Aerial Bombing Crater Identification: Exploitation of Precise Digital Terrain Models

Places of past conflicts and persistent objects that reflect such events often attract the attention of archaeological prospection which facilitates the construction of conflict narratives. Field prospection as a precise method for localization of aerial bombing craters (as an example of such persis...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:ISPRS international journal of geo-information Ročník 9; číslo 12; s. 713
Hlavní autoři: Dolejš, Martin, Pacina, Jan, Veselý, Martin, Brétt, Dominik
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.12.2020
Témata:
ISSN:2220-9964, 2220-9964
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Places of past conflicts and persistent objects that reflect such events often attract the attention of archaeological prospection which facilitates the construction of conflict narratives. Field prospection as a precise method for localization of aerial bombing craters (as an example of such persistent features) is a highly time- and resource-consuming task. Therefore, methods for automatic identification of such features are evolving. We present a comparison of three methods for possible automatic crater detection based on (a) extraterrestrial crater detection algorithms, (b) geomorphology-based edge extraction, and (c) image pattern recognition via a state-of-the-art convolutional neural network (CNN). All methods were preliminarily tested on a case study of eight Second World War (WWII) aerial bombing crater sites in NW Czechia via Airborne Laser Scanned LiDAR-derived digital terrain models with different spatial resolutions. We found that extraterrestrial crater detection algorithms and geomorphology-based edge extraction methods yield worse results given the standard indices of precision and recall. By comparison, the CNN method utilized for a particular task achieved satisfying results, predominantly with 0.5 m/px resolution (which is often available at the country level) of the input raster. Nevertheless, overall performance with this resolution varies significantly among the sites. Therefore, the quality and readability of the input data are crucial factors for the successful acquisition of precise ordinance location identification.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2220-9964
2220-9964
DOI:10.3390/ijgi9120713