Parameter estimation in distributed hydrological catchment modelling using automatic calibration with multiple objectives
A consistent framework for parameter estimation in distributed hydrological catchment modelling using automatic calibration is formulated. The framework focuses on the different steps in the estimation process from model parameterisation and selection of calibration parameters, formulation of calibr...
Uloženo v:
| Vydáno v: | Advances in water resources Ročník 26; číslo 2; s. 205 - 216 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article Konferenční příspěvek |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Elsevier Ltd
01.02.2003
Elsevier Science |
| Témata: | |
| ISSN: | 0309-1708, 1872-9657 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | A consistent framework for parameter estimation in distributed hydrological catchment modelling using automatic calibration is formulated. The framework focuses on the different steps in the estimation process from model parameterisation and selection of calibration parameters, formulation of calibration criteria, and choice of optimisation algorithm. The calibration problem is formulated in a general multi-objective context in which different objective functions that measure individual process descriptions can be optimised simultaneously. Within this framework it is possible to tailor the model calibration to the specific objectives of the model application being considered. A test example is presented that illustrates the use of the calibration framework for parameter estimation in the MIKE SHE integrated and distributed hydrological modelling system. A significant trade-off between the performance of the groundwater level simulations and the catchment runoff is observed in this case, defining a Pareto front with a very sharp structure. The Pareto optimum solution corresponding to a proposed balanced aggregated objective function is seen to provide a proper balance between the two objectives. Compared to a manual expert calibration, the balanced Pareto optimum solution provides generally better simulation of the runoff, whereas virtually similar performance is obtained for the groundwater level simulations. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0309-1708 1872-9657 |
| DOI: | 10.1016/S0309-1708(02)00092-1 |