Adaptive Design of Alloys for CO2 Activation and Methanation via Reinforcement Learning Monte Carlo Tree Search Algorithm
Data-driven machine learning (ML) has earned remarkable achievements in accelerating materials design, while it heavily relies on high-quality data acquisition. In this work, we develop an adaptive design framework for searching for optimal materials starting from zero data and with as few DFT calcu...
Uloženo v:
| Vydáno v: | The journal of physical chemistry letters Ročník 14; číslo 14; s. 3594 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina japonština |
| Vydáno: |
13.04.2023
|
| ISSN: | 1948-7185, 1948-7185 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Data-driven machine learning (ML) has earned remarkable achievements in accelerating materials design, while it heavily relies on high-quality data acquisition. In this work, we develop an adaptive design framework for searching for optimal materials starting from zero data and with as few DFT calculations as possible. This framework integrates automatic density functional theory (DFT) calculations with an improved Monte Carlo tree search via reinforcement learning algorithm (MCTS-PG). As a successful example, we apply it to rapidly identify the desired alloy catalysts for CO2 activation and methanation within 200 MCTS-PG steps. To this end, seven alloy surfaces with high theoretical activity and selectivity for CO2 methanation are screened out and further validated by comprehensive free energy calculations. Our adaptive design framework enables the fast computational exploration of materials with desired properties via minimal DFT calculations.Data-driven machine learning (ML) has earned remarkable achievements in accelerating materials design, while it heavily relies on high-quality data acquisition. In this work, we develop an adaptive design framework for searching for optimal materials starting from zero data and with as few DFT calculations as possible. This framework integrates automatic density functional theory (DFT) calculations with an improved Monte Carlo tree search via reinforcement learning algorithm (MCTS-PG). As a successful example, we apply it to rapidly identify the desired alloy catalysts for CO2 activation and methanation within 200 MCTS-PG steps. To this end, seven alloy surfaces with high theoretical activity and selectivity for CO2 methanation are screened out and further validated by comprehensive free energy calculations. Our adaptive design framework enables the fast computational exploration of materials with desired properties via minimal DFT calculations. |
|---|---|
| AbstractList | Data-driven machine learning (ML) has earned remarkable achievements in accelerating materials design, while it heavily relies on high-quality data acquisition. In this work, we develop an adaptive design framework for searching for optimal materials starting from zero data and with as few DFT calculations as possible. This framework integrates automatic density functional theory (DFT) calculations with an improved Monte Carlo tree search via reinforcement learning algorithm (MCTS-PG). As a successful example, we apply it to rapidly identify the desired alloy catalysts for CO2 activation and methanation within 200 MCTS-PG steps. To this end, seven alloy surfaces with high theoretical activity and selectivity for CO2 methanation are screened out and further validated by comprehensive free energy calculations. Our adaptive design framework enables the fast computational exploration of materials with desired properties via minimal DFT calculations.Data-driven machine learning (ML) has earned remarkable achievements in accelerating materials design, while it heavily relies on high-quality data acquisition. In this work, we develop an adaptive design framework for searching for optimal materials starting from zero data and with as few DFT calculations as possible. This framework integrates automatic density functional theory (DFT) calculations with an improved Monte Carlo tree search via reinforcement learning algorithm (MCTS-PG). As a successful example, we apply it to rapidly identify the desired alloy catalysts for CO2 activation and methanation within 200 MCTS-PG steps. To this end, seven alloy surfaces with high theoretical activity and selectivity for CO2 methanation are screened out and further validated by comprehensive free energy calculations. Our adaptive design framework enables the fast computational exploration of materials with desired properties via minimal DFT calculations. |
| Author | Song, Zhilong Lu, Shuaihua Wang, Jinlan Dieb, Sae Zhou, Qionghua Ling, Chongyi |
| Author_xml | – sequence: 1 givenname: Zhilong surname: Song fullname: Song, Zhilong – sequence: 2 givenname: Qionghua surname: Zhou fullname: Zhou, Qionghua – sequence: 3 givenname: Shuaihua surname: Lu fullname: Lu, Shuaihua – sequence: 4 givenname: Sae surname: Dieb fullname: Dieb, Sae – sequence: 5 givenname: Chongyi surname: Ling fullname: Ling, Chongyi – sequence: 6 givenname: Jinlan surname: Wang fullname: Wang, Jinlan |
| BookMark | eNpNjMtuwjAURK2qlQq0X9CNl92E-jomdpZR-pRASC1dI9u5AaNg09gg8feNRBddzYzO6IzJtQ8eCXkANgXG4UnbON0dbIcpTXPLGBf8ioygFCqToGbX__otGce4Y6womZIjcq4afUjuhPQZo9t4GlpadV04R9qGntZLTis7cJ1c8FT7hi4wbbW_7JPT9BOdH64W9-gTnaPuvfMbugg-Ia113wW66hHp10DsdpBvQu_Sdn9HblrdRbz_ywn5fn1Z1e_ZfPn2UVfzTAuQKUMDAIVBMAaUZU1RFiiLdiaxtDBroFCmEUYoyYTNRW7zRioFbdkajgK04RPyePEe-vBzxJjWexctdp32GI5xzWUpQYhSFfwX-ypmEQ |
| CitedBy_id | crossref_primary_10_1021_accountsmr_1c00236 crossref_primary_10_1002_adfm_202515026 crossref_primary_10_1007_s40843_024_2851_9 crossref_primary_10_32604_cmc_2025_060109 crossref_primary_10_1038_s41929_024_01150_3 crossref_primary_10_1088_2632_2153_ad69ff crossref_primary_10_1002_cctc_202401213 crossref_primary_10_1039_D5CS00324E |
| ContentType | Journal Article |
| DBID | 7X8 |
| DOI | 10.1021/acs.jpclett.3c00242 |
| DatabaseName | MEDLINE - Academic |
| DatabaseTitle | MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1948-7185 |
| GroupedDBID | 53G 55A 5VS 7X8 7~N AABXI ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFO ACGFS ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CUPRZ DU5 EBS ED~ GGK GNL IH9 JG~ P2P RNS ROL UI2 VF5 VG9 W1F XKZ |
| ID | FETCH-LOGICAL-a417t-eb1116be1bb18c0d696e76f57e9c15d168bd4b48704c343c3d7881f9fb2e41ab2 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000972204200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1948-7185 |
| IngestDate | Fri Jul 11 11:16:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 14 |
| Language | English Japanese |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a417t-eb1116be1bb18c0d696e76f57e9c15d168bd4b48704c343c3d7881f9fb2e41ab2 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2797144986 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2797144986 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-04-13 |
| PublicationDateYYYYMMDD | 2023-04-13 |
| PublicationDate_xml | – month: 04 year: 2023 text: 2023-04-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationTitle | The journal of physical chemistry letters |
| PublicationYear | 2023 |
| SSID | ssj0069087 |
| Score | 2.4507701 |
| Snippet | Data-driven machine learning (ML) has earned remarkable achievements in accelerating materials design, while it heavily relies on high-quality data... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 3594 |
| Title | Adaptive Design of Alloys for CO2 Activation and Methanation via Reinforcement Learning Monte Carlo Tree Search Algorithm |
| URI | https://www.proquest.com/docview/2797144986 |
| Volume | 14 |
| WOSCitedRecordID | wos000972204200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA7qCHpxF3cieM3YtGnSnGQYFS-jIgpzG7LVhbEdp1Xw3_uSafXgRfAYKCG8Jt_73sL7EDphNHIpV5pomRrCWJKQTLOcGAH-xwrOI6eC2IS4vs6GQ3nbJNyqpq2yxcQA1LY0Pkd-GgspgPzLjJ9N3ohXjfLV1UZCYx51EqAy_mGK4XcVAQK_IJAHcXpGAIPTdupQTE-VqbovE_gzdd1NTPBUv9A4uJjL1f8ebg2tNOQS92a3YR3NuWIDLfVbTbdN9NmzauIBDp-Hzg1c5rg3HpefFQbyivs3Me6ZVvAMq8LigfO59dn641nhOxdGrZqQVcTNdNZHPPBDrnBfTcclvp86h2dtzLD5I5yzfnrdQg-XF_f9K9KILxDFqKgJYDilXDuqNc1MZLnkTvA8FU4amlrKM22ZhnAnYiZhiUmsH0yfy1zHjlGl4220UJSF20EYaIKLmY60SIFMWKptlDqpIPCxTGomdtFxa9UR2MNXLFThyvdq9GPXvT98s4-WvRi8r_XQ5AB1cnjA7hAtmo_6uZoehbvxBYVAxRg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Design+of+Alloys+for+CO2+Activation+and+Methanation+via+Reinforcement+Learning+Monte+Carlo+Tree+Search+Algorithm&rft.jtitle=The+journal+of+physical+chemistry+letters&rft.au=Song%2C+Zhilong&rft.au=Zhou%2C+Qionghua&rft.au=Lu%2C+Shuaihua&rft.au=Dieb%2C+Sae&rft.date=2023-04-13&rft.issn=1948-7185&rft.eissn=1948-7185&rft.volume=14&rft.issue=14&rft.spage=3594&rft_id=info:doi/10.1021%2Facs.jpclett.3c00242&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1948-7185&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1948-7185&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1948-7185&client=summon |