Accelerating and Parallelizing Lagrangian Simulations of Mixing‐Limited Reactive Transport

Recent advances in random walk particle tracking have enabled direct simulation of mixing and reactions by allowing the particles to interact with each other using a multipoint mass transfer scheme. The mass transfer scheme allows separation of mixing and spreading processes, among other advantages,...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research Vol. 55; no. 4; pp. 3556 - 3566
Main Authors: Engdahl, Nicholas B., Schmidt, Michael J., Benson, David A.
Format: Journal Article
Language:English
Published: Washington John Wiley & Sons, Inc 01.04.2019
American Geophysical Union (AGU)
Subjects:
ISSN:0043-1397, 1944-7973
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent advances in random walk particle tracking have enabled direct simulation of mixing and reactions by allowing the particles to interact with each other using a multipoint mass transfer scheme. The mass transfer scheme allows separation of mixing and spreading processes, among other advantages, but it is computationally expensive because its speed depends on the number of interacting particle pairs. This note explores methods for relieving the computational bottleneck caused by the mass transfer step, and we use these algorithms to develop a new parallel, interacting particle model. The new model is a combination of a sparse search algorithm and a novel domain decomposition scheme, both of which offer significant speedup relative to the reference case—even when they are executed serially. We combine the strengths of these methods to create a parallel particle scheme that is highly accurate and efficient with run times that scale as 1/P for a fixed number of particles, where P is the number of computational cores (equivalently, subdomains, in this work) being used. The new parallel model is a significant advance because it enables efficient simulation of large particle ensembles that are needed for environmental simulations and also because it can naturally pair with parallel geochemical solvers to create a practical Lagrangian tool for simulating mixing and reactions in complex chemical systems. Key Points Acceleration methods for random walk based reactive transport simulations are developed Domain decomposition methods for interacting particle simulations are introduced The fully parallel algorithm gives good accuracy, speedup, and scaling for up to 106 particles on 103 cores
AbstractList Recent advances in random walk particle tracking have enabled direct simulation of mixing and reactions by allowing the particles to interact with each other using a multipoint mass transfer scheme. The mass transfer scheme allows separation of mixing and spreading processes, among other advantages, but it is computationally expensive because its speed depends on the number of interacting particle pairs. This note explores methods for relieving the computational bottleneck caused by the mass transfer step, and we use these algorithms to develop a new parallel, interacting particle model. The new model is a combination of a sparse search algorithm and a novel domain decomposition scheme, both of which offer significant speedup relative to the reference case—even when they are executed serially. We combine the strengths of these methods to create a parallel particle scheme that is highly accurate and efficient with run times that scale as 1/P for a fixed number of particles, where P is the number of computational cores (equivalently, subdomains, in this work) being used. The new parallel model is a significant advance because it enables efficient simulation of large particle ensembles that are needed for environmental simulations and also because it can naturally pair with parallel geochemical solvers to create a practical Lagrangian tool for simulating mixing and reactions in complex chemical systems.
Recent advances in random walk particle tracking have enabled direct simulation of mixing and reactions by allowing the particles to interact with each other using a multipoint mass transfer scheme. The mass transfer scheme allows separation of mixing and spreading processes, among other advantages, but it is computationally expensive because its speed depends on the number of interacting particle pairs. This note explores methods for relieving the computational bottleneck caused by the mass transfer step, and we use these algorithms to develop a new parallel, interacting particle model. The new model is a combination of a sparse search algorithm and a novel domain decomposition scheme, both of which offer significant speedup relative to the reference case—even when they are executed serially. We combine the strengths of these methods to create a parallel particle scheme that is highly accurate and efficient with run times that scale as 1/P for a fixed number of particles, where P is the number of computational cores (equivalently, subdomains, in this work) being used. The new parallel model is a significant advance because it enables efficient simulation of large particle ensembles that are needed for environmental simulations and also because it can naturally pair with parallel geochemical solvers to create a practical Lagrangian tool for simulating mixing and reactions in complex chemical systems. Key Points Acceleration methods for random walk based reactive transport simulations are developed Domain decomposition methods for interacting particle simulations are introduced The fully parallel algorithm gives good accuracy, speedup, and scaling for up to 106 particles on 103 cores
Recent advances in random walk particle tracking have enabled direct simulation of mixing and reactions by allowing the particles to interact with each other using a multipoint mass transfer scheme. The mass transfer scheme allows separation of mixing and spreading processes, among other advantages, but it is computationally expensive because its speed depends on the number of interacting particle pairs. This note explores methods for relieving the computational bottleneck caused by the mass transfer step, and we use these algorithms to develop a new parallel, interacting particle model. The new model is a combination of a sparse search algorithm and a novel domain decomposition scheme, both of which offer significant speedup relative to the reference case—even when they are executed serially. We combine the strengths of these methods to create a parallel particle scheme that is highly accurate and efficient with run times that scale as 1/ P for a fixed number of particles, where P is the number of computational cores (equivalently, subdomains, in this work) being used. The new parallel model is a significant advance because it enables efficient simulation of large particle ensembles that are needed for environmental simulations and also because it can naturally pair with parallel geochemical solvers to create a practical Lagrangian tool for simulating mixing and reactions in complex chemical systems. Acceleration methods for random walk based reactive transport simulations are developed Domain decomposition methods for interacting particle simulations are introduced The fully parallel algorithm gives good accuracy, speedup, and scaling for up to 10 6 particles on 10 3 cores
Author Engdahl, Nicholas B.
Schmidt, Michael J.
Benson, David A.
Author_xml – sequence: 1
  givenname: Nicholas B.
  orcidid: 0000-0001-7441-6330
  surname: Engdahl
  fullname: Engdahl, Nicholas B.
  email: nick.engdahl@wsu.edu
  organization: Washington State University
– sequence: 2
  givenname: Michael J.
  orcidid: 0000-0001-9237-7910
  surname: Schmidt
  fullname: Schmidt, Michael J.
  organization: Colorado School of Mines
– sequence: 3
  givenname: David A.
  orcidid: 0000-0001-5652-5197
  surname: Benson
  fullname: Benson, David A.
  organization: Colorado School of Mines
BackLink https://www.osti.gov/biblio/1507235$$D View this record in Osti.gov
BookMark eNp90c2KUzEUB_AgI9ip7nyAi25ceGfyde9NlqWoM1AZqZVuhJDmntSUNKnJrc648hHmGedJTK0LKSgEAuF3kv_JOUdnIQZA6DnBFwRTeUkxEcs5ppy15BEaEcl53cmOnaERxpzVhMnuCTrPeYMx4U3bjdDniTHgIenBhXWlQ1990El7D979OJzM9DrpsHY6VB_ddu-LiyFX0Vbv3W0BDz_vZ27rBuirOWgzuG9QLUpF3sU0PEWPrfYZnv3Zx-jT2zeL6VU9u3l3PZ3Mas2p4PVKWMuElmB6vLKtWQG3h2XbRghD-nbViBLWStbrvpfUNhjAWmFaLUDYlo3Ri-O9MQ9OZVPimC8mhgBmUKTBHWVNQa-OaJfi1z3kQW1dLr17HSDus6IdEawVktJCX57QTdynUFpQlFLR0aaTvKjXR2VSzDmBVbvktjrdKYLVYR7q73kUTk94yfn7O4eknf9XETsWfXce7v77gFrOp3PKJOHsF5G6oGc
CitedBy_id crossref_primary_10_1016_j_advwatres_2021_103889
crossref_primary_10_5194_hess_26_1615_2022
crossref_primary_10_1002_wat2_70015
crossref_primary_10_1016_j_advwatres_2024_104818
crossref_primary_10_1016_j_jconhyd_2020_103642
crossref_primary_10_1016_j_cageo_2021_104760
crossref_primary_10_1016_j_cageo_2022_105189
crossref_primary_10_1007_s00477_020_01884_z
crossref_primary_10_1016_j_advwatres_2020_103577
crossref_primary_10_1029_2020WR028679
crossref_primary_10_1016_j_advwatres_2024_104656
crossref_primary_10_1029_2019WR026993
crossref_primary_10_1016_j_advwatres_2024_104791
crossref_primary_10_1016_j_advwatres_2019_103386
crossref_primary_10_5194_hess_25_1483_2021
crossref_primary_10_1007_s11242_021_01734_8
crossref_primary_10_1016_j_jcp_2021_110664
crossref_primary_10_1016_j_advwatres_2019_103382
Cites_doi 10.1145/361002.361007
10.1016/j.advwatres.2012.11.001
10.1029/WR019i001p00161
10.1029/WR015i006p01387
10.1016/j.advwatres.2016.11.003
10.1016/S0169-7722(99)00044-3
10.1029/2005WR004511
10.1016/j.advwatres.2018.06.003
10.1103/PhysRevA.45.600
10.1029/95WR03528
10.1002/2017WR020362
10.1103/PhysRevE.92.012922
10.1002/2017WR021064
10.1029/2008WR007111
10.1016/j.jconhyd.2006.05.005
10.1016/j.advwatres.2018.05.003
10.1016/j.jcp.2015.09.030
10.1002/2016WR019368
ContentType Journal Article
Copyright 2019. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2019. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
OTOTI
DOI 10.1029/2018WR024361
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
AGRICOLA

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage 3566
ExternalDocumentID 1507235
10_1029_2018WR024361
WRCR23914
Genre article
GrantInformation_xml – fundername: US Department of Energy
  funderid: DE-SC0019123
– fundername: National Science Foundation (NSF)
  funderid: EAR-1417145; DMS-1211667; DMS-1614586
– fundername: US Army Research Office
  funderid: W911NF-18-1-0338
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A6W
AAESR
AAHBH
AAIHA
AAIKC
AAMMB
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADXHL
ADZMN
AEFGJ
AEIGN
AENEX
AETEA
AEUYN
AEUYR
AFBPY
AFFHD
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGQPQ
AGXDD
AIDBO
AIDQK
AIDYY
AIQQE
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WIN
WXSBR
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
A00
AAHHS
AAJUZ
AAPBV
ABCVL
ABHUG
ACCFJ
ADAWD
ADDAD
AEEZP
AEQDE
AEUQT
AFPWT
AFVGU
AGJLS
AIWBW
AJBDE
OTOTI
WYJ
ID FETCH-LOGICAL-a4284-b8ff38a9ecd0bf6cbe4fe4fef6588c1d6b58567f93dadd92f50eeff8c6a8e8f63
IEDL.DBID WIN
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468597900053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Fri May 19 02:30:36 EDT 2023
Fri Sep 05 17:23:15 EDT 2025
Sun Sep 07 23:58:39 EDT 2025
Sat Nov 29 01:36:42 EST 2025
Tue Nov 18 21:32:31 EST 2025
Tue Nov 11 03:14:14 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4284-b8ff38a9ecd0bf6cbe4fe4fef6588c1d6b58567f93dadd92f50eeff8c6a8e8f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
SC0019123
ORCID 0000-0001-9237-7910
0000-0001-5652-5197
0000-0001-7441-6330
0000000192377910
0000000174416330
0000000156525197
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2018WR024361
PQID 2228725794
PQPubID 105507
PageCount 11
ParticipantIDs osti_scitechconnect_1507235
proquest_miscellaneous_2718368922
proquest_journals_2228725794
crossref_primary_10_1029_2018WR024361
crossref_citationtrail_10_1029_2018WR024361
wiley_primary_10_1029_2018WR024361_WRCR23914
PublicationCentury 2000
PublicationDate April 2019
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: April 2019
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
– name: United States
PublicationTitle Water resources research
PublicationYear 2019
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2017; 53
2017; 52
2006; 42
1983; 19
1979; 15
2015; 303
2018; 117
2015; 92
2015; 51
2018; 119
2006; 87
2017; 99
2013; 53
1975; 18
2018
2008; 44
2004
1999; 40
1992; 45
1996; 32
Bolster D. (e_1_2_9_6_1) 2015; 51
e_1_2_9_20_1
e_1_2_9_11_1
e_1_2_9_22_1
e_1_2_9_10_1
e_1_2_9_21_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
References_xml – volume: 45
  start-page: 600
  issue: 2
  year: 1992
  end-page: 603
  article-title: Stochastic Runge‐Kutta algorithms. I. White noise
  publication-title: Physical Review A
– volume: 42
  year: 2006
  article-title: Enhanced mixing and reaction through flow focusing in heterogeneous porous media
  publication-title: Water Resources Research
– volume: 40
  start-page: 159
  issue: 2
  year: 1999
  end-page: 182
  article-title: Numerical simulation of biodegradation controlled by transverse mixing
  publication-title: Journal of Contaminant Hydrology
– volume: 15
  start-page: 1387
  issue: 6
  year: 1979
  end-page: 1397
  article-title: Stochastic analysis of macrodispersion in a stratified aquifer
  publication-title: Water Resources Research
– volume: 18
  start-page: 509
  issue: 9
  year: 1975
  end-page: 517
  article-title: Multidimensional binary search trees used for associative searching
  publication-title: Communications of the ACM
– volume: 53
  start-page: 56
  year: 2013
  end-page: 65
  article-title: Modeling bimolecular reactions and transport in porous media via particle tracking
  publication-title: Advances in Water Resources
– volume: 44
  year: 2008
  article-title: Simulation of chemical reaction via particle tracking: Diffusion‐limited versus thermodynamic rate‐limited regimes
  publication-title: Water Resources Research
– volume: 119
  start-page: 17
  year: 2018
  end-page: 27
  article-title: Considering the utility of backward‐in‐time simulations of multi‐component reactive transport in porous media
  publication-title: Advances in Water Resources Received
– year: 2004
– volume: 52
  start-page: 9190
  year: 2017
  end-page: 9200
  article-title: Arbitrarily complex chemical reactions on particles
  publication-title: Water Resources Research
– volume: 51
  start-page: 9127
  year: 2015
  end-page: 9140
  article-title: A particle number conserving Lagrangian method for mixing‐driven reactive transport
  publication-title: Water Resources Research
– volume: 32
  start-page: 583
  issue: 3
  year: 1996
  end-page: 593
  article-title: Random‐walk simulation of transport in heterogeneous porous media: Local mass‐conservation problem and implementation methods
  publication-title: Water Resources Research
– volume: 99
  start-page: 15
  year: 2017
  end-page: 37
  article-title: A comparison of Eulerian and Lagrangian transport and non‐linear reaction algorithms
  publication-title: Advances in Water Resources
– volume: 92
  start-page: 012922
  issue: 1
  year: 2015
  article-title: Incomplete mixing and reactions in laminar shear flow
  publication-title: Physical Review E
– volume: 19
  start-page: 161
  issue: 1
  year: 1983
  end-page: 180
  article-title: Three‐dimensional stochastic analysis of macrodispersion in aquifers
  publication-title: Water Resources Research
– volume: 117
  start-page: 115
  issue: March
  year: 2018
  end-page: 119
  article-title: On the accuracy of simulating mixing by random‐walk particle‐based mass‐transfer algorithms
  publication-title: Advances in Water Resources
– volume: 53
  start-page: 3513
  year: 2017
  end-page: 3522
  article-title: Lagrangian simulation of mixing and reactions in complex geochemical systems
  publication-title: Water Resources Research
– volume: 87
  start-page: 277
  issue: 3‐4
  year: 2006
  end-page: 305
  article-title: A review and numerical assessment of the random walk particle tracking method
  publication-title: Journal of Contaminant Hydrology
– year: 2018
– volume: 303
  start-page: 95
  year: 2015
  end-page: 104
  article-title: Do we really need a large number of particles to simulate bimolecular reactive transport with random walk methods? A kernel density estimation approach
  publication-title: Journal of Computational Physics
– volume: 53
  start-page: 9019
  year: 2017
  end-page: 9039
  article-title: A KDE‐based random walk method for modeling reactive transport with complex kinetics in porous media
  publication-title: Water Resources Research
– ident: e_1_2_9_5_1
  doi: 10.1145/361002.361007
– volume: 51
  start-page: 9127
  year: 2015
  ident: e_1_2_9_6_1
  article-title: A particle number conserving Lagrangian method for mixing‐driven reactive transport
  publication-title: Water Resources Research
– ident: e_1_2_9_8_1
  doi: 10.1016/j.advwatres.2012.11.001
– ident: e_1_2_9_12_1
  doi: 10.1029/WR019i001p00161
– ident: e_1_2_9_13_1
  doi: 10.1029/WR015i006p01387
– ident: e_1_2_9_2_1
  doi: 10.1016/j.advwatres.2016.11.003
– ident: e_1_2_9_7_1
  doi: 10.1016/S0169-7722(99)00044-3
– ident: e_1_2_9_22_1
  doi: 10.1029/2005WR004511
– ident: e_1_2_9_9_1
  doi: 10.1016/j.advwatres.2018.06.003
– ident: e_1_2_9_14_1
  doi: 10.1103/PhysRevA.45.600
– ident: e_1_2_9_15_1
– ident: e_1_2_9_16_1
  doi: 10.1029/95WR03528
– ident: e_1_2_9_10_1
  doi: 10.1002/2017WR020362
– ident: e_1_2_9_17_1
  doi: 10.1103/PhysRevE.92.012922
– ident: e_1_2_9_21_1
  doi: 10.1002/2017WR021064
– ident: e_1_2_9_4_1
  doi: 10.1029/2008WR007111
– ident: e_1_2_9_19_1
  doi: 10.1016/j.jconhyd.2006.05.005
– ident: e_1_2_9_11_1
– ident: e_1_2_9_20_1
  doi: 10.1016/j.advwatres.2018.05.003
– ident: e_1_2_9_18_1
  doi: 10.1016/j.jcp.2015.09.030
– ident: e_1_2_9_3_1
  doi: 10.1002/2016WR019368
SSID ssj0014567
Score 2.4273524
Snippet Recent advances in random walk particle tracking have enabled direct simulation of mixing and reactions by allowing the particles to interact with each other...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3556
SubjectTerms Algorithms
Chemical reactions
Computation
Computer applications
Computer simulation
Mass
Mass transfer
Methods
Organic chemistry
Parallel processing
parallelization
Particle tracking
Random walk
reactive transport
Search algorithms
Simulation
Solvers
water
Title Accelerating and Parallelizing Lagrangian Simulations of Mixing‐Limited Reactive Transport
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018WR024361
https://www.proquest.com/docview/2228725794
https://www.proquest.com/docview/2718368922
https://www.osti.gov/biblio/1507235
Volume 55
WOSCitedRecordID wos000468597900053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231213
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBclK2wv3bo_LP2HBuvTZhZLiiw9lnZhgywUd136MDCyLHWB1ilxOtY-7SPsM-6T7E5RTPqwwhj4wVgnW_judCed7neEvK7SvnVKiERy5xORul5S6swkyva8lpVRMiTSfhlmo5E6O9PHccMNc2EW-BDthhtqRpivUcFN2USwAcTIBMulxjkC6oXVTyqCXo4_jtogAvgG2TLAjI5OPPcO3d-tdr5jkTpT0Kw73uaqzxqMzuDx_w73CdmI7iY9WMjHJllz9VPycJmN3MB9rIL-7eYZ-XpgLVghlIn6nJq6osdmhrVWLia3-GRogLI-B4GiJ5PLWPeroVNPP01-AMHvn79ivhTNnQkTKW3B05-T08H7z4cfklh9ITGwJBFJqbznymhnq17ppS2d8Hh58FmUTStZwkpDZl7zCuZIzXy_55z3ykqjnPKSvyCdelq7l4SaslTMOy4ybwS3wrDUa80kvsO4rN8lb5YcKGyEJscKGRdFCJEzXaz-vS7Zb6mvFpAcf6HbRmYW4EogHq7Fg0N2XqAHzDh8c2fJ4yKqbVPgdlgGk5gWXfKqbQaFwyiKqd30GmjAmnOpNGNd8jZw_N5RFOP8MGdcp2Lr38i3ySNo0ItTQjukM59du12ybr_PJ81sjzw4ygenw70g8X8AVQoAZw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hDmm88B_RbYCR4AkiGsd17MdpUA2RVVPY2B6QLMexR6WRTm2HgCc-Ap-RT8Jd6kbdA0gIKQ9Rckms3F_7fL8DeFanQ-eVEInMfEhE6gdJpXObKDcIWtZWybaQ9kORj8fq9FQfxj6nVAuzxIfoFtxIM1p7TQpOC9IRbYBAMtF1qZOSEPVo-rMhUJKGPdh4XY6Oiy6RgPFBvkoyU7AT977jG16tP3_FK_WmqF1XIs71uLV1PKNb_z3k23Azxpxsdykkd-Cab-7C5qokeY7nsRX6p2_34OOuc-iKSDCaM2abmh3aGTVcOZ98pyuFRcrmDKWKvZ98js2_5mwa2MHkKxL8-vEzFk2x0tvWmrIOQf0-HI_eHO3tJ7EFQ2JxXiKSSoWQKau9qwdVkK7yItARMHBRLq1lhdMNmQed1WgoNQ_DgfchKCet8irI7AH0mmnjHwKzVaV48JnIgxWZE5anQWsu6R3W58M-vFixwLiIT05tMs5Nmyfn2qz_vT4876gvlrgcf6DbJm4ajCcIFNfR7iG3MBQG8wy_ubNisom6Oze0JpajJdOiD0-726h1lEqxjZ9eIg269EwqzXkfXrYs_-sozEm5V_JMp2Lr38ifwOb-0UFhirfjd9twA4n0ctvQDvQWs0v_CK67L4vJfPY4Cv5vZ7cEEw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLembgIujPFHlA3wJDhBtMZ2Hfs4bVQguqoKjO2AZDmOPSqNdGo7BDvtI-wz7pPsvdSNugNIaFIOUfKSWHl_7ef3e4S8KdOu80qIRHIfEpH6TlLozCbKdYKWpVWyLqT91s8GA3V8rIexzynWwszxIZoFN9SM2l6jgvuzMkS0AQTJBNeljnJE1MPpz6roagmaubqf9w77TSIB4oNskWTGYCfufYc37Cw_f8srtcagXbcizuW4tXY8vfU7D_kReRhjTro7F5INsuKrx-T-oiR5CuexFfqPP0_I913nwBWhYFQn1FYlHdoJNlw5HV3glb4FyuoEpIp-Gf2Mzb-mdBzoweg3EFxfXsWiKZp7W1tT2iCoPyWHvQ9f9z4msQVDYmFeIpJChcCV1d6VnSJIV3gR8AgQuCiXlrKA6YbMguYlGErNQrfjfQjKSau8CpI_I61qXPnnhNqiUCx4LrJgBXfCsjRozSS-w_qs2ybvFiwwLuKTY5uMU1PnyZk2y3-vTd421GdzXI6_0G0iNw3EEwiK63D3kJsZDIMZh29uLZhsou5ODa6JZWDJtGiT7eY2aB2mUmzlx-dAAy6dS6UZa5P3Ncv_OQpzlO_ljOtUvPg_8tfk3nC_Z_qfBp83yQOg0fNdQ1ukNZuc-5dkzf2ajaaTV1HubwDsHQOO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+and+Parallelizing+Lagrangian+Simulations+of+Mixing%E2%80%90Limited+Reactive+Transport&rft.jtitle=Water+resources+research&rft.au=Engdahl%2C+Nicholas+B.&rft.au=Schmidt%2C+Michael+J.&rft.au=Benson%2C+David+A.&rft.date=2019-04-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=55&rft.issue=4&rft_id=info:doi/10.1029%2F2018WR024361&rft.externalDocID=1507235
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon