic programming: Principles, applications and opportunities for hydrological modelling
  publication-title: World Academy of Science, Engineering and Technology International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering
– volume: 3
  start-page: 41
  year: 2002
  end-page: 79
  article-title: Declarative and preferential bias in GP‐based scientific discovery
  publication-title: Genetic Programming and Evolvable Machines
– start-page: 281
  year: 2015
  end-page: 285
– year: 2017
– volume: 4
  start-page: 831
  year: 1992
  end-page: 838
  article-title: Principles of risk minimization for learning theory
  publication-title: Advances in Neural Information Processing Systems
– year: 1999
– ident: e_1_2_10_58_1
– volume: 1173
  start-page: 158
  year: 1999
  ident: e_1_2_10_63_1
  article-title: Environmental characteristics and water quality of Hydrologic Benchmark Network stations in the eastern united states
  publication-title: U.S. Geological Survey Circular
– ident: e_1_2_10_86_1
  doi: 10.1016/j.jhydrol.2010.11.009
– ident: e_1_2_10_43_1
  doi: 10.1109/ACCESS.2019.2936989
– ident: e_1_2_10_33_1
  doi: 10.2166/hydro.2009.032
– ident: e_1_2_10_13_1
  doi: 10.1002/hyp.3360060305
– ident: e_1_2_10_75_1
  doi: 10.1007/s11269-009-9414-5
– ident: e_1_2_10_48_1
  doi: 10.1061/(ASCE)1084-0699(2000)5:2(124)
– ident: e_1_2_10_77_1
  doi: 10.1016/S0022-1694(03)00225-7
– ident: e_1_2_10_89_1
  doi: 10.5194/tc-12-891-2018
– ident: e_1_2_10_40_1
  doi: 10.5194/hess-10-139-2006
– ident: e_1_2_10_61_1
  doi: 10.5194/adgeo-5-89-2005
– ident: e_1_2_10_65_1
  doi: 10.1175/BAMS-D-18-0195.1
– ident: e_1_2_10_20_1
  doi: 10.1002/joc.811
– ident: e_1_2_10_87_1
  doi: 10.5194/hess-20-2611-2016
– ident: e_1_2_10_93_1
  doi: 10.5194/hessd-10-5457-2013
– start-page: 627
  volume-title: Computer models of watershed hydrology
  year: 1995
  ident: e_1_2_10_14_1
– ident: e_1_2_10_62_1
  doi: 10.2166/nh.2015.221
– ident: e_1_2_10_19_1
  doi: 10.1007/s00477-018-1573-6
– ident: e_1_2_10_27_1
  doi: 10.1002/hyp.7072
– ident: e_1_2_10_46_1
  doi: 10.2166/hydro.2006.020b
– ident: e_1_2_10_102_1
– ident: e_1_2_10_24_1
  doi: 10.1002/2015WR017198
– ident: e_1_2_10_38_1
  doi: 10.1002/hyp.9726
– ident: e_1_2_10_22_1
  doi: 10.2166/hydro.2017.078
– ident: e_1_2_10_52_1
  doi: 10.1016/j.jhydrol.2016.06.026
– ident: e_1_2_10_53_1
  doi: 10.1080/09715010.2015.1103201
– ident: e_1_2_10_42_1
  doi: 10.1111/jawr.12259
– ident: e_1_2_10_68_1
  doi: 10.1016/j.jhydrol.2015.04.032
– ident: e_1_2_10_95_1
  doi: 10.1007/978-1-4757-2440-0
– ident: e_1_2_10_32_1
  doi: 10.5194/hess-14-1931-2010
– ident: e_1_2_10_45_1
  doi: 10.1061/(ASCE)WR.1943-5452.0000570
– ident: e_1_2_10_2_1
  doi: 10.5194/hess-11-1563-2007
– ident: e_1_2_10_9_1
– ident: e_1_2_10_39_1
  doi: 10.1002/2015WR017398
– ident: e_1_2_10_30_1
  doi: 10.1007/978-3-319-09054-2_58
– start-page: 343
  volume-title: 5th australian joint conference on artificial intelligence
  year: 1992
  ident: e_1_2_10_78_1
– ident: e_1_2_10_81_1
– ident: e_1_2_10_54_1
  doi: 10.1109/TKDE.2017.2720168
– ident: e_1_2_10_55_1
  doi: 10.1109/TKDE.2018.2861006
– ident: e_1_2_10_8_1
  doi: 10.1061/40569(2001)64
– ident: e_1_2_10_69_1
  doi: 10.1080/02626669609491511
– ident: e_1_2_10_34_1
  doi: 10.1016/S0022-1694(01)00513-3
– volume: 188
  start-page: 1
  issue: 44
  year: 2016
  ident: e_1_2_10_70_1
  article-title: GIS‐based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran
  publication-title: Environmental Monitoring and Assessment
– ident: e_1_2_10_17_1
  doi: 10.1073/pnas.1517384113
– ident: e_1_2_10_67_1
  doi: 10.1016/j.jhydrol.2014.08.033
– volume: 4
  start-page: 831
  year: 1992
  ident: e_1_2_10_94_1
  article-title: Principles of risk minimization for learning theory
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_80_1
  doi: 10.3808/jei.201400285
– ident: e_1_2_10_97_1
– ident: e_1_2_10_21_1
– start-page: 1999
  volume-title: Proceedings of the 7th annual conference on genetic and evolutionary computation
  year: 2005
  ident: e_1_2_10_7_1
– ident: e_1_2_10_83_1
  doi: 10.1126/sciadv.1602614
– ident: e_1_2_10_31_1
  doi: 10.1080/02626669909492221
– ident: e_1_2_10_44_1
  doi: 10.1016/j.jhydrol.2015.09.028
– ident: e_1_2_10_103_1
  doi: 10.2166/hydro.2004.0016
– ident: e_1_2_10_73_1
  doi: 10.5194/hess-19-209-2015
– ident: e_1_2_10_15_1
  doi: 10.1016/j.jhydrol.2013.11.007
– ident: e_1_2_10_5_1
  doi: 10.2166/hydro.2000.0004
– ident: e_1_2_10_36_1
  doi: 10.1016/j.jher.2013.03.005
– ident: e_1_2_10_37_1
  doi: 10.1029/2010WR010174
– ident: e_1_2_10_85_1
  doi: 10.1007/s13369-016-2095-5
– ident: e_1_2_10_56_1
  doi: 10.1029/2011WR010748
– ident: e_1_2_10_99_1
  doi: 10.1016/j.jhydrol.2020.124700
– volume: 8
  start-page: 348
  issue: 6
  year: 2014
  ident: e_1_2_10_76_1
  article-title: Genetic programming: Principles, applications and opportunities for hydrological modelling
  publication-title: World Academy of Science, Engineering and Technology International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering
– ident: e_1_2_10_88_1
  doi: 10.2514/1.J055595
– ident: e_1_2_10_96_1
  doi: 10.1016/j.geoderma.2017.03.013
– volume: 9
  start-page: 1
  issue: 20
  year: 2016
  ident: e_1_2_10_16_1
  article-title: Uncertainty analysis of HEC‐HMS model using the glue method for flash flood forecasting of Mekerra watershed, Algeria
  publication-title: Arabian Journal of Geosciences
– volume-title: Genetic programming: on the programming of computers by means of natural selection
  year: 1992
  ident: e_1_2_10_60_1
– ident: e_1_2_10_49_1
  doi: 10.1016/j.jhydrol.2009.08.003
– ident: e_1_2_10_10_1
– ident: e_1_2_10_6_1
  doi: 10.2166/nh.2002.0012
– ident: e_1_2_10_72_1
  doi: 10.1007/s11269-006-4007-z
– ident: e_1_2_10_35_1
  doi: 10.1109/MC.2014.335
– ident: e_1_2_10_101_1
– volume-title: Parallel distributed processing: Explorations in the microstructure of cognition
  year: 1986
  ident: e_1_2_10_64_1
– volume-title: Genetic algorithms in search, optimization, and machine learning
  year: 1989
  ident: e_1_2_10_47_1
– ident: e_1_2_10_51_1
  doi: 10.1017/CBO9780511627217
– ident: e_1_2_10_82_1
  doi: 10.1029/2011WR010643
– ident: e_1_2_10_91_1
  doi: 10.1080/02626667909491876
– ident: e_1_2_10_26_1
  doi: 10.1029/2007WR006735
– ident: e_1_2_10_3_1
  doi: 10.2166/hydro.2009.041
– ident: e_1_2_10_57_1
  doi: 10.1023/A:1014596120381
– ident: e_1_2_10_100_1
  doi: 10.1002/2014WR016731
– ident: e_1_2_10_79_1
– ident: e_1_2_10_90_1
  doi: 10.1016/j.ejrh.2019.100642
– ident: e_1_2_10_92_1
  doi: 10.1007/s10236-012-0524-x
– start-page: 443
  volume-title: Computer Models of Watershed Hydrology
  year: 1995
  ident: e_1_2_10_11_1
– ident: e_1_2_10_74_1
  doi: 10.2166/nh.1973.0013
– ident: e_1_2_10_23_1
  doi: 10.1002/hyp.7902
– ident: e_1_2_10_18_1
  doi: 10.1002/hyp.7936
– ident: e_1_2_10_28_1
  doi: 10.1007/978-3-319-07494-8_13
– ident: e_1_2_10_41_1
  doi: 10.1139/p07-037
– ident: e_1_2_10_66_1
  doi: 10.1016/j.jhydrol.2018.09.043
– ident: e_1_2_10_50_1
  doi: 10.1007/s00607-013-0298-0
– ident: e_1_2_10_84_1
  doi: 10.1002/0470848944.hsa016
– ident: e_1_2_10_71_1
  doi: 10.1016/0022-1694(70)90255-6
– volume-title: Coping with floods: Lessons learned from recent experiences
  year: 1999
  ident: e_1_2_10_4_1
– ident: e_1_2_10_12_1
  doi: 10.1002/9781119951001.ch1
– ident: e_1_2_10_25_1
– ident: e_1_2_10_29_1
  doi: 10.1109/4235.996017
– ident: e_1_2_10_59_1
  doi: 10.1111/j.1752-1688.2001.tb00980.x
– ident: e_1_2_10_98_1
  doi: 10.5194/hess-5-13-2001
SSID ssj0014567
Score 2.6027858
Snippet Models of water resources systems are conceived to capture the underlying environmental dynamics occurring within watersheds. All such models can be regarded...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Alabama
Algorithms
Atmospheric conditions
Atmospheric models
Blackwater rivers
Catchment scale
Catchments
Computation
Configurations
Evolutionary algorithms
Fieldwork
flexible conceptual modeling framework
Genetic algorithms
genetic programming
Hydrologic models
Hydrology
Learning algorithms
Machine learning
Modelling
Neural networks
Rain
Rainfall
Rainfall-runoff relationships
rainfall‐runoff modeling
River basins
Rivers
Runoff
time series analysis
Water resources
Water resources research
Watersheds
Title Hydrologically Informed Machine Learning for Rainfall‐Runoff Modeling: A Genetic Programming‐Based Toolkit for Automatic Model Induction
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019WR026933
https://www.proquest.com/docview/2394892307
https://www.proquest.com/docview/2675577450
Volume 56
WOSCitedRecordID wos000538987800013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231212
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6hggQX3ogtpTISnCCiieOszW0prIpUVlXUanuLHD-gYkmqfSDtjR_Agd_IL2HGcZblABLiFiXjJEo8_mY8M98APM1qzhG48wSxoEhy41SieCoSr3RRSLTIvQ2U-cfDyUSen6uTuOFGtTAdP8Rmw400I6zXpOC6XkSyAeLIRORS0xJdCHTJcQlO86CX03eTTRABbYNhH2AmQyfmvePwl9uDf0ekX2bmtrEa0GZ863_f8zbcjHYmG3UT4w5ccc1duN6XIS_wOLY__7i-B9-O1nber4KzNetqlJxl70OqpWORhfUDw_OMQkIe5X58_V6umtZ7Rg3VqKz9FRsx4rHGZ7KTLvHrM55GwdcIlpadtu3s08Uy3GW0WraBLrYbzaiHSKixuA9n47enh0dJbNOQaAQzkUhlbFoU1giXZoiE5kAYnUptRc1r7YTJnKJe1lzkWvmhy6ww1igj0YHNZCH5A9hp2sY9BEZlwOhgydprnzvJa281N9IZb9D1ys0Anve_qjKRw5xaacyqEEvPVLX9tQfwbCN92XF3_EFur__rVdTgRUUt46WiNPkBPNlcRt2jgIpuXLtCGfS2BNrP4mAAL8Ic-Otzqml5WGa54GL338QfwY2M3PyQMLQHO8v5yj2Ga-bL8mIx34erb8rx2fF-mPw_AexMBC4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5BF2n3whtRWMBIcIJot0mc2tzKQlVEt1pFXe3eIscPWG1JUB9IvfEDOPAb-SXMOE4pB5AQt8gZ21Hs8cx4Zr4BeBaXSYKCO41QFmRRqq2MZNLjkZMqywRq5M54yPxxfzIR5-fyJNQ5pVyYBh9ic-FGnOHPa2JwupAOaAMEkomiS57laEOgTX4VdlLcSbwDO2_y4el440hA_aDfOplJ2Qmx7zjCwXb_36XSL1VzW2H1Emd447-_9SZcD8omGzS74xZcsdVt2G1zkRf4HGqgf1zfgW-jtZm3R-FszZpEJWvYsY-3tCxAsX5g2M7IL-SQ7sfX7_mqqp1jVFWNcttfsQEjMGuck5000V-fsBkJX6PENGxa17PLi6UfZbBa1h4ztunNqJCIT7S4C6fDt9OjURRqNUQKJRqPhNSml2VGc9uLURzqQ65VTyjDy6RUluvYSiponfBUSde3seHaaKkFWrGxyERyDzpVXdn7wCgXGK0sUTrlUiuS0hmVaGG102h_pboLL9q1KnQAMqd6GrPCO9RjWWz_7S4831B_bgA8_kC33y57Edh4UVDdeCEpVr4LTzevkQHJq6IqW6-QBk0ujko0P-zCS78J_jpPcZYf5XHKE_7g38ifwO5oejwuxu8m7x_CXkx2v48g2ofOcr6yj-Ca_rK8WMwfBx74CSd5B9o
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5Bi2gvvKtuacFIcIKIbhxnbW7bx6qIZbWKWrW3yPGjrbpNqn1U2hs_gAO_kV_C2HG2ywEkxC1yxkkUezIzmZnvA3gbF5Si4U4itAVplCgjIkHbLLJCpilHj9xqD5nf7wwG_OxMDAPPqeuFqfEhFj_cnGb477VTcHOjbUAbcCCZaLrEaYYxBMbk92E1YSJFzVw9yHon_UUiAf2DTpNkds5OqH3HK3xcnv-7VbpzNZcdVm9xeo__-1mfwKPgbJJuvTuewj1TPoO1phd5gseBA_1i_hy-H831uPkUjuakblQymnz19ZaGBCjWc4LjxOWFLMr9_PYjm5WVtcSxqrne9k-kSxyYNd6TDOvqr2scRsE9tJiaHFfV6Opy6q_SnU0rjxlbzyaOSMQ3WryAk97h8f5RFLgaIokWjUVcKN1OU62YacdoDtUuU7LNpWYFLaRhKjbCEVpTlkhhOybWTGklFMcoNuYppxuwUlal2QTieoExyuKFlTYxnBZWS6q4UVZh_JWoFrxv1ipXAcjc8WmMcp9Qj0W-_LZb8G4hfVMDePxBbrtZ9jyo8SR3vPFcuFr5FrxZnEYFdFkVWZpqhjIYcjF0otluCz74TfDX--Sn2X4WJ4yyrX8Tfw0Phwe9vP958OUlrMcu7PcFRNuwMh3PzA48ULfTy8n4VVCBX6XBB1U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrologically+Informed+Machine+Learning+for+Rainfall%E2%80%90Runoff+Modeling%3A+A+Genetic+Programming%E2%80%90Based+Toolkit+for+Automatic+Model+Induction&rft.jtitle=Water+resources+research&rft.au=Chadalawada%2C+Jayashree&rft.au=Herath%2C+H.+M.+V.+V.&rft.au=Babovic%2C+Vladan&rft.date=2020-04-01&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=56&rft.issue=4&rft_id=info:doi/10.1029%2F2019WR026933&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2019WR026933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon