Subsurface Topographic Modeling Using Geospatial and Data Driven Algorithm

Infrastructures play an important role in urbanization and economic activities but are vulnerable. Due to unavailability of accurate subsurface infrastructure maps, ensuring the sustainability and resilience often are poorly recognized. In the current paper a 3D topographical predictive model using...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:ISPRS international journal of geo-information Ročník 10; číslo 5; s. 341
Hlavní autori: Abbaszadeh Shahri, Abbas, Kheiri, Ali, Hamzeh, Aliakbar
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.05.2021
Predmet:
ISSN:2220-9964, 2220-9964
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Infrastructures play an important role in urbanization and economic activities but are vulnerable. Due to unavailability of accurate subsurface infrastructure maps, ensuring the sustainability and resilience often are poorly recognized. In the current paper a 3D topographical predictive model using distributed geospatial data incorporated with evolutionary gene expression programming (GEP) was developed and applied on a concrete-face rockfill dam (CFRD) in Guilan province- northern to generate spatial variation of the subsurface bedrock topography. The compared proficiency of the GEP model with geostatistical ordinary kriging (OK) using different analytical indexes showed 82.53% accuracy performance and 9.61% improvement in precisely labeled data. The achievements imply that the retrieved GEP model efficiently can provide accurate enough prediction and consequently meliorate the visualization insights linking the natural and engineering concerns. Accordingly, the generated subsurface bedrock model dedicates great information on stability of structures and hydrogeological properties, thus adopting appropriate foundations.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2220-9964
2220-9964
DOI:10.3390/ijgi10050341