An Iterative Local Updating Ensemble Smoother for Estimation and Uncertainty Assessment of Hydrologic Model Parameters With Multimodal Distributions

Ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, for problems where the distribution of model parameters is multimodal, using ES directly would be problematic. One popular solution is to use a clustering algorithm to identify each mode and update the cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research Jg. 54; H. 3; S. 1716 - 1733
Hauptverfasser: Zhang, Jiangjiang, Lin, Guang, Li, Weixuan, Wu, Laosheng, Zeng, Lingzao
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Washington John Wiley & Sons, Inc 01.03.2018
American Geophysical Union (AGU)
Schlagworte:
ISSN:0043-1397, 1944-7973
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, for problems where the distribution of model parameters is multimodal, using ES directly would be problematic. One popular solution is to use a clustering algorithm to identify each mode and update the clusters with ES separately. However, this strategy may not be very efficient when the dimension of parameter space is high or the number of modes is large. Alternatively, we propose in this paper a very simple and efficient algorithm, i.e., the iterative local updating ensemble smoother (ILUES), to explore multimodal distributions of model parameters in nonlinear hydrologic systems. The ILUES algorithm works by updating local ensembles of each sample with ES to explore possible multimodal distributions. To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurements multiple times. Numerical cases involving nonlinearity and multimodality are tested to illustrate the performance of the proposed method. It is shown that overall the ILUES algorithm can well quantify the parametric uncertainties of complex hydrologic models, no matter whether the multimodal distribution exists. Plain Language Summary Our motivation comes from hydrologic inverse modeling applications where the distributions of model parameters are multimodal. Although MCMC can handle multimodal distributions, the computational cost is prohibitive in large‐scale inverse modeling. As a computationally appealing alternative, ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, its application is limited to problems where uncertain parameters approximately follow Gaussian distributions. For problems with multimodal distributions, using ES directly would be problematic. In this article, we propose an iterative local updating ensemble smoother for estimation and uncertainty assessment of hydrologic model parameters with multimodal distributions. Central to the proposed methodology is the idea of updating local ensembles of each sample in ES to explore possible multimodal distributions. To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurement multiple times. It is shown that the ILUES algorithm can well quantify the parametric uncertainties of complex hydrologic models, no matter whether the multimodal distribution exists. Moreover, the implementation of the ILUES algorithm can be greatly accelerated by adopting parallel computation. Key Points We propose a simple and efficient algorithm to solve inverse problems with multimodal distributions The algorithm works by updating local ensembles of each sample in ES to explore possible multimodal distributions To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurement multiple times
AbstractList Ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, for problems where the distribution of model parameters is multimodal, using ES directly would be problematic. One popular solution is to use a clustering algorithm to identify each mode and update the clusters with ES separately. However, this strategy may not be very efficient when the dimension of parameter space is high or the number of modes is large. Alternatively, we propose in this paper a very simple and efficient algorithm, i.e., the iterative local updating ensemble smoother (ILUES), to explore multimodal distributions of model parameters in nonlinear hydrologic systems. The ILUES algorithm works by updating local ensembles of each sample with ES to explore possible multimodal distributions. To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurements multiple times. Numerical cases involving nonlinearity and multimodality are tested to illustrate the performance of the proposed method. It is shown that overall the ILUES algorithm can well quantify the parametric uncertainties of complex hydrologic models, no matter whether the multimodal distribution exists. Plain Language Summary Our motivation comes from hydrologic inverse modeling applications where the distributions of model parameters are multimodal. Although MCMC can handle multimodal distributions, the computational cost is prohibitive in large‐scale inverse modeling. As a computationally appealing alternative, ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, its application is limited to problems where uncertain parameters approximately follow Gaussian distributions. For problems with multimodal distributions, using ES directly would be problematic. In this article, we propose an iterative local updating ensemble smoother for estimation and uncertainty assessment of hydrologic model parameters with multimodal distributions. Central to the proposed methodology is the idea of updating local ensembles of each sample in ES to explore possible multimodal distributions. To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurement multiple times. It is shown that the ILUES algorithm can well quantify the parametric uncertainties of complex hydrologic models, no matter whether the multimodal distribution exists. Moreover, the implementation of the ILUES algorithm can be greatly accelerated by adopting parallel computation. Key Points We propose a simple and efficient algorithm to solve inverse problems with multimodal distributions The algorithm works by updating local ensembles of each sample in ES to explore possible multimodal distributions To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurement multiple times
Abstract Ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, for problems where the distribution of model parameters is multimodal, using ES directly would be problematic. One popular solution is to use a clustering algorithm to identify each mode and update the clusters with ES separately. However, this strategy may not be very efficient when the dimension of parameter space is high or the number of modes is large. Alternatively, we propose in this paper a very simple and efficient algorithm, i.e., the iterative local updating ensemble smoother (ILUES), to explore multimodal distributions of model parameters in nonlinear hydrologic systems. The ILUES algorithm works by updating local ensembles of each sample with ES to explore possible multimodal distributions. To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurements multiple times. Numerical cases involving nonlinearity and multimodality are tested to illustrate the performance of the proposed method. It is shown that overall the ILUES algorithm can well quantify the parametric uncertainties of complex hydrologic models, no matter whether the multimodal distribution exists.
Ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, for problems where the distribution of model parameters is multimodal, using ES directly would be problematic. One popular solution is to use a clustering algorithm to identify each mode and update the clusters with ES separately. However, this strategy may not be very efficient when the dimension of parameter space is high or the number of modes is large. Alternatively, we propose in this paper a very simple and efficient algorithm, i.e., the iterative local updating ensemble smoother (ILUES), to explore multimodal distributions of model parameters in nonlinear hydrologic systems. The ILUES algorithm works by updating local ensembles of each sample with ES to explore possible multimodal distributions. To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurements multiple times. Numerical cases involving nonlinearity and multimodality are tested to illustrate the performance of the proposed method. It is shown that overall the ILUES algorithm can well quantify the parametric uncertainties of complex hydrologic models, no matter whether the multimodal distribution exists. Our motivation comes from hydrologic inverse modeling applications where the distributions of model parameters are multimodal. Although MCMC can handle multimodal distributions, the computational cost is prohibitive in large‐scale inverse modeling. As a computationally appealing alternative, ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, its application is limited to problems where uncertain parameters approximately follow Gaussian distributions. For problems with multimodal distributions, using ES directly would be problematic. In this article, we propose an iterative local updating ensemble smoother for estimation and uncertainty assessment of hydrologic model parameters with multimodal distributions. Central to the proposed methodology is the idea of updating local ensembles of each sample in ES to explore possible multimodal distributions. To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurement multiple times. It is shown that the ILUES algorithm can well quantify the parametric uncertainties of complex hydrologic models, no matter whether the multimodal distribution exists. Moreover, the implementation of the ILUES algorithm can be greatly accelerated by adopting parallel computation. We propose a simple and efficient algorithm to solve inverse problems with multimodal distributions The algorithm works by updating local ensembles of each sample in ES to explore possible multimodal distributions To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurement multiple times
Ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, for problems where the distribution of model parameters is multimodal, using ES directly would be problematic. One popular solution is to use a clustering algorithm to identify each mode and update the clusters with ES separately. However, this strategy may not be very efficient when the dimension of parameter space is high or the number of modes is large. Alternatively, we propose in this paper a very simple and efficient algorithm, i.e., the iterative local updating ensemble smoother (ILUES), to explore multimodal distributions of model parameters in nonlinear hydrologic systems. The ILUES algorithm works by updating local ensembles of each sample with ES to explore possible multimodal distributions. To achieve satisfactory data matches in nonlinear problems, we adopt an iterative form of ES to assimilate the measurements multiple times. Numerical cases involving nonlinearity and multimodality are tested to illustrate the performance of the proposed method. It is shown that overall the ILUES algorithm can well quantify the parametric uncertainties of complex hydrologic models, no matter whether the multimodal distribution exists.
Author Li, Weixuan
Lin, Guang
Zhang, Jiangjiang
Wu, Laosheng
Zeng, Lingzao
Author_xml – sequence: 1
  givenname: Jiangjiang
  orcidid: 0000-0002-0513-5233
  surname: Zhang
  fullname: Zhang, Jiangjiang
  organization: Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University
– sequence: 2
  givenname: Guang
  orcidid: 0000-0002-0976-1987
  surname: Lin
  fullname: Lin, Guang
  email: guanglin@purdue.edu
  organization: Purdue University
– sequence: 3
  givenname: Weixuan
  orcidid: 0000-0001-6755-3783
  surname: Li
  fullname: Li, Weixuan
  organization: Pacific Northwest National Laboratory
– sequence: 4
  givenname: Laosheng
  orcidid: 0000-0001-6547-8513
  surname: Wu
  fullname: Wu, Laosheng
  organization: University of California
– sequence: 5
  givenname: Lingzao
  orcidid: 0000-0002-4094-1310
  surname: Zeng
  fullname: Zeng, Lingzao
  email: lingzao@zju.edu.cn
  organization: Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University
BackLink https://www.osti.gov/biblio/1433557$$D View this record in Osti.gov
BookMark eNp9kc1uEzEUhS1UJNLCjgewYMOCAf_MjGeWURpopVSgQJSl5fFcN648drAdUN6DB8YhLFAlWFlX-u45PvdcogsfPCD0kpJ3lBD2nhEqtmvCSE_aJ2hG-7quRC_4BZoRUvOK8l48Q5cpPRBC66YVM_Rz7vFthqiy_Q54FbRyeLMfy-jv8dInmAYH-MsUQt5BxCZEvEzZTgUIHis_4o3XELOyPh_xPCVIaQKfcTD45jjG4MK91fgujODwZxXVBMUt4a3NO3x3cEUqjMXz2qYc7XA4yabn6KlRLsGLP-8V2nxYfl3cVKtPH28X81WlatbxCpSixgytapnpDBlaXXPDgfWU844b0XWNAWJGMoDpBl43Q0OgH3quRQ3d2PIr9OqsG0okmbTNoHc6eA86S1pz3jSiQG_O0D6GbwdIWU42aXBOeQiHJJmgHW-bXpCCvn6EPoRD9CWCZIS1vCkFsEK9PVM6hpQiGLmP5aDxKCmRpx7l3z0WnD3Cyz9_nz9HZd2_lvh56Yd1cPyvgdyuF2vGT3F_Ab5_suQ
CitedBy_id crossref_primary_10_3390_min13010089
crossref_primary_10_1016_j_jhydrol_2024_130727
crossref_primary_10_1029_2020WR027399
crossref_primary_10_1016_j_jhydrol_2022_129013
crossref_primary_10_1029_2018WR024638
crossref_primary_10_1016_j_jhydrol_2022_128642
crossref_primary_10_1029_2018WR022658
crossref_primary_10_1016_j_advwatres_2024_104658
crossref_primary_10_1061_JENMDT_EMENG_7783
crossref_primary_10_1016_j_jhydrol_2025_133797
crossref_primary_10_1029_2019WR026082
crossref_primary_10_1007_s00477_022_02251_w
crossref_primary_10_1016_j_watres_2024_122706
crossref_primary_10_1016_j_advwatres_2022_104217
crossref_primary_10_1016_j_cam_2021_113707
crossref_primary_10_1007_s00603_025_04406_x
crossref_primary_10_1029_2021GL095823
crossref_primary_10_1029_2022WR033241
crossref_primary_10_1029_2023WR036893
crossref_primary_10_1016_j_petrol_2020_108140
crossref_primary_10_1029_2021WR030595
crossref_primary_10_1016_j_earscirev_2023_104370
crossref_primary_10_1016_j_geoen_2024_213275
crossref_primary_10_1016_j_jhydrol_2024_131703
crossref_primary_10_1016_j_jcp_2021_110194
crossref_primary_10_1016_j_ijrmms_2024_105911
crossref_primary_10_3390_w17020255
crossref_primary_10_1029_2024WR038468
crossref_primary_10_3390_su15021211
crossref_primary_10_1007_s00477_023_02415_2
crossref_primary_10_1029_2023WR036899
crossref_primary_10_1029_2019WR025474
crossref_primary_10_1038_s41598_024_75841_z
crossref_primary_10_1016_j_energy_2023_127302
crossref_primary_10_1016_j_jhydrol_2024_131540
crossref_primary_10_1002_hyp_14755
crossref_primary_10_1016_j_petrol_2022_110548
crossref_primary_10_1029_2023WR036461
crossref_primary_10_3390_ijerph20054567
crossref_primary_10_3390_w14050757
crossref_primary_10_1016_j_jhydrol_2022_127844
crossref_primary_10_1016_j_jcp_2024_112788
crossref_primary_10_1016_j_jhydrol_2023_129677
crossref_primary_10_1007_s10040_024_02854_3
crossref_primary_10_1080_19942060_2025_2473992
crossref_primary_10_1080_1064119X_2023_2280636
crossref_primary_10_1016_j_envsoft_2025_106332
crossref_primary_10_1016_j_envsoft_2025_106577
crossref_primary_10_1016_j_gsd_2025_101452
crossref_primary_10_1007_s11269_022_03410_y
crossref_primary_10_1016_j_jhydrol_2025_133693
crossref_primary_10_1029_2023WR035389
crossref_primary_10_1029_2019WR025721
crossref_primary_10_2118_215821_PA
crossref_primary_10_1007_s11004_022_10003_3
crossref_primary_10_1016_j_ijrmms_2025_106207
crossref_primary_10_1029_2018WR023615
crossref_primary_10_1016_j_geoen_2024_213294
crossref_primary_10_3390_w12082161
crossref_primary_10_3390_w15020374
crossref_primary_10_1016_j_jhydrol_2024_132457
crossref_primary_10_1109_TGRS_2024_3403663
crossref_primary_10_1007_s12145_024_01361_z
crossref_primary_10_1016_j_jconhyd_2021_103815
crossref_primary_10_1016_j_jhydrol_2021_126918
crossref_primary_10_5194_hess_29_4251_2025
crossref_primary_10_1016_j_still_2025_106738
crossref_primary_10_1016_j_jhydrol_2020_125443
crossref_primary_10_1016_j_catena_2020_104990
crossref_primary_10_1016_j_geoen_2024_212994
Cites_doi 10.1016/j.advwatres.2011.04.014
10.1111/j.1751-5823.2003.tb00194.x
10.1002/2013WR014525
10.1007/s00477-008-0274-y
10.1115/1.3662552
10.1111/j.1600-0870.2007.00246.x
10.1017/S0962492910000061
10.1029/2008WR007443
10.1002/2016WR018598
10.1029/2007WR006720
10.2118/108438-PA
10.1002/wrcr.20226
10.1002/2016WR019518
10.1029/2010WR009147
10.1175/MWR-D-15-0440.1
10.1029/2002JD002900
10.1109/TAC.2011.2154430
10.1016/j.jcp.2010.07.005
10.1016/j.jcp.2016.05.040
10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2
10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2
10.3390/pr4020009
10.1080/02626668509490989
10.5194/hess-17-1517-2013
10.1007/s11004-011-9376-z
10.1002/wrcr.20467
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2507::AID-SIM272>3.0.CO;2-J
10.1002/2014WR015740
10.1007/s11222-006-9438-0
10.2118/117274-PA
10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
10.1007/s10596-010-9205-3
10.1111/j.1600-0870.2004.00076.x
10.1515/IJNSNS.2009.10.3.273
10.2118/108941-PA
10.1016/S0924-7963(03)00025-3
10.1063/1.1699114
10.1016/j.jhydrol.2013.03.037
10.1016/j.advwatres.2004.09.002
10.1029/2004WR003764
10.1016/j.jcp.2003.09.015
10.1007/978-3-642-01973-9_53
10.1016/j.cageo.2012.03.011
10.1029/2011WR010462
10.1029/94JC00572
10.1007/s11222-006-8769-1
10.2307/3318737
10.1002/2015WR017912
10.1029/2008WR006908
10.1007/s10596-012-9275-5
10.3133/ofr200092
10.1016/j.advwatres.2013.10.014
10.1016/j.envsoft.2015.08.013
10.1016/j.advwatres.2011.09.011
10.1016/j.advwatres.2005.09.007
10.1093/biomet/57.1.97
10.2118/141929-MS
10.1029/2003WR002557
ContentType Journal Article
Copyright 2018. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2018. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
OTOTI
DOI 10.1002/2017WR020906
DatabaseName CrossRef
Aqualine
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts
Virology and AIDS Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Virology and AIDS Abstracts
Technology Research Database
Aqualine
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Meteorological & Geoastrophysical Abstracts - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

CrossRef
AGRICOLA
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Economics
EISSN 1944-7973
EndPage 1733
ExternalDocumentID 1433557
10_1002_2017WR020906
WRCR23143
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 41721001 ; 41771254
– fundername: NSF
  funderid: DMS‐1555072
– fundername: U.S. Department of Energy
GroupedDBID -~X
..I
.DC
05W
0R~
123
1OB
1OC
24P
31~
33P
3V.
50Y
5VS
6TJ
7WY
7XC
8-1
8CJ
8FE
8FG
8FH
8FL
8G5
8R4
8R5
8WZ
A00
A6W
AAESR
AAHBH
AAHHS
AAIHA
AAIKC
AAMNW
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAYJJ
AAYOK
AAZKR
ABCUV
ABJCF
ABJNI
ABPPZ
ABTAH
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFGKR
AFKRA
AFPWT
AFRAH
AFWVQ
AFZJQ
AIDBO
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALXUD
AMYDB
ASPBG
ATCPS
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BENPR
BEZIV
BFHJK
BGLVJ
BHPHI
BKSAR
BMXJE
BPHCQ
BRXPI
CCPQU
CS3
D0L
D1J
DCZOG
DDYGU
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
F5P
FEDTE
FRNLG
G-S
GNUQQ
GODZA
GROUPED_ABI_INFORM_COMPLETE
GUQSH
HCIFZ
HVGLF
HZ~
K60
K6~
L6V
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M0C
M2O
M7R
M7S
MEWTI
MSFUL
MSSTM
MVM
MW2
MXFUL
MXSTM
MY~
O9-
OHT
OK1
P-X
P2P
P2W
PALCI
PATMY
PCBAR
PQBIZ
PQBZA
PQQKQ
PROAC
PTHSS
PYCSY
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TAE
TN5
TWZ
UQL
VJK
VOH
WBKPD
WXSBR
WYJ
XOL
XSW
YHZ
YV5
ZCG
ZY4
ZZTAW
~02
~KM
~OA
~~A
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
GROUPED_DOAJ
PHGZM
PHGZT
PQGLB
WIN
7QH
7QL
7T7
7TG
7U9
7UA
8FD
C1K
F1W
FR3
H94
H96
KL.
KR7
L.G
M7N
P64
7S9
L.6
AAJUZ
AAPBV
ABCVL
ABHUG
ADAWD
ADDAD
AEUQT
AFVGU
AGJLS
OTOTI
ID FETCH-LOGICAL-a4283-eaa1ffb6a62f8f0b6c43f3e2913383f7885fe0fd0bef8b345b50e9b93c74e8d63
IEDL.DBID WIN
ISICitedReferencesCount 83
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000430364900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0043-1397
IngestDate Mon Sep 11 05:25:23 EDT 2023
Fri Sep 05 17:27:56 EDT 2025
Wed Aug 13 09:46:48 EDT 2025
Sat Nov 29 01:36:40 EST 2025
Tue Nov 18 22:19:37 EST 2025
Wed Jan 22 17:01:05 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#am
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a4283-eaa1ffb6a62f8f0b6c43f3e2913383f7885fe0fd0bef8b345b50e9b93c74e8d63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
USDOE
ORCID 0000-0002-0513-5233
0000-0002-4094-1310
0000-0001-6755-3783
0000-0001-6547-8513
0000-0002-0976-1987
0000000205135233
0000000209761987
0000000167553783
0000000165478513
0000000240941310
OpenAccessLink https://agupubs.onlinelibrary.wiley.com/doi/pdfdirect/10.1002/2017WR020906
PQID 2026351392
PQPubID 105507
PageCount 18
ParticipantIDs osti_scitechconnect_1433557
proquest_miscellaneous_2718365970
proquest_journals_2026351392
crossref_primary_10_1002_2017WR020906
crossref_citationtrail_10_1002_2017WR020906
wiley_primary_10_1002_2017WR020906_WRCR23143
PublicationCentury 2000
PublicationDate March 2018
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
– name: United States
PublicationTitle Water resources research
PublicationYear 2018
Publisher John Wiley & Sons, Inc
American Geophysical Union (AGU)
Publisher_xml – name: John Wiley & Sons, Inc
– name: American Geophysical Union (AGU)
References 2009; 45
2010; 229
2010; 19
2016; 75
2016; 144
2011; 56
2011; 15
2012; 16
2016a; 4
2014; 63
2005; 28
2009b; 10
2009; 14
1960; 82
2013; 17
2013; 55
2000
1999; 18
2016b; 321
2006; 29
2009a; 23
2003; 40
2014; 50
1953; 21
2004; 40
2013; 49
2011
2015; 51
2002; 130
2006; 16
2009
2005; 41
2007
2016; 52
2011; 34
2012; 37
2003; 71
2001; 129
1996; 124
2007; 12
2007; 59
1970; 57
1999
2017; 53
2003; 108
2010; 46
2001; 7
2004; 56
2004; 194
1994; 99
1985; 30
2008; 44
2012; 48
2013; 491
2012; 44
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_62_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Evensen G. (e_1_2_6_18_1) 2007
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – year: 2011
– volume: 18
  start-page: 2507
  issue: 1718
  year: 1999
  end-page: 2515
  article-title: Some adaptive Monte Carlo methods for Bayesian inference
  publication-title: Statistics in Medicine
– year: 2009
– volume: 53
  start-page: 1948
  year: 2017
  end-page: 1962
  article-title: Efficient evaluation of small failure probability in high‐dimensional groundwater contaminant transport modeling via a two‐stage Monte Carlo method
  publication-title: Water Resources Research
– volume: 49
  start-page: 2664
  year: 2013
  end-page: 2682
  article-title: Efficient posterior exploration of a high‐dimensional groundwater model from two‐stage Markov chain Monte Carlo simulation and polynomial chaos expansion
  publication-title: Water Resources Research
– volume: 30
  start-page: 273
  issue: 2
  year: 1985
  end-page: 297
  article-title: The probability‐distributed principle and runoff production at point and basin scales
  publication-title: Hydrological Sciences Journal
– volume: 40
  start-page: 363
  year: 2003
  end-page: 380
  article-title: Assimilation of temperature into an isopycnal ocean general circulation model using a parallel ensemble Kalman filter
  publication-title: Journal of Marine Systems
– volume: 16
  start-page: 239
  issue: 3
  year: 2006
  end-page: 249
  article-title: A Markov Chain Monte Carlo version of the genetic algorithm Differential Evolution: Easy Bayesian computing for real parameter spaces
  publication-title: Statistics and Computing
– volume: 57
  start-page: 97
  issue: 1
  year: 1970
  end-page: 109
  article-title: Monte Carlo sampling methods using Markov chains and their applications
  publication-title: Biometrika
– volume: 124
  start-page: 2898
  issue: 12
  year: 1996
  end-page: 2913
  article-title: Data assimilation and inverse methods in terms of a probabilistic formulation
  publication-title: Monthly Weather Review
– volume: 45
  year: 2009
  article-title: Sequential updating of multimodal hydrogeologic parameter fields using localization and clustering techniques
  publication-title: Water Resources Research
– volume: 55
  start-page: 3
  year: 2013
  end-page: 15
  article-title: Ensemble smoother with multiple data assimilation
  publication-title: Computers & Geosciences
– volume: 37
  start-page: 1
  year: 2012
  end-page: 9
  article-title: A sparse grid based Bayesian method for contaminant source identification
  publication-title: Advances in Water Resources
– volume: 19
  start-page: 451
  year: 2010
  end-page: 559
  article-title: Inverse problems: A Bayesian perspective
  publication-title: Acta Numerica
– volume: 56
  start-page: 415
  issue: 5
  year: 2004
  end-page: 428
  article-title: A local ensemble Kalman filter for atmospheric data assimilation
  publication-title: Tellus, Series A
– volume: 63
  start-page: 22
  year: 2014
  end-page: 37
  article-title: Inverse methods in hydrogeology: Evolution and recent trends
  publication-title: Advances in Water Resources
– volume: 75
  start-page: 273
  year: 2016
  end-page: 316
  article-title: Markov chain Monte Carlo simulation using the DREAM software package: Theory, concepts, and MATLAB implementation
  publication-title: Environmental Modelling & Software
– volume: 12
  start-page: 438
  issue: 4
  year: 2007
  end-page: 446
  article-title: An iterative ensemble Kalman filter for multiphase fluid flow data assimilation
  publication-title: SPE Journal
– volume: 14
  start-page: 393
  issue: 3
  year: 2009
  end-page: 412
  article-title: The ensemble Kalman filter in reservoir engineering‐a review
  publication-title: SPE Journal
– volume: 15
  start-page: 307
  issue: 2
  year: 2011
  end-page: 323
  article-title: Multimodal ensemble Kalman filtering using Gaussian mixture models
  publication-title: Computational Geosciences
– volume: 130
  start-page: 103
  issue: 1
  year: 2002
  end-page: 114
  article-title: Hydrologic data assimilation with the ensemble Kalman filter
  publication-title: Monthly Weather Review
– volume: 48
  year: 2012
  article-title: Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography
  publication-title: Water Resources Research
– volume: 59
  start-page: 749
  issue: 5
  year: 2007
  end-page: 757
  article-title: Cluster ensemble Kalman filter
  publication-title: Tellus, Series A
– volume: 7
  start-page: 223
  issue: 2
  year: 2001
  end-page: 242
  article-title: An adaptive Metropolis algorithm
  publication-title: Bernoulli
– volume: 23
  start-page: 1011
  issue: 7
  year: 2009a
  end-page: 1026
  article-title: Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?
  publication-title: Stochastic Environmental Research and Risk Assessment
– volume: 34
  start-page: 844
  issue: 7
  year: 2011
  end-page: 864
  article-title: An approach to handling non‐Gaussianity of parameters and state variables in ensemble Kalman filtering
  publication-title: Advances in Water Resources
– volume: 29
  start-page: 1107
  issue: 8
  year: 2006
  end-page: 1122
  article-title: Data assimilation for transient flow in geologic formations via ensemble Kalman filter
  publication-title: Advances in Water Resources
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  end-page: 1092
  article-title: Equation of state calculations by fast computing machines
  publication-title: Journal of Chemical Physics
– volume: 51
  start-page: 576
  year: 2015
  end-page: 598
  article-title: Efficient Bayesian experimental design for contaminant source identification
  publication-title: Water Resources Research
– volume: 50
  start-page: 4197
  year: 2014
  end-page: 4219
  article-title: A multimodel data assimilation framework via the ensemble Kalman filter
  publication-title: Water Resources Research
– volume: 108
  issue: D24
  year: 2003
  article-title: Toward a nonlinear ensemble filter for high‐dimensional systems
  publication-title: Journal of Geophysical Research
– volume: 17
  start-page: 1517
  issue: 4
  year: 2013
  end-page: 1531
  article-title: Ensemble Kalman filter versus ensemble smoother for assessing hydraulic conductivity via tracer test data assimilation
  publication-title: Hydrology and Earth System Sciences
– volume: 28
  start-page: 135
  issue: 2
  year: 2005
  end-page: 147
  article-title: Dual state‐parameter estimation of hydrological models using ensemble Kalman filter
  publication-title: Advances in Water Resources
– volume: 49
  start-page: 6871
  year: 2013
  end-page: 6892
  article-title: An adaptive sparse‐grid high‐order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling
  publication-title: Water Resources Research
– volume: 229
  start-page: 8011
  issue: 20
  year: 2010
  end-page: 8030
  article-title: History matching of facies distribution with the EnKF and level set parameterization
  publication-title: Journal of Computational Physics
– volume: 99
  start-page: 10143
  issue: C5
  year: 1994
  end-page: 10162
  article-title: Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics
  publication-title: Journal of Geophysical Research
– volume: 71
  start-page: 223
  issue: 2
  year: 2003
  end-page: 241
  article-title: Sequential data assimilation techniques in oceanography
  publication-title: International Statistical Review
– year: 2007
– volume: 129
  start-page: 123
  issue: 1
  year: 2001
  end-page: 137
  article-title: A sequential ensemble Kalman filter for atmospheric data assimilation
  publication-title: Monthly Weather Review
– volume: 56
  start-page: 1990
  issue: 8
  year: 2011
  end-page: 1995
  article-title: An iterative ensemble Kalman filter
  publication-title: IEEE Transactions on Automatic Control
– year: 2000
– volume: 44
  start-page: 1
  issue: 1
  year: 2012
  end-page: 26
  article-title: Ensemble randomized maximum likelihood method as an iterative ensemble smoother
  publication-title: Mathematical Geosciences
– volume: 144
  start-page: 4489
  issue: 12
  year: 2016
  end-page: 4532
  article-title: Review of the ensemble Kalman filter for atmospheric data assimilation
  publication-title: Monthly Weather Review
– volume: 4
  start-page: 9
  issue: 2
  year: 2016a
  article-title: Gaussian mixture model‐based ensemble Kalman filtering for state and parameter estimation for a PMMA process
  publication-title: Processes
– volume: 51
  start-page: 9290
  year: 2015
  end-page: 9311
  article-title: A Bayesian approach to improved calibration and prediction of groundwater models with structural error
  publication-title: Water Resources Research
– volume: 52
  start-page: 5971
  year: 2016
  end-page: 5984
  article-title: An adaptive Gaussian process‐based method for efficient Bayesian experimental design in groundwater contaminant source identification problems
  publication-title: Water Resources Research
– volume: 44
  year: 2008
  article-title: Conceptual model uncertainty in groundwater modeling: Combining generalized likelihood uncertainty estimation and Bayesian model averaging
  publication-title: Water Resources Research
– volume: 40
  year: 2004
  article-title: Maximum likelihood Bayesian averaging of spatial variability models in unsaturated fractured tuff
  publication-title: Water Resources Research
– volume: 16
  start-page: 339
  issue: 4
  year: 2006
  end-page: 354
  article-title: DRAM: Efficient adaptive MCMC
  publication-title: Statistics and Computing
– volume: 14
  start-page: 374
  issue: 2
  year: 2009
  end-page: 388
  article-title: Estimating channelized‐reservoir permeabilities with the ensemble Kalman filter: The importance of ensemble design
  publication-title: SPE Journal
– volume: 16
  start-page: 639
  issue: 3
  year: 2012
  end-page: 659
  article-title: History matching time‐lapse seismic data using the ensemble Kalman filter with multiple data assimilations
  publication-title: Computational Geosciences
– volume: 194
  start-page: 773
  issue: 2
  year: 2004
  end-page: 794
  article-title: An efficient, high‐order perturbation approach for flow in random porous media via Karhunen‐Loeve and polynomial expansions
  publication-title: Journal of Computational Physics
– volume: 491
  start-page: 40
  year: 2013
  end-page: 55
  article-title: Clustered iterative stochastic ensemble method for multi‐modal calibration of subsurface flow models
  publication-title: Journal of Hydrology
– volume: 321
  start-page: 259
  year: 2016b
  end-page: 278
  article-title: Inverse regression‐based uncertainty quantification algorithms for high‐dimensional models: Theory and practice
  publication-title: Journal of Computational Physics
– volume: 46
  year: 2010
  article-title: Ensemble smoother assimilation of hydraulic head and return flow data to estimate hydraulic conductivity distribution
  publication-title: Water Resources Research
– volume: 44
  year: 2008
  article-title: Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation
  publication-title: Water Resources Research
– volume: 82
  start-page: 35
  issue: 1
  year: 1960
  end-page: 45
  article-title: A new approach to linear filtering and prediction problems
  publication-title: Journal of Basic Engineering
– volume: 41
  year: 2005
  article-title: An efficient two‐stage Markov chain Monte Carlo method for dynamic data integration
  publication-title: Water Resources Research
– volume: 10
  start-page: 273
  issue: 3
  year: 2009b
  end-page: 290
  article-title: Accelerating Markov chain Monte Carlo simulation by differential evolution with self‐adaptive randomized subspace sampling
  publication-title: International Journal of Nonlinear Sciences and Numerical Simulation
– year: 1999
– ident: e_1_2_6_61_1
  doi: 10.1016/j.advwatres.2011.04.014
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1751-5823.2003.tb00194.x
– ident: e_1_2_6_52_1
  doi: 10.1002/2013WR014525
– ident: e_1_2_6_50_1
  doi: 10.1007/s00477-008-0274-y
– ident: e_1_2_6_27_1
  doi: 10.1115/1.3662552
– ident: e_1_2_6_42_1
  doi: 10.1111/j.1600-0870.2007.00246.x
– volume-title: Data assimilation: The ensemble Kalman filter
  year: 2007
  ident: e_1_2_6_18_1
– ident: e_1_2_6_43_1
  doi: 10.1017/S0962492910000061
– ident: e_1_2_6_44_1
  doi: 10.1029/2008WR007443
– ident: e_1_2_6_57_1
  doi: 10.1002/2016WR018598
– ident: e_1_2_6_49_1
  doi: 10.1029/2007WR006720
– ident: e_1_2_6_19_1
  doi: 10.2118/108438-PA
– ident: e_1_2_6_29_1
  doi: 10.1002/wrcr.20226
– ident: e_1_2_6_58_1
  doi: 10.1002/2016WR019518
– ident: e_1_2_6_3_1
  doi: 10.1029/2010WR009147
– ident: e_1_2_6_24_1
  doi: 10.1175/MWR-D-15-0440.1
– ident: e_1_2_6_4_1
  doi: 10.1029/2002JD002900
– ident: e_1_2_6_32_1
  doi: 10.1109/TAC.2011.2154430
– ident: e_1_2_6_8_1
  doi: 10.1016/j.jcp.2010.07.005
– ident: e_1_2_6_31_1
  doi: 10.1016/j.jcp.2016.05.040
– ident: e_1_2_6_46_1
  doi: 10.1175/1520-0493(1996)124<2898:DAAIMI>2.0.CO;2
– ident: e_1_2_6_38_1
  doi: 10.1175/1520-0493(2002)130<0103:HDAWTE>2.0.CO;2
– ident: e_1_2_6_30_1
  doi: 10.3390/pr4020009
– ident: e_1_2_6_35_1
  doi: 10.1080/02626668509490989
– ident: e_1_2_6_11_1
  doi: 10.5194/hess-17-1517-2013
– ident: e_1_2_6_9_1
  doi: 10.1007/s11004-011-9376-z
– ident: e_1_2_6_56_1
  doi: 10.1002/wrcr.20467
– ident: e_1_2_6_45_1
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2507::AID-SIM272>3.0.CO;2-J
– ident: e_1_2_6_59_1
  doi: 10.1002/2014WR015740
– ident: e_1_2_6_6_1
– ident: e_1_2_6_20_1
  doi: 10.1007/s11222-006-9438-0
– ident: e_1_2_6_2_1
  doi: 10.2118/117274-PA
– ident: e_1_2_6_25_1
  doi: 10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2
– ident: e_1_2_6_12_1
  doi: 10.1007/s10596-010-9205-3
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1600-0870.2004.00076.x
– ident: e_1_2_6_48_1
  doi: 10.1515/IJNSNS.2009.10.3.273
– ident: e_1_2_6_26_1
  doi: 10.2118/108941-PA
– ident: e_1_2_6_28_1
  doi: 10.1016/S0924-7963(03)00025-3
– ident: e_1_2_6_34_1
  doi: 10.1063/1.1699114
– ident: e_1_2_6_14_1
  doi: 10.1016/j.jhydrol.2013.03.037
– ident: e_1_2_6_36_1
  doi: 10.1016/j.advwatres.2004.09.002
– ident: e_1_2_6_13_1
  doi: 10.1029/2004WR003764
– ident: e_1_2_6_55_1
  doi: 10.1016/j.jcp.2003.09.015
– ident: e_1_2_6_33_1
  doi: 10.1007/978-3-642-01973-9_53
– ident: e_1_2_6_16_1
  doi: 10.1016/j.cageo.2012.03.011
– ident: e_1_2_6_60_1
– ident: e_1_2_6_40_1
  doi: 10.1029/2011WR010462
– ident: e_1_2_6_17_1
  doi: 10.1029/94JC00572
– ident: e_1_2_6_7_1
  doi: 10.1007/s11222-006-8769-1
– ident: e_1_2_6_21_1
  doi: 10.2307/3318737
– ident: e_1_2_6_51_1
  doi: 10.1002/2015WR017912
– ident: e_1_2_6_39_1
  doi: 10.1029/2008WR006908
– ident: e_1_2_6_15_1
  doi: 10.1007/s10596-012-9275-5
– ident: e_1_2_6_22_1
  doi: 10.3133/ofr200092
– ident: e_1_2_6_62_1
  doi: 10.1016/j.advwatres.2013.10.014
– ident: e_1_2_6_47_1
  doi: 10.1016/j.envsoft.2015.08.013
– ident: e_1_2_6_54_1
  doi: 10.1016/j.advwatres.2011.09.011
– ident: e_1_2_6_10_1
  doi: 10.1016/j.advwatres.2005.09.007
– ident: e_1_2_6_23_1
  doi: 10.1093/biomet/57.1.97
– ident: e_1_2_6_41_1
  doi: 10.2118/141929-MS
– ident: e_1_2_6_53_1
  doi: 10.1029/2003WR002557
SSID ssj0014567
Score 2.5546846
Snippet Ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, for problems where the distribution of model parameters is...
Abstract Ensemble smoother (ES) has been widely used in inverse modeling of hydrologic systems. However, for problems where the distribution of model...
SourceID osti
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1716
SubjectTerms Algorithms
Clustering
Computation
Computer applications
Data processing
Distribution
ensemble smoother
Hydrologic models
Hydrologic systems
Hydrology
inverse modeling
Iterative methods
Mathematical models
Modelling
Motivation
multimodal distribution
Nonlinear systems
Nonlinearity
Parallel processing
Parameter uncertainty
Parameters
Problems
Uncertainty
water
Title An Iterative Local Updating Ensemble Smoother for Estimation and Uncertainty Assessment of Hydrologic Model Parameters With Multimodal Distributions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2F2017WR020906
https://www.proquest.com/docview/2026351392
https://www.proquest.com/docview/2718365970
https://www.osti.gov/biblio/1433557
Volume 54
WOSCitedRecordID wos000430364900017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Free Content
  customDbUrl:
  eissn: 1944-7973
  dateEnd: 20231209
  omitProxy: false
  ssIdentifier: ssj0014567
  issn: 0043-1397
  databaseCode: WIN
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB6KW2gvfZeqScMU2lMrImv1PJrEJgFjglvXuYldaTcJ2FKwlIL_R39wZ1ay6hxaKL0Jdha9Zna-2Z35BuCjCj0lYl-5cRApN0hM6MpY-S6j51QpinJt8vj3aTybJZeX6UW34ca1MC0_RL_hxpZh12s2cKnq49-koeS54uWc0E5qGbeHgbXL5fmsP0QgbBDvDpgZ6HR57zT9eH_yPY80qMiy7qHNfcxqnc7k2f8-7nN42sFNHLX68QIe6PIlPN5VI9d03XVBv96-gp-jEs8tyzItgThlL4eLW65_KK9wXNZ6rVYav64rW7WFBHdxTO_RFj-iLAtckArZFINmi6Oe8xMrg2fbYtOus8jt11Z4ITktjLk9cXnTXKOtBF5XBd3zlMl8uz5c9WtYTMbfTs7crmuDK5m8zdVSDo1RkYx8kxhPRXkgjNB-aqNhQyF3aLRnCk9pkygRhKQuOlWpyONAJ0Uk3sCgrEr9FjDRSejLYapCbj8ehcrXiiDSkEnNtPFyBz7v_lyWd5Tm3FljlbVkzH62_9Ud-NRL37ZUHn-QO2AlyAiCMI9uzglHeUMxkiBsFjtwuNONrDP3mqYzpw_pmO_Ah36YDJVPX2SpqzuSIRQgIorfPAe-WE3561Nky_nJnMB3IN79m_gBPKGBpM2TO4RBs7nT7-FR_qO5qTdH8PB0PllMj6yl_AL1ABE4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB6KU0gvTZ9UTZpsoT21IrJWz6NJbByqmuDGdW5iV9ptArYULCXg_9Ef3JmVrDiHBkpvAs3qObPzze7MNwCfpO9IHrrSDr1A2l6kfVuE0rUJPcdSYpRrksd_JuFkEl1exudtn1OqhWn4IboFN7IMM1-TgdOC9PE9ayi6rnA-RbgTE-X2joea5Pdg53Q6miXdRgLig3CzyUxgp819xyscb49_4JV6JVrXA8S5jVuN4xnt_fcjv4DnLeZkg0ZJXsITVbyC3U1JcoXHbSv0q_Vr-D0o2JmhWsZ5kCXk6tjshoogil9sWFRqKReK_ViWpnSLIeZlQ3yRpgKSiSJnM9Qjk2dQr9mgI_5kpWbjdb5qJltGPdgW7FxQbhgRfLL5dX3FTDnwsszxnqfE6Ns246rewGw0vDgZ223rBlsQg5uthOhrLQMRuDrSjgwyj2uu3NiExBrjbl8rR-eOVDqS3PNRZ1QsY56FnorygL-FXlEW6h2wSEW-K_qx9KkHeeBLV0nESX1iNlPaySz4svl1adbymlN7jUXaMDK76fZXt-BzJ33T8Hn8RW6ftCBFHEJkuhllHWU1BkocAVpowcFGOdLW5iscTsQ-qGSuBR-702ittAUjClXeogxCAR5gEOdY8NWoyqNPkc6nJ1NE4B5__2_iR7A7vviepMnZ5Ns-PEOhqEmcO4BevbpVH-BpdldfV6vD1mD-AM9hFOQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6hLgIuvBFhFzASnCDaNM7zWG1b7Yqqqgqle4vsxGZXapOqySL1f_CDmXHc0D2AhLhFyjhxkhnPN_HMNwDvZehJHvvSjYNIukGiQ1fE0ncJPadSYpRrkse_TeLpNLm8TGe2zynVwrT8EN0PN7IMs16TgatNoU9_s4ai64qXc4Q7KVFuHwVhGqFlHg3n48Wk20hAfBDvN5kJ7Njcd7zC6eH4W16pV6F13UKch7jVOJ7xo_-e8mN4aDEnG7RK8gTuqPIp3N-XJNd4bFuhX-2ewc9ByS4M1TKug2xCro4tNlQEUX5no7JWa7lS7Mu6MqVbDDEvG-GDtBWQTJQFW6AemTyDZscGHfEnqzQ73xXbdrFl1INtxWaCcsOI4JMtr5srZsqB11WB9xwSo69txlU_h8V49PXs3LWtG1xBDG6uEqKvtYxE5OtEezLKA6658lMTEmuMu0OtPF14UulE8iBEnVGpTHkeByopIv4CemVVqpfAEpWEvuinMqQe5FEofSURJ_WJ2UxpL3fg4_7TZbnlNaf2GqusZWT2s8O37sCHTnrT8nn8Qe6YtCBDHEJkujllHeUNBkocAVrswMleOTJr8zUOJ2IfVDLfgXfdabRW2oIRpapuUAahAI8wiPMc-GRU5a-zyJbzszki8IC_-jfxt3BvNhxnk4vp52N4gDJJmzd3Ar1me6New938R3Ndb99Ye_kFOgsUXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Iterative+Local+Updating+Ensemble+Smoother+for+Estimation+and+Uncertainty+Assessment+of+Hydrologic+Model+Parameters+With+Multimodal+Distributions&rft.jtitle=Water+resources+research&rft.au=Zhang%2C+Jiangjiang&rft.au=Lin%2C+Guang&rft.au=Li%2C+Weixuan&rft.au=Wu%2C+Laosheng&rft.date=2018-03-01&rft.issn=0043-1397&rft.volume=54&rft.issue=3+p.1716-1733&rft.spage=1716&rft.epage=1733&rft_id=info:doi/10.1002%2F2017WR020906&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0043-1397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0043-1397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0043-1397&client=summon