Statistics with JMP graphs, descriptive statistics, and probability

Peter Goos, Department of Statistics, University of Leuven, Faculty of Bio-Science Engineering and University of Antwerp, Faculty of Applied Economics, Belgium David Meintrup, Department of Mathematics and Statistics, University of Applied Sciences Ingolstadt, Faculty of Mechanical Engineering, Germ...

Full description

Saved in:
Bibliographic Details
Main Author: Peter Goos, David Meintrup
Format: eBook
Language:English
Published: New York Wiley 2015
John Wiley & Sons, Incorporated
Wiley-Blackwell
John Wiley & Sons, Ltd
Edition:1
Subjects:
ISBN:1119035708, 9781119035701, 1119035740, 9781119035749
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • 8.8.1 Tables with probability distributions and cumulative distribution functions -- 8.8.2 Graphical representations -- 8.9 The simulation of discrete random variables with JMP -- Chapter 9 Important continuous probability densities -- 9.1 The continuous uniform density -- 9.2 The exponential density -- 9.2.1 Definition and statistics -- 9.2.2 Some interesting properties -- 9.3 The gamma density -- 9.4 The Weibull density -- 9.5 The beta density -- 9.6 Other densities -- 9.7 Graphical representations and probability calculations in JMP -- 9.8 Simulating continuous random variables in JMP -- Chapter 10 The normal distribution -- 10.1 The normal density -- 10.2 Calculation of probabilities for normally distributed variables -- 10.2.1 The standard normal distribution -- 10.2.2 General normally distributed variables -- 10.2.3 JMP -- 10.2.4 Examples -- 10.3 Lognormal probability density -- Chapter 11 Multivariate random variables -- 11.1 Introductory notions -- 11.2 Joint (discrete) probability distributions -- 11.3 Marginal or unconditional (discrete) probability distribution -- 11.4 Conditional (discrete) probability distribution -- 11.5 Examples of discrete bivariate random variables -- 11.6 The multinomial probability distribution -- 11.7 Joint (continuous) probability density -- 11.8 Marginal or unconditional (continuous) probability density -- 11.9 Conditional (continuous) probability density -- Chapter 12 Functions of several random variables -- 12.1 Functions of several random variables -- 12.2 Expected value of functions of several random variables -- 12.3 Conditional expected values -- 12.4 Probability distributions of functions of random variables -- 12.4.1 Discrete random variables -- 12.4.2 Continuous random variables -- 12.5 Functions of independent Poisson, normally, and lognormally distributed random variables
  • Chapter 13 Covariance, correlation, and variance of linear functions -- 13.1 Covariance and correlation -- 13.2 Variance of linear functions of two random variables -- 13.3 Variance of linear functions of several random variables -- 13.4 Variance of linear functions of independent random variables -- 13.4.1 Two independent random variables -- 13.4.2 Several pairwise independent random variables -- 13.5 Linear functions of normally distributed random variables -- 13.6 Bivariate and multivariate normal density -- 13.6.1 Bivariate normal probability density -- 13.6.2 Graphical representations -- 13.6.3 Independence, marginal, and conditional densities -- 13.6.4 General multivariate normal density -- Chapter 14 The central limit theorem -- 14.1 Probability density of the sample mean from a normally distributed population -- 14.2 Probability distribution and density of the sample mean from a non-normally distributed population -- 14.2.1 Central limit theorem -- 14.2.2 Illustration of the central limit theorem -- 14.3 Applications -- 14.4 Normal approximation of the binomial distribution -- Appendix A The Greek alphabet -- Appendix B Binomial distribution -- Appendix C Poisson distribution -- Appendix D Exponential distribution -- Appendix E Standard normal distribution -- Index -- EULA
  • Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgments -- Chapter 1 What is statistics? -- 1.1 Why statistics? -- 1.2 Definition of statistics -- 1.3 Examples -- 1.4 The subject of statistics -- 1.5 Probability -- 1.6 Software -- Chapter 2 Data and its representation -- 2.1 Types of data and measurement scales -- 2.1.1 Categorical or qualitative variables -- 2.1.2 Quantitative variables -- 2.1.3 Hierarchy of scales -- 2.1.4 Measurement scales in JMP -- 2.2 The data matrix -- 2.3 Representing univariate qualitative variables -- 2.4 Representing univariate quantitative variables -- 2.4.1 Stem and leaf diagram -- 2.4.2 Needle charts for univariate discrete quantitative variables -- 2.4.3 Histograms and frequency polygons for continuous variables -- 2.4.4 Empirical cumulative distribution functions -- 2.5 Representing bivariate data -- 2.5.1 Qualitative variables -- 2.5.2 Quantitative variables -- 2.6 Representing time series -- 2.7 The use of maps -- 2.8 More graphical capabilities -- Chapter 3 Descriptive statistics of sample data -- 3.1 Measures of central tendency or location -- 3.1.1 Median -- 3.1.2 Mode -- 3.1.3 Arithmetic mean -- 3.1.4 Geometric mean -- 3.2 Measures of relative location -- 3.2.1 Order statistics, quantiles, percentiles, deciles -- 3.2.2 Quartiles -- 3.3 Measures of variation or spread -- 3.3.1 Range -- 3.3.2 Interquartile range -- 3.3.3 Mean absolute deviation -- 3.3.4 Variance -- 3.3.5 Standard deviation -- 3.3.6 Coefficient of variation -- 3.3.7 Dispersion indices for nominal and ordinal variables -- 3.4 Measures of skewness -- 3.5 Kurtosis -- 3.6 Transformation and standardization of data -- 3.7 Box plots -- 3.8 Variability charts -- 3.9 Bivariate data -- 3.9.1 Covariance -- 3.9.2 Correlation -- 3.9.3 Rank correlation -- 3.10 Complementarity of statistics and graphics
  • 3.11 Descriptive statistics using JMP -- Chapter 4 Probability -- 4.1 Random experiments -- 4.2 Definition of probability -- 4.3 Calculation rules -- 4.4 Conditional probability -- 4.5 Independent and dependent events -- 4.6 Total probability and Bayes' rule -- 4.7 Simulating random experiments -- Chapter 5 Additional aspects of probability theory -- 5.1 Combinatorics -- 5.1.1 Addition rule -- 5.1.2 Multiplication principle -- 5.1.3 Permutations -- 5.1.4 Combinations -- 5.2 Number of possible orders -- 5.2.1 Two different objects -- 5.2.2 More than two different objects -- 5.3 Applications of probability theory -- 5.3.1 Sequences of independent random experiments -- 5.3.2 Euromillions -- Chapter 6 Univariate random variables -- 6.1 Random variables and distribution functions -- 6.2 Discrete random variables and probability distributions -- 6.3 Continuous random variables and probability densities -- 6.4 Functions of random variables -- 6.4.1 Functions of one discrete random variable -- 6.4.2 Functions of one continuous random variable -- 6.5 Families of probability distributions and probability densities -- 6.6 Simulation of random variables -- Chapter 7 Statistics of populations and processes -- 7.1 Expected value of a random variable -- 7.2 Expected value of a function of a random variable -- 7.3 Special cases -- 7.4 Variance and standard deviation of a random variable -- 7.5 Other statistics -- 7.6 Moment generating functions -- Chapter 8 Important discrete probability distributions -- 8.1 The uniform distribution -- 8.2 The Bernoulli distribution -- 8.3 The binomial distribution -- 8.3.1 Probability distribution -- 8.3.2 Expected value and variance -- 8.4 The hypergeometric distribution -- 8.5 The Poisson distribution -- 8.6 The geometric distribution -- 8.7 The negative binomial distribution -- 8.8 Probability distributions in JMP