Using the expectation maximization algorithm to estimate coefficient alpha for scales with item-level missing data
A 2-step approach for obtaining internal consistency reliability estimates with item-level missing data is outlined. In the 1st step, a covariance matrix and mean vector are obtained using the expectation maximization (EM) algorithm. In the 2nd step, reliability analyses are carried out in the usual...
Saved in:
| Published in: | Psychological methods Vol. 8; no. 3; p. 322 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.09.2003
|
| Subjects: | |
| ISSN: | 1082-989X |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A 2-step approach for obtaining internal consistency reliability estimates with item-level missing data is outlined. In the 1st step, a covariance matrix and mean vector are obtained using the expectation maximization (EM) algorithm. In the 2nd step, reliability analyses are carried out in the usual fashion using the EM covariance matrix as input. A Monte Carlo simulation examined the impact of 6 variables (scale length, response categories, item correlations, sample size, missing data, and missing data technique) on 3 different outcomes: estimation bias, mean errors, and confidence interval coverage. The 2-step approach using EM consistently yielded the most accurate reliability estimates and produced coverage rates close to the advertised 95% rate. An easy method of implementing the procedure is outlined. |
|---|---|
| AbstractList | A 2-step approach for obtaining internal consistency reliability estimates with item-level missing data is outlined. In the 1st step, a covariance matrix and mean vector are obtained using the expectation maximization (EM) algorithm. In the 2nd step, reliability analyses are carried out in the usual fashion using the EM covariance matrix as input. A Monte Carlo simulation examined the impact of 6 variables (scale length, response categories, item correlations, sample size, missing data, and missing data technique) on 3 different outcomes: estimation bias, mean errors, and confidence interval coverage. The 2-step approach using EM consistently yielded the most accurate reliability estimates and produced coverage rates close to the advertised 95% rate. An easy method of implementing the procedure is outlined.A 2-step approach for obtaining internal consistency reliability estimates with item-level missing data is outlined. In the 1st step, a covariance matrix and mean vector are obtained using the expectation maximization (EM) algorithm. In the 2nd step, reliability analyses are carried out in the usual fashion using the EM covariance matrix as input. A Monte Carlo simulation examined the impact of 6 variables (scale length, response categories, item correlations, sample size, missing data, and missing data technique) on 3 different outcomes: estimation bias, mean errors, and confidence interval coverage. The 2-step approach using EM consistently yielded the most accurate reliability estimates and produced coverage rates close to the advertised 95% rate. An easy method of implementing the procedure is outlined. A 2-step approach for obtaining internal consistency reliability estimates with item-level missing data is outlined. In the 1st step, a covariance matrix and mean vector are obtained using the expectation maximization (EM) algorithm. In the 2nd step, reliability analyses are carried out in the usual fashion using the EM covariance matrix as input. A Monte Carlo simulation examined the impact of 6 variables (scale length, response categories, item correlations, sample size, missing data, and missing data technique) on 3 different outcomes: estimation bias, mean errors, and confidence interval coverage. The 2-step approach using EM consistently yielded the most accurate reliability estimates and produced coverage rates close to the advertised 95% rate. An easy method of implementing the procedure is outlined. |
| Author | Enders, Craig K |
| Author_xml | – sequence: 1 givenname: Craig K surname: Enders fullname: Enders, Craig K email: cenders@unl.edu organization: Department of Educational and Psychological Studies, University of Miami, USA. cenders@unl.edu |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/14596494$$D View this record in MEDLINE/PubMed |
| BookMark | eNo9kE1Lw0AQhvdQsR_6A7zInrwlZj-SzR6laBUKXix4C5Nk0q4k2ZjdavXXu9gqDLzM8PDOOzMnk972SMgVS2KWCHXLkpxHOtevcR6LWHA-IbP_2ZTMnXtLEiZFLs_JlMlUZ1LLGRk3zvRb6ndI8TBg5cEb29MODqYz38cG2q0djd911FuKzpsOPNLKYtOYymDvAzHsgDZ2pK6CFh39DDg1HruoxQ9saWfc754aPFyQswZah5cnXZDNw_3L8jFaP6-elnfrCCRTPmIZqIzpLAWd1LxmUGoRSqQSuSgVZjrN8oyDQg6shAYbSJlukpRVOa9ryRfk5ug7jPZ9H3IXIUWFbQs92r0rFBNCyVQF8PoE7ssO62IYw4XjV_H3Jf4Dvwhr6Q |
| CitedBy_id | crossref_primary_10_1016_j_soncn_2020_151112 crossref_primary_10_1177_2156759X19870794 crossref_primary_10_3389_feduc_2024_1495043 crossref_primary_10_3390_educsci14101042 crossref_primary_10_1080_02643294_2024_2373842 crossref_primary_10_1177_0361684319851718 crossref_primary_10_1371_journal_pone_0248367 crossref_primary_10_9778_cmajo_20200152 crossref_primary_10_1016_j_jrp_2013_08_009 crossref_primary_10_1080_23311975_2023_2229099 crossref_primary_10_1080_14681994_2021_1959545 crossref_primary_10_1080_15582159_2020_1783476 crossref_primary_10_1080_15374410902851713 crossref_primary_10_1016_j_childyouth_2014_12_023 crossref_primary_10_1016_j_jvb_2018_11_015 crossref_primary_10_1007_s10072_020_04499_y crossref_primary_10_1080_00220973_2023_2196678 crossref_primary_10_1097_01_psy_0000221275_75056_d8 crossref_primary_10_1146_annurev_psych_58_110405_085530 crossref_primary_10_1177_0897190018810595 crossref_primary_10_1177_21676968241258306 crossref_primary_10_1016_j_eatbeh_2021_101494 crossref_primary_10_1017_S1352465821000291 crossref_primary_10_1007_s10803_018_3739_y crossref_primary_10_1186_s12912_022_01156_x crossref_primary_10_1080_07481187_2019_1686090 crossref_primary_10_1177_0013164415594658 crossref_primary_10_1177_07435584221091488 crossref_primary_10_3389_fspor_2020_595619 crossref_primary_10_1080_19419899_2022_2031263 crossref_primary_10_1111_sltb_12000 crossref_primary_10_1016_j_urolonc_2025_06_007 crossref_primary_10_1016_j_jsp_2023_101254 crossref_primary_10_1136_bmjopen_2020_046007 crossref_primary_10_3390_healthcare9121720 crossref_primary_10_1016_j_chiabu_2019_01_012 crossref_primary_10_1177_00111287231207378 crossref_primary_10_1108_JMTM_06_2017_0116 crossref_primary_10_1177_10538151231190627 crossref_primary_10_3389_fpsyg_2019_01118 crossref_primary_10_1016_j_chiabu_2025_107362 crossref_primary_10_5172_jmo_2012_18_1_36 crossref_primary_10_1016_j_techfore_2024_123414 crossref_primary_10_1007_s41884_022_00080_y crossref_primary_10_1017_S183336720000105X crossref_primary_10_1080_15564886_2022_2052214 crossref_primary_10_1007_s11162_015_9405_8 crossref_primary_10_1177_0030222817719805 crossref_primary_10_1016_j_cedpsych_2021_102023 crossref_primary_10_1093_swr_svad001 crossref_primary_10_1348_000711007X249603 crossref_primary_10_1007_s11145_020_10105_6 crossref_primary_10_1177_0018720816669646 crossref_primary_10_1007_s12187_015_9313_7 crossref_primary_10_1080_10409289_2023_2260680 crossref_primary_10_1123_jpah_2020_0028 crossref_primary_10_1186_s12872_021_02178_0 crossref_primary_10_3389_fpsyt_2022_878818 crossref_primary_10_1097_OR9_0000000000000021 crossref_primary_10_1002_csr_2594 crossref_primary_10_1017_S1047951121003188 crossref_primary_10_1016_j_lindif_2006_12_005 crossref_primary_10_1080_20008198_2022_2057674 crossref_primary_10_1016_j_jretconser_2025_104322 crossref_primary_10_1016_j_spinee_2016_02_049 crossref_primary_10_1177_01454455231212265 crossref_primary_10_1007_s10508_021_01999_6 crossref_primary_10_1007_s10639_018_9784_5 crossref_primary_10_1063_5_0250296 crossref_primary_10_1080_13527266_2018_1467477 crossref_primary_10_3758_s13428_020_01355_x crossref_primary_10_1007_s11126_024_10071_0 crossref_primary_10_1108_CDI_07_2022_0209 crossref_primary_10_1108_JIBR_09_2017_0162 crossref_primary_10_1007_s12529_020_09936_y crossref_primary_10_12973_ejmste_78097 crossref_primary_10_1177_0004865816628594 crossref_primary_10_3102_00346543074004525 crossref_primary_10_3390_ijerph17176254 crossref_primary_10_1016_j_jocrd_2020_100578 crossref_primary_10_1089_cap_2016_0085 crossref_primary_10_5194_nhess_20_695_2020 crossref_primary_10_1007_s12134_024_01173_6 crossref_primary_10_1080_10696679_2024_2376052 crossref_primary_10_1515_rmeef_2012_0038 crossref_primary_10_1123_pes_2020_0249 crossref_primary_10_1111_jonm_13562 crossref_primary_10_3390_ijerph19169948 crossref_primary_10_1002_jts_22059 crossref_primary_10_1308_rcsann_2018_0153 crossref_primary_10_1007_s10803_015_2687_z crossref_primary_10_1111_ssqu_12689 crossref_primary_10_1007_s10212_020_00499_w crossref_primary_10_1093_her_cym092 crossref_primary_10_1177_10748407221111079 crossref_primary_10_1177_13872877251365642 crossref_primary_10_1027_2151_2604_a000290 crossref_primary_10_1177_2150132719845819 crossref_primary_10_3390_su12229337 crossref_primary_10_1016_j_neucom_2019_07_010 crossref_primary_10_1080_09581596_2025_2486500 crossref_primary_10_3758_s13428_020_01429_w crossref_primary_10_1080_16506073_2020_1819866 crossref_primary_10_1016_j_parkreldis_2025_107316 crossref_primary_10_3138_cjhs_2020_0009 crossref_primary_10_1016_j_ecresq_2024_10_004 crossref_primary_10_1111_josh_12563 crossref_primary_10_1186_s12955_023_02200_3 crossref_primary_10_1159_000501735 crossref_primary_10_1016_j_eatbeh_2020_101451 crossref_primary_10_1177_0962280219897706 crossref_primary_10_1016_j_pec_2019_05_023 crossref_primary_10_5172_jmo_2012_36 crossref_primary_10_3389_fpubh_2022_784066 crossref_primary_10_1007_s12310_025_09766_x crossref_primary_10_1093_fampra_cmac005 crossref_primary_10_1111_j_0026_7902_2005_00265_x crossref_primary_10_1016_j_jadohealth_2023_07_023 crossref_primary_10_1007_s10826_018_1063_y crossref_primary_10_1007_s00787_016_0879_5 crossref_primary_10_1002_hpja_890 crossref_primary_10_3390_ijerph19126957 crossref_primary_10_1007_s10802_024_01283_w crossref_primary_10_1007_s10899_017_9734_y crossref_primary_10_3389_feduc_2025_1580683 crossref_primary_10_1080_00273171_2022_2029339 crossref_primary_10_1016_j_jpsychires_2016_09_007 crossref_primary_10_1016_j_agrformet_2019_107706 crossref_primary_10_1080_08941920_2023_2288195 crossref_primary_10_1108_SASBE_12_2020_0181 crossref_primary_10_1007_s10578_025_01841_3 crossref_primary_10_1111_pops_12621 crossref_primary_10_1187_cbe_17_12_0288 crossref_primary_10_1007_s40615_022_01435_y crossref_primary_10_1177_0145445517747287 crossref_primary_10_1177_23328584241310429 crossref_primary_10_1177_1475240918768984 crossref_primary_10_1016_j_jad_2020_09_009 crossref_primary_10_1177_0272431617725197 crossref_primary_10_1016_j_surge_2017_10_001 crossref_primary_10_1080_15623599_2024_2408179 crossref_primary_10_1371_journal_pone_0284763 crossref_primary_10_3390_bs14070587 crossref_primary_10_1080_23737484_2022_2115430 crossref_primary_10_1061__ASCE_CP_1943_5487_0000941 crossref_primary_10_1108_SRJ_01_2023_0012 crossref_primary_10_1177_00957984241311773 crossref_primary_10_1177_0022427817693036 crossref_primary_10_3390_ijerph17082862 crossref_primary_10_1155_2024_5582411 crossref_primary_10_1080_02739615_2015_1124768 crossref_primary_10_1080_1359432X_2022_2162881 crossref_primary_10_1089_lgbt_2021_0240 crossref_primary_10_1016_j_jocrd_2016_07_002 crossref_primary_10_3389_fpsyg_2020_01578 crossref_primary_10_1097_PSY_0000000000001110 crossref_primary_10_1136_oem_2007_037622 crossref_primary_10_1007_s10803_021_05280_6 crossref_primary_10_1080_00273171_2014_999267 crossref_primary_10_1159_000501951 crossref_primary_10_1080_00273171_2015_1022644 crossref_primary_10_1186_2193_1801_2_222 crossref_primary_10_1016_j_ergon_2020_103017 crossref_primary_10_1016_j_socscimed_2018_05_008 crossref_primary_10_1007_s11336_012_9301_5 crossref_primary_10_3389_fpsyg_2023_1177415 crossref_primary_10_1111_j_1552_6909_2012_01409_x crossref_primary_10_1093_ptj_pzz179 crossref_primary_10_1111_psyg_12279 crossref_primary_10_1016_j_pec_2018_04_017 crossref_primary_10_1016_j_lindif_2017_03_012 crossref_primary_10_1016_j_jad_2016_04_027 crossref_primary_10_1038_s41598_022_26412_7 crossref_primary_10_1186_s12888_023_04687_y crossref_primary_10_1093_pubmed_fdac131 crossref_primary_10_1080_21683603_2024_2409107 crossref_primary_10_1177_1056492610374648 crossref_primary_10_1080_00273171_2012_640589 crossref_primary_10_1186_s40814_022_01048_6 crossref_primary_10_1016_j_chb_2020_106373 crossref_primary_10_1007_s10964_022_01693_3 crossref_primary_10_1002_bjs5_7 crossref_primary_10_1177_0013164403261050 crossref_primary_10_1002_osp4_281 crossref_primary_10_1080_00273171_2015_1068157 crossref_primary_10_1016_j_ijinfomgt_2013_05_002 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1037/1082-989X.8.3.322 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Psychology |
| ExternalDocumentID | 14596494 |
| Genre | Journal Article |
| GroupedDBID | --- --Z -~X .-4 07C 0R~ 123 29P 354 53G 5VS 7RZ ABIVO ABNCP ACHQT ACPQG AEHFB ALMA_UNASSIGNED_HOLDINGS AWKKM AZXWR CGNQK CGR CS3 CUY CVF ECM EIF EPA F5P FTD HVGLF HZ~ ISO LW5 NPM O9- OHT OPA OVD P2P ROL SES SPA TEORI TN5 UHS XJT YNT ZPI 3KI 7X8 ABVOZ AETEA PHGZT PUEGO |
| ID | FETCH-LOGICAL-a417t-16a761965a90d2d1ab93b93354e23b7e6956862a7e2a1bafefa519f051c82dd42 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 227 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000185747000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1082-989X |
| IngestDate | Sun Sep 28 09:52:04 EDT 2025 Thu Jan 02 21:55:52 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a417t-16a761965a90d2d1ab93b93354e23b7e6956862a7e2a1bafefa519f051c82dd42 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 14596494 |
| PQID | 71337457 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_71337457 pubmed_primary_14596494 |
| PublicationCentury | 2000 |
| PublicationDate | 2003-09-01 |
| PublicationDateYYYYMMDD | 2003-09-01 |
| PublicationDate_xml | – month: 09 year: 2003 text: 2003-09-01 day: 01 |
| PublicationDecade | 2000 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Psychological methods |
| PublicationTitleAlternate | Psychol Methods |
| PublicationYear | 2003 |
| SSID | ssj0014384 |
| Score | 2.20635 |
| Snippet | A 2-step approach for obtaining internal consistency reliability estimates with item-level missing data is outlined. In the 1st step, a covariance matrix and... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 322 |
| SubjectTerms | Algorithms Humans Models, Psychological Psychology - methods |
| Title | Using the expectation maximization algorithm to estimate coefficient alpha for scales with item-level missing data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/14596494 https://www.proquest.com/docview/71337457 |
| Volume | 8 |
| WOSCitedRecordID | wos000185747000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKZejC-1GeHlhdiO0mtoSEEKJioeoAUrfqEjtQqW1KWxD8e-7cBCbEgBRliJTEss93n-_1MXYee4SpyjgRQ-SF1ioVeGzORaZcblIVgUkhkE0k3a7p922vxq6qWhhKq6x0YlDUrsjIR35Bh6lEt5Pr6asgziiKrZYEGiusrhDIkEwn_Z8YglaBbzhCIyessf0qpqmo2Lx81jIt1VLEnPsbvgx2prPxvxFusvUSX_KbpUBssZqfbLPGt5r73GGzkCXAEfhxau-fLWPxfAwfw3FZlMlh9IzfXryM-aLg1IcDca3nWeFDwwm0UzzU6HJEvHyOq-znnBy6nDzBYkR5SBzlJ_yHUlB32VPn7vH2XpTMCwJ0lCxEFAO5N-I22EsnXQSpVXiptvZSpYmPqcgwlpB4CVEKuc8BkWCOGzwz0jkt99jqpJj4A8ZNLqnnfJZHymnrwCZSOo9aQZo0MwBNdlbN5gBHRuEKmPjibT6o5rPJ9pcLMpguG3DgcaVtY2314Z_vHrFGyL4LSWHHrJ7jnvYnbC17Xwzns9MgMHjv9h6-ADetzO8 |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+the+expectation+maximization+algorithm+to+estimate+coefficient+alpha+for+scales+with+item-level+missing+data&rft.jtitle=Psychological+methods&rft.au=Enders%2C+Craig+K&rft.date=2003-09-01&rft.issn=1082-989X&rft.volume=8&rft.issue=3&rft.spage=322&rft_id=info:doi/10.1037%2F1082-989X.8.3.322&rft_id=info%3Apmid%2F14596494&rft_id=info%3Apmid%2F14596494&rft.externalDocID=14596494 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1082-989X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1082-989X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1082-989X&client=summon |