Accelerating and Parallelizing Lagrangian Simulations of Mixing‐Limited Reactive Transport
Recent advances in random walk particle tracking have enabled direct simulation of mixing and reactions by allowing the particles to interact with each other using a multipoint mass transfer scheme. The mass transfer scheme allows separation of mixing and spreading processes, among other advantages,...
Saved in:
| Published in: | Water resources research Vol. 55; no. 4; pp. 3556 - 3566 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Washington
John Wiley & Sons, Inc
01.04.2019
American Geophysical Union (AGU) |
| Subjects: | |
| ISSN: | 0043-1397, 1944-7973 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recent advances in random walk particle tracking have enabled direct simulation of mixing and reactions by allowing the particles to interact with each other using a multipoint mass transfer scheme. The mass transfer scheme allows separation of mixing and spreading processes, among other advantages, but it is computationally expensive because its speed depends on the number of interacting particle pairs. This note explores methods for relieving the computational bottleneck caused by the mass transfer step, and we use these algorithms to develop a new parallel, interacting particle model. The new model is a combination of a sparse search algorithm and a novel domain decomposition scheme, both of which offer significant speedup relative to the reference case—even when they are executed serially. We combine the strengths of these methods to create a parallel particle scheme that is highly accurate and efficient with run times that scale as 1/P for a fixed number of particles, where P is the number of computational cores (equivalently, subdomains, in this work) being used. The new parallel model is a significant advance because it enables efficient simulation of large particle ensembles that are needed for environmental simulations and also because it can naturally pair with parallel geochemical solvers to create a practical Lagrangian tool for simulating mixing and reactions in complex chemical systems.
Key Points
Acceleration methods for random walk based reactive transport simulations are developed
Domain decomposition methods for interacting particle simulations are introduced
The fully parallel algorithm gives good accuracy, speedup, and scaling for up to 106 particles on 103 cores |
|---|---|
| AbstractList | Recent advances in random walk particle tracking have enabled direct simulation of mixing and reactions by allowing the particles to interact with each other using a multipoint mass transfer scheme. The mass transfer scheme allows separation of mixing and spreading processes, among other advantages, but it is computationally expensive because its speed depends on the number of interacting particle pairs. This note explores methods for relieving the computational bottleneck caused by the mass transfer step, and we use these algorithms to develop a new parallel, interacting particle model. The new model is a combination of a sparse search algorithm and a novel domain decomposition scheme, both of which offer significant speedup relative to the reference case—even when they are executed serially. We combine the strengths of these methods to create a parallel particle scheme that is highly accurate and efficient with run times that scale as 1/P for a fixed number of particles, where P is the number of computational cores (equivalently, subdomains, in this work) being used. The new parallel model is a significant advance because it enables efficient simulation of large particle ensembles that are needed for environmental simulations and also because it can naturally pair with parallel geochemical solvers to create a practical Lagrangian tool for simulating mixing and reactions in complex chemical systems. Recent advances in random walk particle tracking have enabled direct simulation of mixing and reactions by allowing the particles to interact with each other using a multipoint mass transfer scheme. The mass transfer scheme allows separation of mixing and spreading processes, among other advantages, but it is computationally expensive because its speed depends on the number of interacting particle pairs. This note explores methods for relieving the computational bottleneck caused by the mass transfer step, and we use these algorithms to develop a new parallel, interacting particle model. The new model is a combination of a sparse search algorithm and a novel domain decomposition scheme, both of which offer significant speedup relative to the reference case—even when they are executed serially. We combine the strengths of these methods to create a parallel particle scheme that is highly accurate and efficient with run times that scale as 1/P for a fixed number of particles, where P is the number of computational cores (equivalently, subdomains, in this work) being used. The new parallel model is a significant advance because it enables efficient simulation of large particle ensembles that are needed for environmental simulations and also because it can naturally pair with parallel geochemical solvers to create a practical Lagrangian tool for simulating mixing and reactions in complex chemical systems. Key Points Acceleration methods for random walk based reactive transport simulations are developed Domain decomposition methods for interacting particle simulations are introduced The fully parallel algorithm gives good accuracy, speedup, and scaling for up to 106 particles on 103 cores Recent advances in random walk particle tracking have enabled direct simulation of mixing and reactions by allowing the particles to interact with each other using a multipoint mass transfer scheme. The mass transfer scheme allows separation of mixing and spreading processes, among other advantages, but it is computationally expensive because its speed depends on the number of interacting particle pairs. This note explores methods for relieving the computational bottleneck caused by the mass transfer step, and we use these algorithms to develop a new parallel, interacting particle model. The new model is a combination of a sparse search algorithm and a novel domain decomposition scheme, both of which offer significant speedup relative to the reference case—even when they are executed serially. We combine the strengths of these methods to create a parallel particle scheme that is highly accurate and efficient with run times that scale as 1/ P for a fixed number of particles, where P is the number of computational cores (equivalently, subdomains, in this work) being used. The new parallel model is a significant advance because it enables efficient simulation of large particle ensembles that are needed for environmental simulations and also because it can naturally pair with parallel geochemical solvers to create a practical Lagrangian tool for simulating mixing and reactions in complex chemical systems. Acceleration methods for random walk based reactive transport simulations are developed Domain decomposition methods for interacting particle simulations are introduced The fully parallel algorithm gives good accuracy, speedup, and scaling for up to 10 6 particles on 10 3 cores |
| Author | Engdahl, Nicholas B. Schmidt, Michael J. Benson, David A. |
| Author_xml | – sequence: 1 givenname: Nicholas B. orcidid: 0000-0001-7441-6330 surname: Engdahl fullname: Engdahl, Nicholas B. email: nick.engdahl@wsu.edu organization: Washington State University – sequence: 2 givenname: Michael J. orcidid: 0000-0001-9237-7910 surname: Schmidt fullname: Schmidt, Michael J. organization: Colorado School of Mines – sequence: 3 givenname: David A. orcidid: 0000-0001-5652-5197 surname: Benson fullname: Benson, David A. organization: Colorado School of Mines |
| BackLink | https://www.osti.gov/biblio/1507235$$D View this record in Osti.gov |
| BookMark | eNp90c2KUzEUB_AgI9ip7nyAi25ceGfyde9NlqWoM1AZqZVuhJDmntSUNKnJrc648hHmGedJTK0LKSgEAuF3kv_JOUdnIQZA6DnBFwRTeUkxEcs5ppy15BEaEcl53cmOnaERxpzVhMnuCTrPeYMx4U3bjdDniTHgIenBhXWlQ1990El7D979OJzM9DrpsHY6VB_ddu-LiyFX0Vbv3W0BDz_vZ27rBuirOWgzuG9QLUpF3sU0PEWPrfYZnv3Zx-jT2zeL6VU9u3l3PZ3Mas2p4PVKWMuElmB6vLKtWQG3h2XbRghD-nbViBLWStbrvpfUNhjAWmFaLUDYlo3Ri-O9MQ9OZVPimC8mhgBmUKTBHWVNQa-OaJfi1z3kQW1dLr17HSDus6IdEawVktJCX57QTdynUFpQlFLR0aaTvKjXR2VSzDmBVbvktjrdKYLVYR7q73kUTk94yfn7O4eknf9XETsWfXce7v77gFrOp3PKJOHsF5G6oGc |
| CitedBy_id | crossref_primary_10_1016_j_advwatres_2021_103889 crossref_primary_10_5194_hess_26_1615_2022 crossref_primary_10_1002_wat2_70015 crossref_primary_10_1016_j_advwatres_2024_104818 crossref_primary_10_1016_j_jconhyd_2020_103642 crossref_primary_10_1016_j_cageo_2021_104760 crossref_primary_10_1016_j_cageo_2022_105189 crossref_primary_10_1007_s00477_020_01884_z crossref_primary_10_1016_j_advwatres_2020_103577 crossref_primary_10_1029_2020WR028679 crossref_primary_10_1016_j_advwatres_2024_104656 crossref_primary_10_1029_2019WR026993 crossref_primary_10_1016_j_advwatres_2024_104791 crossref_primary_10_1016_j_advwatres_2019_103386 crossref_primary_10_5194_hess_25_1483_2021 crossref_primary_10_1007_s11242_021_01734_8 crossref_primary_10_1016_j_jcp_2021_110664 crossref_primary_10_1016_j_advwatres_2019_103382 |
| Cites_doi | 10.1145/361002.361007 10.1016/j.advwatres.2012.11.001 10.1029/WR019i001p00161 10.1029/WR015i006p01387 10.1016/j.advwatres.2016.11.003 10.1016/S0169-7722(99)00044-3 10.1029/2005WR004511 10.1016/j.advwatres.2018.06.003 10.1103/PhysRevA.45.600 10.1029/95WR03528 10.1002/2017WR020362 10.1103/PhysRevE.92.012922 10.1002/2017WR021064 10.1029/2008WR007111 10.1016/j.jconhyd.2006.05.005 10.1016/j.advwatres.2018.05.003 10.1016/j.jcp.2015.09.030 10.1002/2016WR019368 |
| ContentType | Journal Article |
| Copyright | 2019. American Geophysical Union. All Rights Reserved. |
| Copyright_xml | – notice: 2019. American Geophysical Union. All Rights Reserved. |
| DBID | AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 OTOTI |
| DOI | 10.1029/2018WR024361 |
| DatabaseName | CrossRef Aqualine Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts Virology and AIDS Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic OSTI.GOV |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Technology Research Database Aqualine Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Meteorological & Geoastrophysical Abstracts - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Economics |
| EISSN | 1944-7973 |
| EndPage | 3566 |
| ExternalDocumentID | 1507235 10_1029_2018WR024361 WRCR23914 |
| Genre | article |
| GrantInformation_xml | – fundername: US Department of Energy funderid: DE-SC0019123 – fundername: National Science Foundation (NSF) funderid: EAR-1417145; DMS-1211667; DMS-1614586 – fundername: US Army Research Office funderid: W911NF-18-1-0338 |
| GroupedDBID | -~X ..I .DC 05W 0R~ 123 1OB 1OC 24P 31~ 33P 50Y 5VS 6TJ 7WY 7XC 8-1 8CJ 8FE 8FG 8FH 8FL 8G5 8R4 8R5 8WZ A6W AAESR AAHBH AAIHA AAIKC AAMMB AAMNW AANHP AANLZ AASGY AAXRX AAYCA AAYJJ AAZKR ABCUV ABJCF ABJNI ABPPZ ABUWG ACAHQ ACBWZ ACCMX ACCZN ACGFO ACGFS ACIWK ACKIV ACNCT ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADXHL ADZMN AEFGJ AEIGN AENEX AETEA AEUYN AEUYR AFBPY AFFHD AFGKR AFKRA AFRAH AFWVQ AFZJQ AGQPQ AGXDD AIDBO AIDQK AIDYY AIQQE AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALXUD AMYDB ASPBG ATCPS AVWKF AZFZN AZQEC AZVAB BDRZF BENPR BEZIV BFHJK BGLVJ BHPHI BKSAR BMXJE BPHCQ BRXPI CCPQU CS3 D0L D1J DCZOG DDYGU DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD F5P FEDTE FRNLG G-S GNUQQ GODZA GROUPED_DOAJ GUQSH HCIFZ HVGLF HZ~ K60 K6~ L6V LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M0C M2O M7R M7S MEWTI MSFUL MSSTM MVM MW2 MXFUL MXSTM MY~ O9- OHT OK1 P-X P2P P2W PALCI PATMY PCBAR PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PTHSS PYCSY Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TAE TN5 TWZ UQL VJK VOH WBKPD WIN WXSBR XOL XSW YHZ YV5 ZCG ZY4 ZZTAW ~02 ~KM ~OA ~~A AAYXX CITATION 7QH 7QL 7T7 7TG 7U9 7UA 8FD C1K F1W FR3 H94 H96 KL. KR7 L.G M7N P64 7S9 L.6 A00 AAHHS AAJUZ AAPBV ABCVL ABHUG ACCFJ ADAWD ADDAD AEEZP AEQDE AEUQT AFPWT AFVGU AGJLS AIWBW AJBDE OTOTI WYJ |
| ID | FETCH-LOGICAL-a4284-b8ff38a9ecd0bf6cbe4fe4fef6588c1d6b58567f93dadd92f50eeff8c6a8e8f63 |
| IEDL.DBID | WIN |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468597900053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0043-1397 |
| IngestDate | Fri May 19 02:30:36 EDT 2023 Fri Sep 05 17:23:15 EDT 2025 Sun Sep 07 23:58:39 EDT 2025 Sat Nov 29 01:36:42 EST 2025 Tue Nov 18 21:32:31 EST 2025 Tue Nov 11 03:14:14 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a4284-b8ff38a9ecd0bf6cbe4fe4fef6588c1d6b58567f93dadd92f50eeff8c6a8e8f63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 USDOE SC0019123 |
| ORCID | 0000-0001-9237-7910 0000-0001-5652-5197 0000-0001-7441-6330 0000000192377910 0000000174416330 0000000156525197 |
| OpenAccessLink | https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2018WR024361 |
| PQID | 2228725794 |
| PQPubID | 105507 |
| PageCount | 11 |
| ParticipantIDs | osti_scitechconnect_1507235 proquest_miscellaneous_2718368922 proquest_journals_2228725794 crossref_primary_10_1029_2018WR024361 crossref_citationtrail_10_1029_2018WR024361 wiley_primary_10_1029_2018WR024361_WRCR23914 |
| PublicationCentury | 2000 |
| PublicationDate | April 2019 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: April 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington – name: United States |
| PublicationTitle | Water resources research |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc American Geophysical Union (AGU) |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: American Geophysical Union (AGU) |
| References | 2017; 53 2017; 52 2006; 42 1983; 19 1979; 15 2015; 303 2018; 117 2015; 92 2015; 51 2018; 119 2006; 87 2017; 99 2013; 53 1975; 18 2018 2008; 44 2004 1999; 40 1992; 45 1996; 32 Bolster D. (e_1_2_9_6_1) 2015; 51 e_1_2_9_20_1 e_1_2_9_11_1 e_1_2_9_22_1 e_1_2_9_10_1 e_1_2_9_21_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 |
| References_xml | – volume: 45 start-page: 600 issue: 2 year: 1992 end-page: 603 article-title: Stochastic Runge‐Kutta algorithms. I. White noise publication-title: Physical Review A – volume: 42 year: 2006 article-title: Enhanced mixing and reaction through flow focusing in heterogeneous porous media publication-title: Water Resources Research – volume: 40 start-page: 159 issue: 2 year: 1999 end-page: 182 article-title: Numerical simulation of biodegradation controlled by transverse mixing publication-title: Journal of Contaminant Hydrology – volume: 15 start-page: 1387 issue: 6 year: 1979 end-page: 1397 article-title: Stochastic analysis of macrodispersion in a stratified aquifer publication-title: Water Resources Research – volume: 18 start-page: 509 issue: 9 year: 1975 end-page: 517 article-title: Multidimensional binary search trees used for associative searching publication-title: Communications of the ACM – volume: 53 start-page: 56 year: 2013 end-page: 65 article-title: Modeling bimolecular reactions and transport in porous media via particle tracking publication-title: Advances in Water Resources – volume: 44 year: 2008 article-title: Simulation of chemical reaction via particle tracking: Diffusion‐limited versus thermodynamic rate‐limited regimes publication-title: Water Resources Research – volume: 119 start-page: 17 year: 2018 end-page: 27 article-title: Considering the utility of backward‐in‐time simulations of multi‐component reactive transport in porous media publication-title: Advances in Water Resources Received – year: 2004 – volume: 52 start-page: 9190 year: 2017 end-page: 9200 article-title: Arbitrarily complex chemical reactions on particles publication-title: Water Resources Research – volume: 51 start-page: 9127 year: 2015 end-page: 9140 article-title: A particle number conserving Lagrangian method for mixing‐driven reactive transport publication-title: Water Resources Research – volume: 32 start-page: 583 issue: 3 year: 1996 end-page: 593 article-title: Random‐walk simulation of transport in heterogeneous porous media: Local mass‐conservation problem and implementation methods publication-title: Water Resources Research – volume: 99 start-page: 15 year: 2017 end-page: 37 article-title: A comparison of Eulerian and Lagrangian transport and non‐linear reaction algorithms publication-title: Advances in Water Resources – volume: 92 start-page: 012922 issue: 1 year: 2015 article-title: Incomplete mixing and reactions in laminar shear flow publication-title: Physical Review E – volume: 19 start-page: 161 issue: 1 year: 1983 end-page: 180 article-title: Three‐dimensional stochastic analysis of macrodispersion in aquifers publication-title: Water Resources Research – volume: 117 start-page: 115 issue: March year: 2018 end-page: 119 article-title: On the accuracy of simulating mixing by random‐walk particle‐based mass‐transfer algorithms publication-title: Advances in Water Resources – volume: 53 start-page: 3513 year: 2017 end-page: 3522 article-title: Lagrangian simulation of mixing and reactions in complex geochemical systems publication-title: Water Resources Research – volume: 87 start-page: 277 issue: 3‐4 year: 2006 end-page: 305 article-title: A review and numerical assessment of the random walk particle tracking method publication-title: Journal of Contaminant Hydrology – year: 2018 – volume: 303 start-page: 95 year: 2015 end-page: 104 article-title: Do we really need a large number of particles to simulate bimolecular reactive transport with random walk methods? A kernel density estimation approach publication-title: Journal of Computational Physics – volume: 53 start-page: 9019 year: 2017 end-page: 9039 article-title: A KDE‐based random walk method for modeling reactive transport with complex kinetics in porous media publication-title: Water Resources Research – ident: e_1_2_9_5_1 doi: 10.1145/361002.361007 – volume: 51 start-page: 9127 year: 2015 ident: e_1_2_9_6_1 article-title: A particle number conserving Lagrangian method for mixing‐driven reactive transport publication-title: Water Resources Research – ident: e_1_2_9_8_1 doi: 10.1016/j.advwatres.2012.11.001 – ident: e_1_2_9_12_1 doi: 10.1029/WR019i001p00161 – ident: e_1_2_9_13_1 doi: 10.1029/WR015i006p01387 – ident: e_1_2_9_2_1 doi: 10.1016/j.advwatres.2016.11.003 – ident: e_1_2_9_7_1 doi: 10.1016/S0169-7722(99)00044-3 – ident: e_1_2_9_22_1 doi: 10.1029/2005WR004511 – ident: e_1_2_9_9_1 doi: 10.1016/j.advwatres.2018.06.003 – ident: e_1_2_9_14_1 doi: 10.1103/PhysRevA.45.600 – ident: e_1_2_9_15_1 – ident: e_1_2_9_16_1 doi: 10.1029/95WR03528 – ident: e_1_2_9_10_1 doi: 10.1002/2017WR020362 – ident: e_1_2_9_17_1 doi: 10.1103/PhysRevE.92.012922 – ident: e_1_2_9_21_1 doi: 10.1002/2017WR021064 – ident: e_1_2_9_4_1 doi: 10.1029/2008WR007111 – ident: e_1_2_9_19_1 doi: 10.1016/j.jconhyd.2006.05.005 – ident: e_1_2_9_11_1 – ident: e_1_2_9_20_1 doi: 10.1016/j.advwatres.2018.05.003 – ident: e_1_2_9_18_1 doi: 10.1016/j.jcp.2015.09.030 – ident: e_1_2_9_3_1 doi: 10.1002/2016WR019368 |
| SSID | ssj0014567 |
| Score | 2.4273524 |
| Snippet | Recent advances in random walk particle tracking have enabled direct simulation of mixing and reactions by allowing the particles to interact with each other... |
| SourceID | osti proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3556 |
| SubjectTerms | Algorithms Chemical reactions Computation Computer applications Computer simulation Mass Mass transfer Methods Organic chemistry Parallel processing parallelization Particle tracking Random walk reactive transport Search algorithms Simulation Solvers water |
| Title | Accelerating and Parallelizing Lagrangian Simulations of Mixing‐Limited Reactive Transport |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2018WR024361 https://www.proquest.com/docview/2228725794 https://www.proquest.com/docview/2718368922 https://www.osti.gov/biblio/1507235 |
| Volume | 55 |
| WOSCitedRecordID | wos000468597900053&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Free Content customDbUrl: eissn: 1944-7973 dateEnd: 20231213 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: WIN dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-7973 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014567 issn: 0043-1397 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swEBclK2wv3bo_LP2HBuvTZhZLiiw9lnZhgywUd136MDCyLHWB1ilxOtY-7SPsM-6T7E5RTPqwwhj4wVgnW_judCed7neEvK7SvnVKiERy5xORul5S6swkyva8lpVRMiTSfhlmo5E6O9PHccMNc2EW-BDthhtqRpivUcFN2USwAcTIBMulxjkC6oXVTyqCXo4_jtogAvgG2TLAjI5OPPcO3d-tdr5jkTpT0Kw73uaqzxqMzuDx_w73CdmI7iY9WMjHJllz9VPycJmN3MB9rIL-7eYZ-XpgLVghlIn6nJq6osdmhrVWLia3-GRogLI-B4GiJ5PLWPeroVNPP01-AMHvn79ivhTNnQkTKW3B05-T08H7z4cfklh9ITGwJBFJqbznymhnq17ppS2d8Hh58FmUTStZwkpDZl7zCuZIzXy_55z3ykqjnPKSvyCdelq7l4SaslTMOy4ybwS3wrDUa80kvsO4rN8lb5YcKGyEJscKGRdFCJEzXaz-vS7Zb6mvFpAcf6HbRmYW4EogHq7Fg0N2XqAHzDh8c2fJ4yKqbVPgdlgGk5gWXfKqbQaFwyiKqd30GmjAmnOpNGNd8jZw_N5RFOP8MGdcp2Lr38i3ySNo0ItTQjukM59du12ybr_PJ81sjzw4ygenw70g8X8AVQoAZw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED-hDmm88B_RbYCR4AkiGsd17MdpUA2RVVPY2B6QLMexR6WRTm2HgCc-Ap-RT8Jd6kbdA0gIKQ9Rckms3F_7fL8DeFanQ-eVEInMfEhE6gdJpXObKDcIWtZWybaQ9kORj8fq9FQfxj6nVAuzxIfoFtxIM1p7TQpOC9IRbYBAMtF1qZOSEPVo-rMhUJKGPdh4XY6Oiy6RgPFBvkoyU7AT977jG16tP3_FK_WmqF1XIs71uLV1PKNb_z3k23Azxpxsdykkd-Cab-7C5qokeY7nsRX6p2_34OOuc-iKSDCaM2abmh3aGTVcOZ98pyuFRcrmDKWKvZ98js2_5mwa2MHkKxL8-vEzFk2x0tvWmrIOQf0-HI_eHO3tJ7EFQ2JxXiKSSoWQKau9qwdVkK7yItARMHBRLq1lhdMNmQed1WgoNQ_DgfchKCet8irI7AH0mmnjHwKzVaV48JnIgxWZE5anQWsu6R3W58M-vFixwLiIT05tMs5Nmyfn2qz_vT4876gvlrgcf6DbJm4ajCcIFNfR7iG3MBQG8wy_ubNisom6Oze0JpajJdOiD0-726h1lEqxjZ9eIg269EwqzXkfXrYs_-sozEm5V_JMp2Lr38ifwOb-0UFhirfjd9twA4n0ctvQDvQWs0v_CK67L4vJfPY4Cv5vZ7cEEw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Pb9MwFLembgIujPFHlA3wJDhBtMZ2Hfs4bVQguqoKjO2AZDmOPSqNdGo7BDvtI-wz7pPsvdSNugNIaFIOUfKSWHl_7ef3e4S8KdOu80qIRHIfEpH6TlLozCbKdYKWpVWyLqT91s8GA3V8rIexzynWwszxIZoFN9SM2l6jgvuzMkS0AQTJBNeljnJE1MPpz6roagmaubqf9w77TSIB4oNskWTGYCfufYc37Cw_f8srtcagXbcizuW4tXY8vfU7D_kReRhjTro7F5INsuKrx-T-oiR5CuexFfqPP0_I913nwBWhYFQn1FYlHdoJNlw5HV3glb4FyuoEpIp-Gf2Mzb-mdBzoweg3EFxfXsWiKZp7W1tT2iCoPyWHvQ9f9z4msQVDYmFeIpJChcCV1d6VnSJIV3gR8AgQuCiXlrKA6YbMguYlGErNQrfjfQjKSau8CpI_I61qXPnnhNqiUCx4LrJgBXfCsjRozSS-w_qs2ybvFiwwLuKTY5uMU1PnyZk2y3-vTd421GdzXI6_0G0iNw3EEwiK63D3kJsZDIMZh29uLZhsou5ODa6JZWDJtGiT7eY2aB2mUmzlx-dAAy6dS6UZa5P3Ncv_OQpzlO_ljOtUvPg_8tfk3nC_Z_qfBp83yQOg0fNdQ1ukNZuc-5dkzf2ajaaTV1HubwDsHQOO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+and+Parallelizing+Lagrangian+Simulations+of+Mixing%E2%80%90Limited+Reactive+Transport&rft.jtitle=Water+resources+research&rft.au=Engdahl%2C+Nicholas+B.&rft.au=Schmidt%2C+Michael+J.&rft.au=Benson%2C+David+A.&rft.date=2019-04-01&rft.pub=American+Geophysical+Union+%28AGU%29&rft.issn=0043-1397&rft.eissn=1944-7973&rft.volume=55&rft.issue=4&rft_id=info:doi/10.1029%2F2018WR024361&rft.externalDocID=1507235 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon |