Primal/Dual Descent Methods for Dynamics

We examine the relationship between primal, or force‐based, and dual, or constraint‐based formulations of dynamics. Variational frameworks such as Projective Dynamics have proved popular for deformable simulation, however they have not been adopted for contact‐rich scenarios such as rigid body simul...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer graphics forum Ročník 39; číslo 8; s. 89 - 100
Hlavní autoři: Macklin, M., Erleben, K., Müller, M., Chentanez, N., Jeschke, S., Kim, T.Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.12.2020
Témata:
ISSN:0167-7055, 1467-8659
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We examine the relationship between primal, or force‐based, and dual, or constraint‐based formulations of dynamics. Variational frameworks such as Projective Dynamics have proved popular for deformable simulation, however they have not been adopted for contact‐rich scenarios such as rigid body simulation. We propose a new preconditioned frictional contact solver that is compatible with existing primal optimization methods, and competitive with complementarity‐based approaches. Our relaxed primal model generates improved contact force distributions when compared to dual methods, and has the advantage of being differentiable, making it well‐suited for trajectory optimization. We derive both primal and dual methods from a common variational point of view, and present a comprehensive numerical analysis of both methods with respect to conditioning. We demonstrate our method on scenarios including rigid body contact, deformable simulation, and robotic manipulation.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0167-7055
1467-8659
DOI:10.1111/cgf.14104