Composition operators on Hardy-Orlicz spaces

The authors investigate composition operators on Hardy-Orlicz spaces when the Orlicz function \Psi grows rapidly: compactness, weak compactness, to be p-summing, order bounded, \ldots, and show how these notions behave according to the growth of \Psi. They introduce an adapted version of Carleson me...

Celý popis

Uložené v:
Podrobná bibliografia
Hlavní autori: Lefèvre, Pascal, Li, Daniel, Queffélec, Hervé, Rodríguez-Piazza, Luis
Médium: E-kniha Kniha
Jazyk:English
Vydavateľské údaje: Providence, Rhode Island American Mathematical Society 2010
Vydanie:1
Edícia:Memoirs of the American Mathematical Society
Predmet:
ISBN:082184637X, 9780821846377
ISSN:0065-9266, 1947-6221
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:The authors investigate composition operators on Hardy-Orlicz spaces when the Orlicz function \Psi grows rapidly: compactness, weak compactness, to be p-summing, order bounded, \ldots, and show how these notions behave according to the growth of \Psi. They introduce an adapted version of Carleson measure. They construct various examples showing that their results are essentially sharp. In the last part, they study the case of Bergman-Orlicz spaces.
Bibliografia:Other authors: Daniel Li, Hervé Queffélec, Luis Rodríquez-Piazza
Includes bibliographical references (p. 73-74)
Volume 207, number 974 (fourth of 5 numbers).
ISBN:082184637X
9780821846377
ISSN:0065-9266
1947-6221
DOI:10.1090/S0065-9266-10-00580-6