Effect of aging on stabilization of Cd and Ni by biochars and enzyme activities in a historically contaminated alkaline agricultural soil simulated with wet–dry and freeze–thaw cycling

Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet–dry (WD) and freeze–thaw (...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Environmental pollution (1987) Ročník 268; číslo Pt A; s. 115846
Hlavní autori: Yang, Kai, Wang, Xilong, Cheng, Hefa, Tao, Shu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England Elsevier Ltd 01.01.2021
Predmet:
ISSN:0269-7491, 1873-6424, 1873-6424
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet–dry (WD) and freeze–thaw (FT) cycling. A wheat straw (WS) biochar and a corn straw (CS) biochar were subjected to 30 WD or FT cycles, and Cd- and Ni-contaminated alkaline soils amended with the two fresh biochars (at 5% w/w) were subjected to 30-day constant moisture incubation and 30 WD or FT cycles. WD and FT aging caused slight reduction in the pH of the biochars, significant increases in their O contents and surface areas, and formation of new carbonate minerals. WS biochar was more effective than CS biochar at reducing the phytoavailable Cd in the soil, with reduction of 12.1%, 14.6%, and 12.9% under constant moisture incubation, WD aging, and FT aging, respectively. Reduction in phytoavailability of Ni by the addition of biochars was observed only under WD aging, by 17.0% and 18.5% in the presence of WS and CS biochars, respectively. Biochar amendment also reduced the distribution of Cd in the acid soluble and reducible fractions in all aging regimes. The addition of biochars decreased catalase activity in almost all aging regimes and invertase activity under FT aging, but increased urease activity under FT aging. Comparison of the enzyme activities in the soils amended with biochars under constant moisture and accelerated aging conditions indicates WD aging significantly decreased the activities of catalase, invertase, and urease in all treatments, while FT aging significantly increased urease activity in all treatments. These findings suggest that biochars can stabilize Cd in alkaline soils under changing environmental conditions, although the activities of some soil enzymes could be negatively impacted. [Display omitted] •Aging of biochars was simulated with wet–dry (WD) and freeze–thaw (FT) cycling.•Biochar reduced phytoavailable Cd and Ni in alkaline soil under WD and/or FT aging.•Biochar promoted the distribution of Cd into the residual fraction of alkaline soil.•Effect of biochar on enzyme activities varied with enzyme type and aging conditions.•Crop straw biochars hold promise for long-term immobilization of Cd in alkaline soils. Crop straw biochars stabilized Cd in a historically contaminated alkaline agricultural soil under accelerated aging, and thus hold promise for long-term immobilization of Cd under field conditions.
AbstractList Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet-dry (WD) and freeze-thaw (FT) cycling. A wheat straw (WS) biochar and a corn straw (CS) biochar were subjected to 30 WD or FT cycles, and Cd- and Ni-contaminated alkaline soils amended with the two fresh biochars (at 5% w/w) were subjected to 30-day constant moisture incubation and 30 WD or FT cycles. WD and FT aging caused slight reduction in the pH of the biochars, significant increases in their O contents and surface areas, and formation of new carbonate minerals. WS biochar was more effective than CS biochar at reducing the phytoavailable Cd in the soil, with reduction of 12.1%, 14.6%, and 12.9% under constant moisture incubation, WD aging, and FT aging, respectively. Reduction in phytoavailability of Ni by the addition of biochars was observed only under WD aging, by 17.0% and 18.5% in the presence of WS and CS biochars, respectively. Biochar amendment also reduced the distribution of Cd in the acid soluble and reducible fractions in all aging regimes. The addition of biochars decreased catalase activity in almost all aging regimes and invertase activity under FT aging, but increased urease activity under FT aging. Comparison of the enzyme activities in the soils amended with biochars under constant moisture and accelerated aging conditions indicates WD aging significantly decreased the activities of catalase, invertase, and urease in all treatments, while FT aging significantly increased urease activity in all treatments. These findings suggest that biochars can stabilize Cd in alkaline soils under changing environmental conditions, although the activities of some soil enzymes could be negatively impacted.
Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet-dry (WD) and freeze-thaw (FT) cycling. A wheat straw (WS) biochar and a corn straw (CS) biochar were subjected to 30 WD or FT cycles, and Cd- and Ni-contaminated alkaline soils amended with the two fresh biochars (at 5% w/w) were subjected to 30-day constant moisture incubation and 30 WD or FT cycles. WD and FT aging caused slight reduction in the pH of the biochars, significant increases in their O contents and surface areas, and formation of new carbonate minerals. WS biochar was more effective than CS biochar at reducing the phytoavailable Cd in the soil, with reduction of 12.1%, 14.6%, and 12.9% under constant moisture incubation, WD aging, and FT aging, respectively. Reduction in phytoavailability of Ni by the addition of biochars was observed only under WD aging, by 17.0% and 18.5% in the presence of WS and CS biochars, respectively. Biochar amendment also reduced the distribution of Cd in the acid soluble and reducible fractions in all aging regimes. The addition of biochars decreased catalase activity in almost all aging regimes and invertase activity under FT aging, but increased urease activity under FT aging. Comparison of the enzyme activities in the soils amended with biochars under constant moisture and accelerated aging conditions indicates WD aging significantly decreased the activities of catalase, invertase, and urease in all treatments, while FT aging significantly increased urease activity in all treatments. These findings suggest that biochars can stabilize Cd in alkaline soils under changing environmental conditions, although the activities of some soil enzymes could be negatively impacted.Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet-dry (WD) and freeze-thaw (FT) cycling. A wheat straw (WS) biochar and a corn straw (CS) biochar were subjected to 30 WD or FT cycles, and Cd- and Ni-contaminated alkaline soils amended with the two fresh biochars (at 5% w/w) were subjected to 30-day constant moisture incubation and 30 WD or FT cycles. WD and FT aging caused slight reduction in the pH of the biochars, significant increases in their O contents and surface areas, and formation of new carbonate minerals. WS biochar was more effective than CS biochar at reducing the phytoavailable Cd in the soil, with reduction of 12.1%, 14.6%, and 12.9% under constant moisture incubation, WD aging, and FT aging, respectively. Reduction in phytoavailability of Ni by the addition of biochars was observed only under WD aging, by 17.0% and 18.5% in the presence of WS and CS biochars, respectively. Biochar amendment also reduced the distribution of Cd in the acid soluble and reducible fractions in all aging regimes. The addition of biochars decreased catalase activity in almost all aging regimes and invertase activity under FT aging, but increased urease activity under FT aging. Comparison of the enzyme activities in the soils amended with biochars under constant moisture and accelerated aging conditions indicates WD aging significantly decreased the activities of catalase, invertase, and urease in all treatments, while FT aging significantly increased urease activity in all treatments. These findings suggest that biochars can stabilize Cd in alkaline soils under changing environmental conditions, although the activities of some soil enzymes could be negatively impacted.
Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of biochar aging on stabilization of heavy metals (Cd and Ni) and soil enzyme activities simulated with laboratory wet–dry (WD) and freeze–thaw (FT) cycling. A wheat straw (WS) biochar and a corn straw (CS) biochar were subjected to 30 WD or FT cycles, and Cd- and Ni-contaminated alkaline soils amended with the two fresh biochars (at 5% w/w) were subjected to 30-day constant moisture incubation and 30 WD or FT cycles. WD and FT aging caused slight reduction in the pH of the biochars, significant increases in their O contents and surface areas, and formation of new carbonate minerals. WS biochar was more effective than CS biochar at reducing the phytoavailable Cd in the soil, with reduction of 12.1%, 14.6%, and 12.9% under constant moisture incubation, WD aging, and FT aging, respectively. Reduction in phytoavailability of Ni by the addition of biochars was observed only under WD aging, by 17.0% and 18.5% in the presence of WS and CS biochars, respectively. Biochar amendment also reduced the distribution of Cd in the acid soluble and reducible fractions in all aging regimes. The addition of biochars decreased catalase activity in almost all aging regimes and invertase activity under FT aging, but increased urease activity under FT aging. Comparison of the enzyme activities in the soils amended with biochars under constant moisture and accelerated aging conditions indicates WD aging significantly decreased the activities of catalase, invertase, and urease in all treatments, while FT aging significantly increased urease activity in all treatments. These findings suggest that biochars can stabilize Cd in alkaline soils under changing environmental conditions, although the activities of some soil enzymes could be negatively impacted. [Display omitted] •Aging of biochars was simulated with wet–dry (WD) and freeze–thaw (FT) cycling.•Biochar reduced phytoavailable Cd and Ni in alkaline soil under WD and/or FT aging.•Biochar promoted the distribution of Cd into the residual fraction of alkaline soil.•Effect of biochar on enzyme activities varied with enzyme type and aging conditions.•Crop straw biochars hold promise for long-term immobilization of Cd in alkaline soils. Crop straw biochars stabilized Cd in a historically contaminated alkaline agricultural soil under accelerated aging, and thus hold promise for long-term immobilization of Cd under field conditions.
ArticleNumber 115846
Author Wang, Xilong
Cheng, Hefa
Yang, Kai
Tao, Shu
Author_xml – sequence: 1
  givenname: Kai
  orcidid: 0000-0002-9712-6333
  surname: Yang
  fullname: Yang, Kai
– sequence: 2
  givenname: Xilong
  surname: Wang
  fullname: Wang, Xilong
– sequence: 3
  givenname: Hefa
  orcidid: 0000-0003-4911-6971
  surname: Cheng
  fullname: Cheng, Hefa
  email: hefac@umich.edu
– sequence: 4
  givenname: Shu
  surname: Tao
  fullname: Tao, Shu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33143976$$D View this record in MEDLINE/PubMed
BookMark eNqFks9uEzEQxleoiKaFN0DIRy4J67V3vcsBCUXlj1TBBc6W1ztOJnjtYHsTpae-A6_D0_AkuEl74UAvtjzz-76RPN9Fcea8g6J4ScsFLWnzZrMAt9t6u6jKKpdo3fLmSTGjrWDzhlf8rJiVVdPNBe_oeXER46YsS84Ye1acM0Y560QzK35fGQM6EW-IWqFbEe9ITKpHizcqYX7lznIgyg3kC5L-QHr0eq1CPJbA3RxGIEon3GFCiAQdUWSNMfmAWll7INq7pEZ0KkH2sT-URZclq9yfbJqCsiR6zAeOkz1Ce0xrsof05_bXEA7HQSYA3EAupLXaE33Q2WT1vHhqlI3w4v6-LL5_uPq2_DS__vrx8_L99Vxx2qZ5wxqAUrDGgFGm63kNXA9Gm6HnulVV17FadzUXJRhaM2o0KFZ3ZScE7TVX7LJ4ffLdBv9zgpjkiFGDtcqBn6Ks6pp2ZS1E_TjKa9G0rRAso6_u0akfYZDbgKMKB_mwnAy8PQE6-BgDGKkxHZeSgkIraSnvkiA38pQEeZcEeUpCFvN_xA_-j8jenWSQ_3OHEGTUCE7DgCHnRA4e_2_wFwQX1a8
CitedBy_id crossref_primary_10_1016_j_jenvman_2023_119775
crossref_primary_10_1016_j_coldregions_2023_103826
crossref_primary_10_1016_j_jes_2025_07_059
crossref_primary_10_1007_s11270_025_08288_1
crossref_primary_10_1038_s41598_024_72771_8
crossref_primary_10_3390_ma15113801
crossref_primary_10_1038_s41598_022_15494_y
crossref_primary_10_1007_s11356_023_25342_9
crossref_primary_10_1016_j_envpol_2025_126255
crossref_primary_10_1016_j_envpol_2023_121219
crossref_primary_10_1016_j_eti_2025_104256
crossref_primary_10_1016_j_jhazmat_2024_134249
crossref_primary_10_1016_j_stress_2025_100836
crossref_primary_10_1007_s10653_025_02376_1
crossref_primary_10_1016_j_jhazmat_2021_128072
crossref_primary_10_3390_land12081580
crossref_primary_10_1016_j_jhazmat_2024_135356
crossref_primary_10_1016_j_envpol_2023_121414
crossref_primary_10_1016_j_colsurfa_2025_136720
crossref_primary_10_1016_j_jhazmat_2024_134345
crossref_primary_10_1038_s41598_025_96688_y
crossref_primary_10_1186_s40538_023_00422_7
crossref_primary_10_1016_j_agwat_2024_109212
crossref_primary_10_1016_j_envpol_2022_119064
crossref_primary_10_1007_s11356_022_19867_8
crossref_primary_10_1111_sum_12804
crossref_primary_10_1007_s42768_022_00114_2
crossref_primary_10_1016_j_catena_2025_108765
crossref_primary_10_1016_j_ecoenv_2021_112173
crossref_primary_10_1016_j_jece_2022_108636
crossref_primary_10_1007_s13762_024_05646_0
crossref_primary_10_1016_j_jhazmat_2021_126666
crossref_primary_10_1016_j_jhazmat_2021_127876
crossref_primary_10_3390_su14010445
crossref_primary_10_1016_j_envpol_2025_125798
crossref_primary_10_1016_j_jhazmat_2021_125650
crossref_primary_10_1016_j_chemosphere_2021_133427
crossref_primary_10_1016_j_envpol_2023_121135
crossref_primary_10_1016_j_envpol_2022_120143
crossref_primary_10_1080_26395940_2022_2088622
crossref_primary_10_1016_j_scitotenv_2025_178693
crossref_primary_10_1016_j_envpol_2021_118243
crossref_primary_10_3390_agronomy15061276
crossref_primary_10_1016_j_chemosphere_2023_141029
crossref_primary_10_1016_j_ecoenv_2025_118124
crossref_primary_10_1016_j_scitotenv_2022_157734
crossref_primary_10_1016_j_chemosphere_2022_137453
crossref_primary_10_1016_j_scitotenv_2022_152922
Cites_doi 10.1016/j.soilbio.2015.11.006
10.1080/00103620009370514
10.1007/s11368-013-0806-z
10.1016/j.chemosphere.2017.01.130
10.1016/j.envint.2018.11.045
10.1016/j.chemosphere.2015.06.044
10.1016/j.envpol.2020.114687
10.1002/ldr.2262
10.1021/es103752u
10.1016/j.envpol.2016.04.028
10.1007/s42773-019-00030-5
10.1021/acs.est.9b04990
10.1021/es401458s
10.1016/j.envpol.2020.114773
10.1021/es202970x
10.1016/j.envpol.2019.113592
10.2136/sssaj2015.11.0414
10.1016/j.scitotenv.2019.134751
10.1039/b001496f
10.1007/s13593-016-0372-z
10.1007/s11356-017-8847-2
10.1016/j.envpol.2020.114553
10.1016/j.envpol.2019.113114
10.1016/j.chemosphere.2017.03.072
10.1016/j.biortech.2010.11.018
10.1021/acs.est.7b00647
10.1016/j.envpol.2020.114133
10.1007/s00374-013-0857-8
10.1016/j.envint.2019.02.022
10.1016/j.scitotenv.2017.08.228
10.15376/biores.14.2.4329-4343
10.1016/j.apsoil.2014.10.001
10.1016/j.envpol.2016.07.031
10.1007/s11356-018-3945-3
10.1021/es104401h
10.1016/j.envpol.2017.04.032
10.1016/S0038-0717(02)00076-7
10.1016/j.apsoil.2019.08.002
10.1007/s11356-017-8548-x
10.1016/j.envpol.2019.05.151
10.1016/j.envpol.2018.08.012
10.1016/j.envpol.2018.07.078
10.1007/s00374-011-0644-3
10.1016/j.scitotenv.2019.134223
10.1016/j.jes.2018.11.007
10.1016/j.envint.2016.04.042
10.1111/gcbb.12248
10.1016/j.envpol.2020.114449
10.1016/j.ecoleng.2016.05.007
10.1007/s11356-015-4233-0
10.1021/acs.est.8b00672
10.1016/j.geoderma.2019.06.006
10.1016/j.scitotenv.2017.11.132
10.1007/s11356-017-0652-4
10.1016/j.scitotenv.2018.03.161
10.1016/j.scitotenv.2017.11.038
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.envpol.2020.115846
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Anatomy & Physiology
Environmental Sciences
EISSN 1873-6424
ExternalDocumentID 33143976
10_1016_j_envpol_2020_115846
S0269749120365350
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
4.4
457
5GY
5VS
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SCU
SDF
SDG
SDP
SES
SPCBC
SSJ
SSZ
T5K
TWZ
WH7
XPP
ZMT
~G-
29G
53G
6TJ
9DU
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
OHT
R2-
SEN
SEW
VH1
WUQ
XOL
~HD
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
7S9
L.6
ID FETCH-LOGICAL-a418t-636ee0736fefaf9b45e4cdfcfdb4c8a29935c95470ef1531fcea35909771bc4a3
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000600553000033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0269-7491
1873-6424
IngestDate Thu Oct 02 10:35:59 EDT 2025
Sun Sep 28 10:26:48 EDT 2025
Thu Apr 03 06:55:02 EDT 2025
Sat Nov 29 07:24:46 EST 2025
Tue Nov 18 22:25:28 EST 2025
Fri Feb 23 02:45:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Heavy metal stabilization
Soil remediation
Cadmium
Enzyme activity
Accelerated aging
Biochar
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a418t-636ee0736fefaf9b45e4cdfcfdb4c8a29935c95470ef1531fcea35909771bc4a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9712-6333
0000-0003-4911-6971
PMID 33143976
PQID 2457688773
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2551905775
proquest_miscellaneous_2457688773
pubmed_primary_33143976
crossref_citationtrail_10_1016_j_envpol_2020_115846
crossref_primary_10_1016_j_envpol_2020_115846
elsevier_sciencedirect_doi_10_1016_j_envpol_2020_115846
PublicationCentury 2000
PublicationDate 2021-01-01
2021-01-00
2021-Jan-01
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Environmental pollution (1987)
PublicationTitleAlternate Environ Pollut
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Daou, Périssol, Luglia, Calvert, Criquet (bib8) 2016; 93
Liu, Li, Song, Guo (bib25) 2018; 633
Tang, Zhang, Zhang, Ren, Zhou, Zheng, Luo, Yang, Huang, Chen (bib52) 2020; 701
Zhao, O’Connor, Shen, Tsang, Rinklebe, Hou (bib60) 2020; 264
Liu, Zhang (bib63) 2012; 14
Miura, Jones, Hill, Jones (bib33) 2019; 144
He, Zhong, Liu, Dai, Brookes, Xu (bib16) 2019; 252
Houba, Temminghoff, Gaikhorst, van Vark (bib17) 2000; 31
Meng, Huang, Xu, Deng, Lin, Wang (bib29) 2020; 263
Jing, Chen, Chen, Liu, Wen, Hu, Yang, Guo, Xu, Yu (bib21) 2020; 257
O’Connor, Peng, Zhang, Tsang, Alessi, Shen, Bolan, Hou (bib35) 2018; 619–620
Zhang, Yang, Ju, Liu, Zheng (bib59) 2019; 26
Mia, Dijkstra, Singh (bib30) 2017; 51
Cao, Jing, Hao, Wang (bib3) 2019; 14
Xu, Zhao, Yang, He, Wei, Tan, Wang, Lin (bib54) 2020; 261
Elzobair, Stromberger, Ippolito, Lentz (bib11) 2016; 142
Paz-Ferreiro, Fu (bib38) 2016; 27
Shen, Hou, Zhao, Xu, Ok, Bolan, Alessi (bib44) 2018; 619–620
Hu, Cheng (bib18) 2016; 214
Ren, Sun, Wang, Zhang, Zhu (bib41) 2018; 242
(bib32) 2018
Duan, Oleszczuk, Pan, Xing (bib10) 2019; 1
Shen, Zhang, Hou, Tsang, Ok, Alessi (bib46) 2019; 122
Hu, Cheng, Tao (bib19) 2016; 92–93
Masiello, Chen, Gao, Liu, Cheng, Bennett, Rudgers, Wagner, Zygourakis, Silberg (bib28) 2013; 47
Shen, Jin, O’Connor, Hou (bib45) 2019; 53
Li, Lu, Xu, Liu (bib23) 2019; 352
Sui, Zuo, Chen, Li, Pan, Crowley (bib49) 2018; 25
Cui, Zeng, Qin, Feng (bib7) 2020; 263
Rauret, López-Sánchez, Sahuquillo, Barahona, Lachica, Ure, Davidson, Gomez, Lück, Bacon, Yli-Halla, Muntau, Quevauviller (bib40) 2000; 2
Ali, Shaheen, Guo, Li, Xiao, Wahid, Azeem, Sohail, Zhang, Rinklebe, Li, Zhang (bib1) 2020; 264
He, Sun, Hu, Zeng, Yu, Cheng (bib15) 2017; 24
Yang, Liu, McGrouther, Huang, Lu, Guo, He, Lin, Che, Ye, Wang (bib56) 2016; 23
Tan, Ma, Yang, Cui, Wang, Wang, Wu, Zheng (bib50) 2020; 699
Hale, Hanley, Lehmann, Zimmerman, Cornelissen (bib13) 2011; 45
Li, Luo, Teng (bib24) 2008
Müller, Martin, Stevens, Laughlin, Kammann, Ottow, Jäger (bib34) 2002; 34
Cui, Pan, Li, Bian, Liu, Yan, Quan, Ding, Chen, Liu, Liu, Yin, Wei, Yang, Hussain (bib6) 2016; 93
Xu, Xu, Tsang, Cao (bib55) 2018; 242
Singh, Fang, Johnston (bib47) 2016; 80
Guan, Zhang, Zhang (bib12) 1986
Liu, Liu, Ambus, Zhang, Hansen, Lin, Shen, Liu, Bei, Zhu, Wang, Ma, Lin, Yu, Zhu, Xie (bib26) 2016; 8
Tang, Zhang, Ren, Zhou, Gao, Luo, Yang, Peng, Huang, Chen (bib51) 2019; 242
Ding, Liu, Liu, Li, Tan, Huang, Zeng, Zhou, Zheng (bib9) 2016; 36
Song, Zhang, Ma, Chang, Gong (bib48) 2014; 50
Zhu, Chen, Zhu, Xing (bib62) 2017; 227
Harvey, Herbert, Rhue, Kuo (bib14) 2011; 45
Li, Dong, da Silva, de Oliveira, Chen, Ma (bib22) 2017; 178
Cao, Ma, Liang, Gao, Harris (bib2) 2011; 45
Cui, Noerpel, Scheckel, Ippolito (bib5) 2019; 126
Wang, Ren, Wang, Cai, Xia, Ding (bib53) 2019; 79
Liu, Dai, Jin, Dong, Peng, Wu, Liang, Pan, Xing (bib27) 2018; 52
Yuan, Xu, Zhang (bib57) 2011; 102
Shen, Zhang, McMillan, Jin, Al-Tabbaa (bib43) 2017; 24
(bib4) 1990
Qi, Lamb, Naidu, Bolan, Yan, Ok, Rahman, Choppala (bib39) 2018; 610–611
Paz-Ferreiro, Fu, Méndez, Gascó (bib37) 2014; 14
Zhao, Nan, Kan, Xu, Qiu, Cao (bib61) 2019; 254
Zhang, Guo, Zhao, He, Wang, Zhu, Yan, Liu, Sun, Zhao, Qian (bib58) 2016; 218
Paz-Ferreiro, Gascó, Gutiérrez, Méndez (bib36) 2012; 48
Riah-Anglet, Trinsoutrot-Gattin, Martin-Laurent, Laroche-Ajzenberg, Norini, Latour, Laval (bib42) 2015; 86
Huang, Liu, Zeng, Xu, Huang, Deng, Wang, Wan (bib20) 2017; 174
Shen (10.1016/j.envpol.2020.115846_bib43) 2017; 24
Masiello (10.1016/j.envpol.2020.115846_bib28) 2013; 47
Li (10.1016/j.envpol.2020.115846_bib22) 2017; 178
Liu (10.1016/j.envpol.2020.115846_bib27) 2018; 52
Zhao (10.1016/j.envpol.2020.115846_bib61) 2019; 254
Riah-Anglet (10.1016/j.envpol.2020.115846_bib42) 2015; 86
Tang (10.1016/j.envpol.2020.115846_bib52) 2020; 701
Yang (10.1016/j.envpol.2020.115846_bib56) 2016; 23
Cui (10.1016/j.envpol.2020.115846_bib7) 2020; 263
Guan (10.1016/j.envpol.2020.115846_bib12) 1986
Meng (10.1016/j.envpol.2020.115846_bib29) 2020; 263
(10.1016/j.envpol.2020.115846_bib4) 1990
Shen (10.1016/j.envpol.2020.115846_bib45) 2019; 53
Wang (10.1016/j.envpol.2020.115846_bib53) 2019; 79
Zhu (10.1016/j.envpol.2020.115846_bib62) 2017; 227
Li (10.1016/j.envpol.2020.115846_bib24) 2008
Xu (10.1016/j.envpol.2020.115846_bib54) 2020; 261
Harvey (10.1016/j.envpol.2020.115846_bib14) 2011; 45
Ding (10.1016/j.envpol.2020.115846_bib9) 2016; 36
Paz-Ferreiro (10.1016/j.envpol.2020.115846_bib36) 2012; 48
Miura (10.1016/j.envpol.2020.115846_bib33) 2019; 144
Hu (10.1016/j.envpol.2020.115846_bib19) 2016; 92–93
Houba (10.1016/j.envpol.2020.115846_bib17) 2000; 31
Cao (10.1016/j.envpol.2020.115846_bib2) 2011; 45
Zhang (10.1016/j.envpol.2020.115846_bib58) 2016; 218
Huang (10.1016/j.envpol.2020.115846_bib20) 2017; 174
Cui (10.1016/j.envpol.2020.115846_bib5) 2019; 126
Liu (10.1016/j.envpol.2020.115846_bib26) 2016; 8
Cui (10.1016/j.envpol.2020.115846_bib6) 2016; 93
Jing (10.1016/j.envpol.2020.115846_bib21) 2020; 257
Ali (10.1016/j.envpol.2020.115846_bib1) 2020; 264
Hale (10.1016/j.envpol.2020.115846_bib13) 2011; 45
Paz-Ferreiro (10.1016/j.envpol.2020.115846_bib37) 2014; 14
Ren (10.1016/j.envpol.2020.115846_bib41) 2018; 242
Rauret (10.1016/j.envpol.2020.115846_bib40) 2000; 2
Song (10.1016/j.envpol.2020.115846_bib48) 2014; 50
Tan (10.1016/j.envpol.2020.115846_bib50) 2020; 699
Hu (10.1016/j.envpol.2020.115846_bib18) 2016; 214
Tang (10.1016/j.envpol.2020.115846_bib51) 2019; 242
Duan (10.1016/j.envpol.2020.115846_bib10) 2019; 1
Liu (10.1016/j.envpol.2020.115846_bib63) 2012; 14
Xu (10.1016/j.envpol.2020.115846_bib55) 2018; 242
He (10.1016/j.envpol.2020.115846_bib16) 2019; 252
O’Connor (10.1016/j.envpol.2020.115846_bib35) 2018; 619–620
Shen (10.1016/j.envpol.2020.115846_bib46) 2019; 122
Paz-Ferreiro (10.1016/j.envpol.2020.115846_bib38) 2016; 27
Yuan (10.1016/j.envpol.2020.115846_bib57) 2011; 102
Mia (10.1016/j.envpol.2020.115846_bib30) 2017; 51
Sui (10.1016/j.envpol.2020.115846_bib49) 2018; 25
He (10.1016/j.envpol.2020.115846_bib15) 2017; 24
Qi (10.1016/j.envpol.2020.115846_bib39) 2018; 610–611
Zhao (10.1016/j.envpol.2020.115846_bib60) 2020; 264
Cao (10.1016/j.envpol.2020.115846_bib3) 2019; 14
Liu (10.1016/j.envpol.2020.115846_bib25) 2018; 633
Zhang (10.1016/j.envpol.2020.115846_bib59) 2019; 26
Elzobair (10.1016/j.envpol.2020.115846_bib11) 2016; 142
Singh (10.1016/j.envpol.2020.115846_bib47) 2016; 80
(10.1016/j.envpol.2020.115846_bib32) 2018
Shen (10.1016/j.envpol.2020.115846_bib44) 2018; 619–620
Li (10.1016/j.envpol.2020.115846_bib23) 2019; 352
Müller (10.1016/j.envpol.2020.115846_bib34) 2002; 34
Daou (10.1016/j.envpol.2020.115846_bib8) 2016; 93
References_xml – year: 1990
  ident: bib4
  article-title: Elemental Background Values of Soils in China
– volume: 144
  start-page: 196
  year: 2019
  end-page: 199
  ident: bib33
  article-title: Freeze-thaw and dry-wet events reduce microbial extracellular enzyme activity, but not organic matter turnover in an agricultural grassland soil
  publication-title: Appl. Soil Ecol.
– volume: 92–93
  start-page: 515
  year: 2016
  end-page: 532
  ident: bib19
  article-title: The challenges and solutions for cadmium-contaminated rice in China: a critical review
  publication-title: Environ. Int.
– volume: 227
  start-page: 98
  year: 2017
  end-page: 115
  ident: bib62
  article-title: Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review
  publication-title: Environ. Pollut.
– volume: 122
  start-page: 357
  year: 2019
  end-page: 362
  ident: bib46
  article-title: Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue
  publication-title: Environ. Int.
– volume: 252
  start-page: 846
  year: 2019
  end-page: 855
  ident: bib16
  article-title: Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China
  publication-title: Environ. Pollut.
– volume: 36
  start-page: 36
  year: 2016
  ident: bib9
  article-title: Biochar to improve soil fertility
  publication-title: A review. Agron. Sustain. Dev.
– year: 1986
  ident: bib12
  article-title: Soil Enzyme and its Research Methods
– volume: 24
  start-page: 9387
  year: 2017
  end-page: 9398
  ident: bib15
  article-title: Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations
  publication-title: Environ. Sci. Pollut. Res.
– volume: 261
  start-page: 114133
  year: 2020
  ident: bib54
  article-title: Evaluation of biochar pyrolyzed from kitchen waste, corn straw, and peanut hulls on immobilization of Pb and Cd in contaminated soil
  publication-title: Environ. Pollut.
– volume: 214
  start-page: 400
  year: 2016
  end-page: 409
  ident: bib18
  article-title: A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions
  publication-title: Environ. Pollut.
– volume: 352
  start-page: 96
  year: 2019
  end-page: 103
  ident: bib23
  article-title: How close is artificial biochar aging to natural biochar aging in fields? A meta-analysis
  publication-title: Geoderma
– volume: 86
  start-page: 121
  year: 2015
  end-page: 130
  ident: bib42
  article-title: Soil microbial community structure and function relationships: a heat stress experiment
  publication-title: Appl. Soil Ecol.
– volume: 264
  start-page: 114773
  year: 2020
  ident: bib1
  article-title: Apricot shell- and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil
  publication-title: Environ. Pollut.
– volume: 1
  start-page: 339
  year: 2019
  end-page: 351
  ident: bib10
  article-title: Environmental behavior of engineered biochars and their aging processes in soil
  publication-title: Biochar
– volume: 619–620
  start-page: 185
  year: 2018
  end-page: 193
  ident: bib44
  article-title: Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing
  publication-title: Sci. Total Environ.
– volume: 699
  start-page: 134223
  year: 2020
  ident: bib50
  article-title: Effect of three artificial aging techniques on physiochemical properties and Pb adsorption capacities of different biochars
  publication-title: Sci. Total Environ.
– volume: 263
  start-page: 114553
  year: 2020
  ident: bib7
  article-title: Measures for reducing nitrate leaching in orchards: a review
  publication-title: Environ. Pollut.
– volume: 23
  start-page: 974
  year: 2016
  end-page: 984
  ident: bib56
  article-title: Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil
  publication-title: Environ. Sci. Pollut. Res.
– volume: 633
  start-page: 206
  year: 2018
  end-page: 219
  ident: bib25
  article-title: Remediation techniques for heavy metal-contaminated soils: principles and applicability
  publication-title: Sci. Total Environ.
– volume: 8
  start-page: 148
  year: 2016
  end-page: 159
  ident: bib26
  article-title: Carbon footprint of rice production under biochar amendment – a case study in a Chinese rice cropping system
  publication-title: Glob Change Biol Bioenergy
– volume: 80
  start-page: 613
  year: 2016
  end-page: 622
  ident: bib47
  article-title: A Fourier transform infrared study of biochar aging in soils
  publication-title: Soil Sci. Soc. Am. J.
– volume: 45
  start-page: 10445
  year: 2011
  end-page: 10453
  ident: bib13
  article-title: Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar
  publication-title: Environ. Sci. Technol.
– volume: 45
  start-page: 5550
  year: 2011
  end-page: 5556
  ident: bib14
  article-title: Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow sorption microcalorimetry
  publication-title: Environ. Sci. Technol.
– volume: 242
  start-page: 1362
  year: 2018
  end-page: 1370
  ident: bib55
  article-title: Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils
  publication-title: Environ. Pollut.
– volume: 610–611
  start-page: 1457
  year: 2018
  end-page: 1466
  ident: bib39
  article-title: Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar
  publication-title: Sci. Total Environ.
– volume: 25
  start-page: 3368
  year: 2018
  end-page: 3377
  ident: bib49
  article-title: Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study
  publication-title: Environ. Sci. Pollut. Res.
– volume: 619–620
  start-page: 815
  year: 2018
  end-page: 826
  ident: bib35
  article-title: Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials
  publication-title: Sci. Total Environ.
– volume: 34
  start-page: 1325
  year: 2002
  end-page: 1331
  ident: bib34
  article-title: Processes leading to N
  publication-title: Soil Biol. Biochem.
– volume: 93
  start-page: 142
  year: 2016
  end-page: 149
  ident: bib8
  article-title: Effects of drying–rewetting or freezing–thawing cycles on enzymatic activities of different Mediterranean soils
  publication-title: Soil Biol. Biochem.
– volume: 50
  start-page: 321
  year: 2014
  end-page: 332
  ident: bib48
  article-title: Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil
  publication-title: Biol. Fertil. Soils
– volume: 27
  start-page: 14
  year: 2016
  end-page: 25
  ident: bib38
  article-title: Biological indices for soil quality evaluation: perspectives and limitations
  publication-title: Land Degrad. Dev.
– volume: 264
  start-page: 114687
  year: 2020
  ident: bib60
  article-title: Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: an accelerated simulation of long-term aging effects
  publication-title: Environ. Pollut.
– volume: 178
  start-page: 466
  year: 2017
  end-page: 478
  ident: bib22
  article-title: Mechanisms of metal sorption by biochars: biochar characteristics and modifications
  publication-title: Chemosphere
– volume: 24
  start-page: 12809
  year: 2017
  end-page: 12819
  ident: bib43
  article-title: Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk
  publication-title: Environ. Sci. Pollut. Res.
– year: 2008
  ident: bib24
  article-title: Research Methods of Soil and Environmental Microorganism
– volume: 14
  start-page: 483
  year: 2014
  end-page: 494
  ident: bib37
  article-title: Interactive effects of biochar and the earthworm
  publication-title: J. Soils Sediments
– volume: 2
  start-page: 228
  year: 2000
  end-page: 233
  ident: bib40
  article-title: Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content
  publication-title: J. Environ. Monit.
– volume: 52
  start-page: 12740
  year: 2018
  end-page: 12747
  ident: bib27
  article-title: The negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals?
  publication-title: Environ. Sci. Technol.
– volume: 242
  start-page: 1880
  year: 2018
  end-page: 1886
  ident: bib41
  article-title: Effect of aging in field soil on biochar’s properties and its sorption capacity
  publication-title: Environ. Pollut.
– volume: 218
  start-page: 513
  year: 2016
  end-page: 522
  ident: bib58
  article-title: Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil
  publication-title: Environ. Pollut.
– volume: 142
  start-page: 145
  year: 2016
  end-page: 152
  ident: bib11
  article-title: Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol
  publication-title: Chemosphere
– volume: 257
  start-page: 113592
  year: 2020
  ident: bib21
  article-title: Effects of wheat straw derived biochar on cadmium availability in a paddy soil and its accumulation in rice
  publication-title: Environ. Pollut.
– volume: 26
  start-page: 4867
  year: 2019
  end-page: 4877
  ident: bib59
  article-title: Mercury adsorption to aged biochar and its management in China
  publication-title: Environ. Sci. Pollut. Res.
– volume: 45
  start-page: 4884
  year: 2011
  end-page: 4889
  ident: bib2
  article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar
  publication-title: Environ. Sci. Technol.
– year: 2018
  ident: bib32
  article-title: Soil Environmental Quality – Risk Control Standard for Soil Contamination of Agricultural Land (GB 15618–2018)
– volume: 31
  start-page: 1299
  year: 2000
  end-page: 1396
  ident: bib17
  article-title: Soil analysis procedures using 0.01 M calcium chloride as extraction reagent
  publication-title: Commun. Soil Sci. Plant Anal.
– volume: 48
  start-page: 511
  year: 2012
  end-page: 517
  ident: bib36
  article-title: Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil
  publication-title: Biol. Fertil. Soils
– volume: 79
  start-page: 91
  year: 2019
  end-page: 99
  ident: bib53
  article-title: Assessing the capacity of biochar to stabilize copper and lead in contaminated sediments using chemical and extraction methods
  publication-title: J. Environ. Sci.
– volume: 51
  start-page: 8359
  year: 2017
  end-page: 8367
  ident: bib30
  article-title: Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium
  publication-title: Environ. Sci. Technol.
– volume: 102
  start-page: 3488
  year: 2011
  end-page: 3497
  ident: bib57
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
– volume: 93
  start-page: 1
  year: 2016
  end-page: 8
  ident: bib6
  article-title: Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: a five-year field experiment
  publication-title: Ecol. Eng.
– volume: 14
  start-page: 4329
  year: 2019
  end-page: 4343
  ident: bib3
  article-title: Changes in the physicochemical characteristics of peanut straw biochar after freeze-thaw and dry-wet aging treatments of the biomass
  publication-title: BioResources
– volume: 174
  start-page: 545
  year: 2017
  end-page: 553
  ident: bib20
  article-title: The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment
  publication-title: Chemosphere
– volume: 53
  start-page: 11615
  year: 2019
  end-page: 11617
  ident: bib45
  article-title: Solidification/stabilization for soil remediation: an old technology with new vitality
  publication-title: Environ. Sci. Technol.
– volume: 242
  start-page: 121
  year: 2019
  end-page: 130
  ident: bib51
  article-title: Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution
  publication-title: J. Environ. Manag.
– volume: 126
  start-page: 69
  year: 2019
  end-page: 75
  ident: bib5
  article-title: Wheat straw biochar reduces environmental cadmium bioavailability
  publication-title: Environ. Int.
– volume: 701
  start-page: 134751
  year: 2020
  ident: bib52
  article-title: Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost
  publication-title: Sci. Total Environ.
– volume: 14
  start-page: 745
  year: 2012
  end-page: 750
  ident: bib63
  article-title: Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments
  publication-title: Int. J. Agric. Biol.
– volume: 263
  start-page: 114449
  year: 2020
  ident: bib29
  article-title: Transport and transformation of Cd between biochar and soil under combined dry-wet and freeze-thaw aging
  publication-title: Environ. Pollut.
– volume: 47
  start-page: 11496
  year: 2013
  end-page: 11503
  ident: bib28
  article-title: Biochar and microbial signaling: production conditions determine effects on microbial communication
  publication-title: Environ. Sci. Technol.
– volume: 254
  start-page: 13114
  year: 2019
  ident: bib61
  article-title: Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent
  publication-title: Environ. Pollut.
– volume: 93
  start-page: 142
  year: 2016
  ident: 10.1016/j.envpol.2020.115846_bib8
  article-title: Effects of drying–rewetting or freezing–thawing cycles on enzymatic activities of different Mediterranean soils
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/j.soilbio.2015.11.006
– volume: 31
  start-page: 1299
  year: 2000
  ident: 10.1016/j.envpol.2020.115846_bib17
  article-title: Soil analysis procedures using 0.01 M calcium chloride as extraction reagent
  publication-title: Commun. Soil Sci. Plant Anal.
  doi: 10.1080/00103620009370514
– volume: 14
  start-page: 483
  year: 2014
  ident: 10.1016/j.envpol.2020.115846_bib37
  article-title: Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-013-0806-z
– volume: 174
  start-page: 545
  year: 2017
  ident: 10.1016/j.envpol.2020.115846_bib20
  article-title: The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.01.130
– volume: 122
  start-page: 357
  year: 2019
  ident: 10.1016/j.envpol.2020.115846_bib46
  article-title: Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2018.11.045
– year: 1986
  ident: 10.1016/j.envpol.2020.115846_bib12
– volume: 142
  start-page: 145
  year: 2016
  ident: 10.1016/j.envpol.2020.115846_bib11
  article-title: Contrasting effects of biochar versus manure on soil microbial communities and enzyme activities in an Aridisol
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.06.044
– volume: 242
  start-page: 121
  year: 2019
  ident: 10.1016/j.envpol.2020.115846_bib51
  article-title: Diagnosis of soil contamination using microbiological indices: a review on heavy metal pollution
  publication-title: J. Environ. Manag.
– volume: 264
  start-page: 114687
  year: 2020
  ident: 10.1016/j.envpol.2020.115846_bib60
  article-title: Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: an accelerated simulation of long-term aging effects
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114687
– volume: 27
  start-page: 14
  year: 2016
  ident: 10.1016/j.envpol.2020.115846_bib38
  article-title: Biological indices for soil quality evaluation: perspectives and limitations
  publication-title: Land Degrad. Dev.
  doi: 10.1002/ldr.2262
– volume: 45
  start-page: 4884
  year: 2011
  ident: 10.1016/j.envpol.2020.115846_bib2
  article-title: Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es103752u
– volume: 214
  start-page: 400
  year: 2016
  ident: 10.1016/j.envpol.2020.115846_bib18
  article-title: A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.04.028
– volume: 1
  start-page: 339
  year: 2019
  ident: 10.1016/j.envpol.2020.115846_bib10
  article-title: Environmental behavior of engineered biochars and their aging processes in soil
  publication-title: Biochar
  doi: 10.1007/s42773-019-00030-5
– volume: 53
  start-page: 11615
  year: 2019
  ident: 10.1016/j.envpol.2020.115846_bib45
  article-title: Solidification/stabilization for soil remediation: an old technology with new vitality
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b04990
– volume: 47
  start-page: 11496
  year: 2013
  ident: 10.1016/j.envpol.2020.115846_bib28
  article-title: Biochar and microbial signaling: production conditions determine effects on microbial communication
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es401458s
– volume: 264
  start-page: 114773
  year: 2020
  ident: 10.1016/j.envpol.2020.115846_bib1
  article-title: Apricot shell- and apple tree-derived biochar affect the fractionation and bioavailability of Zn and Cd as well as the microbial activity in smelter contaminated soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114773
– volume: 45
  start-page: 10445
  year: 2011
  ident: 10.1016/j.envpol.2020.115846_bib13
  article-title: Effects of chemical, biological, and physical aging as well as soil addition on the sorption of pyrene to activated carbon and biochar
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es202970x
– year: 1990
  ident: 10.1016/j.envpol.2020.115846_bib4
– volume: 257
  start-page: 113592
  year: 2020
  ident: 10.1016/j.envpol.2020.115846_bib21
  article-title: Effects of wheat straw derived biochar on cadmium availability in a paddy soil and its accumulation in rice
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113592
– volume: 80
  start-page: 613
  year: 2016
  ident: 10.1016/j.envpol.2020.115846_bib47
  article-title: A Fourier transform infrared study of biochar aging in soils
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2015.11.0414
– volume: 701
  start-page: 134751
  year: 2020
  ident: 10.1016/j.envpol.2020.115846_bib52
  article-title: Physicochemical features, metal availability and enzyme activity in heavy metal-polluted soil remediated by biochar and compost
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134751
– volume: 2
  start-page: 228
  year: 2000
  ident: 10.1016/j.envpol.2020.115846_bib40
  publication-title: J. Environ. Monit.
  doi: 10.1039/b001496f
– volume: 36
  start-page: 36
  year: 2016
  ident: 10.1016/j.envpol.2020.115846_bib9
  article-title: Biochar to improve soil fertility
  publication-title: A review. Agron. Sustain. Dev.
  doi: 10.1007/s13593-016-0372-z
– volume: 24
  start-page: 12809
  year: 2017
  ident: 10.1016/j.envpol.2020.115846_bib43
  article-title: Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-8847-2
– year: 2018
  ident: 10.1016/j.envpol.2020.115846_bib32
– volume: 263
  start-page: 114553
  year: 2020
  ident: 10.1016/j.envpol.2020.115846_bib7
  article-title: Measures for reducing nitrate leaching in orchards: a review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114553
– volume: 254
  start-page: 13114
  year: 2019
  ident: 10.1016/j.envpol.2020.115846_bib61
  article-title: Infiltration behavior of heavy metals in runoff through soil amended with biochar as bulking agent
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113114
– volume: 178
  start-page: 466
  year: 2017
  ident: 10.1016/j.envpol.2020.115846_bib22
  article-title: Mechanisms of metal sorption by biochars: biochar characteristics and modifications
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.03.072
– volume: 102
  start-page: 3488
  year: 2011
  ident: 10.1016/j.envpol.2020.115846_bib57
  article-title: The forms of alkalis in the biochar produced from crop residues at different temperatures
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.11.018
– volume: 51
  start-page: 8359
  year: 2017
  ident: 10.1016/j.envpol.2020.115846_bib30
  article-title: Aging induced changes in biochar’s functionality and adsorption behavior for phosphate and ammonium
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b00647
– volume: 261
  start-page: 114133
  year: 2020
  ident: 10.1016/j.envpol.2020.115846_bib54
  article-title: Evaluation of biochar pyrolyzed from kitchen waste, corn straw, and peanut hulls on immobilization of Pb and Cd in contaminated soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114133
– volume: 50
  start-page: 321
  year: 2014
  ident: 10.1016/j.envpol.2020.115846_bib48
  article-title: Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-013-0857-8
– volume: 14
  start-page: 745
  year: 2012
  ident: 10.1016/j.envpol.2020.115846_bib63
  article-title: Effect of biochar on pH of alkaline soils in the loess plateau: results from incubation experiments
  publication-title: Int. J. Agric. Biol.
– volume: 126
  start-page: 69
  year: 2019
  ident: 10.1016/j.envpol.2020.115846_bib5
  article-title: Wheat straw biochar reduces environmental cadmium bioavailability
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.02.022
– volume: 610–611
  start-page: 1457
  year: 2018
  ident: 10.1016/j.envpol.2020.115846_bib39
  article-title: Cadmium solubility and bioavailability in soils amended with acidic and neutral biochar
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.08.228
– volume: 14
  start-page: 4329
  year: 2019
  ident: 10.1016/j.envpol.2020.115846_bib3
  article-title: Changes in the physicochemical characteristics of peanut straw biochar after freeze-thaw and dry-wet aging treatments of the biomass
  publication-title: BioResources
  doi: 10.15376/biores.14.2.4329-4343
– volume: 86
  start-page: 121
  year: 2015
  ident: 10.1016/j.envpol.2020.115846_bib42
  article-title: Soil microbial community structure and function relationships: a heat stress experiment
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2014.10.001
– volume: 218
  start-page: 513
  year: 2016
  ident: 10.1016/j.envpol.2020.115846_bib58
  article-title: Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2016.07.031
– volume: 26
  start-page: 4867
  year: 2019
  ident: 10.1016/j.envpol.2020.115846_bib59
  article-title: Mercury adsorption to aged biochar and its management in China
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-018-3945-3
– volume: 45
  start-page: 5550
  year: 2011
  ident: 10.1016/j.envpol.2020.115846_bib14
  article-title: Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow sorption microcalorimetry
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es104401h
– volume: 227
  start-page: 98
  year: 2017
  ident: 10.1016/j.envpol.2020.115846_bib62
  article-title: Effects and mechanisms of biochar-microbe interactions in soil improvement and pollution remediation: a review
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.04.032
– volume: 34
  start-page: 1325
  year: 2002
  ident: 10.1016/j.envpol.2020.115846_bib34
  article-title: Processes leading to N2O emissions in grassland soil during freezing and thawing
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/S0038-0717(02)00076-7
– volume: 144
  start-page: 196
  year: 2019
  ident: 10.1016/j.envpol.2020.115846_bib33
  article-title: Freeze-thaw and dry-wet events reduce microbial extracellular enzyme activity, but not organic matter turnover in an agricultural grassland soil
  publication-title: Appl. Soil Ecol.
  doi: 10.1016/j.apsoil.2019.08.002
– volume: 24
  start-page: 9387
  year: 2017
  ident: 10.1016/j.envpol.2020.115846_bib15
  article-title: Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-8548-x
– volume: 252
  start-page: 846
  year: 2019
  ident: 10.1016/j.envpol.2020.115846_bib16
  article-title: Remediation of heavy metal contaminated soils by biochar: mechanisms, potential risks and applications in China
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.05.151
– volume: 242
  start-page: 1362
  year: 2018
  ident: 10.1016/j.envpol.2020.115846_bib55
  article-title: Contrasting impacts of pre- and post-application aging of biochar on the immobilization of Cd in contaminated soils
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.08.012
– volume: 242
  start-page: 1880
  year: 2018
  ident: 10.1016/j.envpol.2020.115846_bib41
  article-title: Effect of aging in field soil on biochar’s properties and its sorption capacity
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.07.078
– volume: 48
  start-page: 511
  year: 2012
  ident: 10.1016/j.envpol.2020.115846_bib36
  article-title: Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil
  publication-title: Biol. Fertil. Soils
  doi: 10.1007/s00374-011-0644-3
– volume: 699
  start-page: 134223
  year: 2020
  ident: 10.1016/j.envpol.2020.115846_bib50
  article-title: Effect of three artificial aging techniques on physiochemical properties and Pb adsorption capacities of different biochars
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.134223
– volume: 79
  start-page: 91
  year: 2019
  ident: 10.1016/j.envpol.2020.115846_bib53
  article-title: Assessing the capacity of biochar to stabilize copper and lead in contaminated sediments using chemical and extraction methods
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2018.11.007
– volume: 92–93
  start-page: 515
  year: 2016
  ident: 10.1016/j.envpol.2020.115846_bib19
  article-title: The challenges and solutions for cadmium-contaminated rice in China: a critical review
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2016.04.042
– volume: 8
  start-page: 148
  year: 2016
  ident: 10.1016/j.envpol.2020.115846_bib26
  article-title: Carbon footprint of rice production under biochar amendment – a case study in a Chinese rice cropping system
  publication-title: Glob Change Biol Bioenergy
  doi: 10.1111/gcbb.12248
– volume: 263
  start-page: 114449
  year: 2020
  ident: 10.1016/j.envpol.2020.115846_bib29
  article-title: Transport and transformation of Cd between biochar and soil under combined dry-wet and freeze-thaw aging
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114449
– volume: 93
  start-page: 1
  year: 2016
  ident: 10.1016/j.envpol.2020.115846_bib6
  article-title: Continuous immobilization of cadmium and lead in biochar amended contaminated paddy soil: a five-year field experiment
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2016.05.007
– volume: 23
  start-page: 974
  year: 2016
  ident: 10.1016/j.envpol.2020.115846_bib56
  article-title: Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-015-4233-0
– year: 2008
  ident: 10.1016/j.envpol.2020.115846_bib24
– volume: 52
  start-page: 12740
  year: 2018
  ident: 10.1016/j.envpol.2020.115846_bib27
  article-title: The negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals?
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b00672
– volume: 352
  start-page: 96
  year: 2019
  ident: 10.1016/j.envpol.2020.115846_bib23
  article-title: How close is artificial biochar aging to natural biochar aging in fields? A meta-analysis
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.06.006
– volume: 619–620
  start-page: 815
  year: 2018
  ident: 10.1016/j.envpol.2020.115846_bib35
  article-title: Biochar application for the remediation of heavy metal polluted land: a review of in situ field trials
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.132
– volume: 25
  start-page: 3368
  year: 2018
  ident: 10.1016/j.envpol.2020.115846_bib49
  article-title: Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-017-0652-4
– volume: 633
  start-page: 206
  year: 2018
  ident: 10.1016/j.envpol.2020.115846_bib25
  article-title: Remediation techniques for heavy metal-contaminated soils: principles and applicability
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.03.161
– volume: 619–620
  start-page: 185
  year: 2018
  ident: 10.1016/j.envpol.2020.115846_bib44
  article-title: Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.11.038
SSID ssj0004333
Score 2.542028
Snippet Natural aging alters the surface physicochemical properties of biochars, which can affect the retention of heavy metals. This work investigated the effect of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 115846
SubjectTerms Accelerated aging
agricultural soils
beta-fructofuranosidase
Biochar
Cadmium
carbonates
catalase
Charcoal
corn straw
Enzyme activity
freeze-thaw cycles
Heavy metal stabilization
phytoaccumulation
pollution
Soil
soil enzymes
Soil Pollutants - analysis
Soil remediation
urease
wheat straw
Title Effect of aging on stabilization of Cd and Ni by biochars and enzyme activities in a historically contaminated alkaline agricultural soil simulated with wet–dry and freeze–thaw cycling
URI https://dx.doi.org/10.1016/j.envpol.2020.115846
https://www.ncbi.nlm.nih.gov/pubmed/33143976
https://www.proquest.com/docview/2457688773
https://www.proquest.com/docview/2551905775
Volume 268
WOSCitedRecordID wos000600553000033&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6424
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004333
  issn: 0269-7491
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Lb9NAEIBXacoBDghSCuFRDRLiglzVXjtrH6OoqIAUIRGkcLLW9rp1SewqrzY58R_4O_waDvwOZh-2k1Zt6YGLFU3sjaP57J2dnQchb3zupkLg6iRKHU96q6jFI8EsYcdRJ_EYil3VbIL1-_5wGHxuNP6UuTCLEctz_-IiOPuvqkYZKlumzt5B3dWgKMDPqHQ8otrx-E-KN_WI5f6-bkCUS3-BjIFdVeZhTxVoRQyk9Rllhcy90sWaRb5ajnWJjYUqtiodItyUJZYKHS1VeDuXITTSWuWj71yZqvx4UtfxmBYZHrKxbA5WBrifi1kZWkGTia77lE6EWIlKPDvh5-_ipUzXPN7YM6jT8WTmmGzPbLj1L7kzvhn_9yee1XsFWjTMRoUZVsUzCC0-Emk1NQ248hx_OZmve0Mce80bol-aTiewmKs7gJVveEd37jHvaLSBfe32vDJ9aE_G6b7IF_hX9vEH5JxSnr5ZrfvSLFrFNpZhc6ehHiWUo4R6lC2y7TAv8Jtku_vhcPixzuCllGpvoL77MslTRSJevZvrjKjrFknKWBo8Ig_NKge6ms7HpCHyFtnpIjHFeAlvQcUdqw2dFnmwVhKzRXY3VA1m6pnukF-aayhSUFxDkcMG1_KbXgJIFfQziJZQcq1EmmuouYYsBw7rXMM611ByDetcg-QaKq5Bcg3I9e8fP5Fo9UOaaBRIlsGw_IR8fX846B1ZpvWIxV3bn1kd2hECZ79OigymQeR6wo2TNE6TyI19jjYc9eLAc9mBSNFmsNNYcOoFB7iasqPY5XSXNPMiF88I-B5D4yaKIgetdVzwcNdJXJ4mdswC5kW8TWipyzA2dflle5hReBNJbWJVV53pujS3nM9KTEJjW2ubOUT2b7nydUlViFOP3E_kuSjm09BxpbPCZ4zecA6uyAJcEzKvTZ5qJKv7pdRWy6Hnd_wvL8j9-tF_SZqzyVy8IvfixSybTvbIFhv6e-YB-wthlx0A
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+aging+on+stabilization+of+Cd+and+Ni+by+biochars+and+enzyme+activities+in+a+historically+contaminated+alkaline+agricultural+soil+simulated+with+wet%E2%80%93dry+and+freeze%E2%80%93thaw+cycling&rft.jtitle=Environmental+pollution+%281987%29&rft.au=Yang%2C+Kai&rft.au=Wang%2C+Xilong&rft.au=Cheng%2C+Hefa&rft.au=Tao%2C+Shu&rft.date=2021-01-01&rft.issn=0269-7491&rft.volume=268&rft.spage=115846&rft_id=info:doi/10.1016%2Fj.envpol.2020.115846&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_envpol_2020_115846
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-7491&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-7491&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-7491&client=summon