Using the expectation maximization algorithm to estimate coefficient alpha for scales with item-level missing data

A 2-step approach for obtaining internal consistency reliability estimates with item-level missing data is outlined. In the 1st step, a covariance matrix and mean vector are obtained using the expectation maximization (EM) algorithm. In the 2nd step, reliability analyses are carried out in the usual...

Full description

Saved in:
Bibliographic Details
Published in:Psychological methods Vol. 8; no. 3; p. 322
Main Author: Enders, Craig K
Format: Journal Article
Language:English
Published: United States 01.09.2003
Subjects:
ISSN:1082-989X
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A 2-step approach for obtaining internal consistency reliability estimates with item-level missing data is outlined. In the 1st step, a covariance matrix and mean vector are obtained using the expectation maximization (EM) algorithm. In the 2nd step, reliability analyses are carried out in the usual fashion using the EM covariance matrix as input. A Monte Carlo simulation examined the impact of 6 variables (scale length, response categories, item correlations, sample size, missing data, and missing data technique) on 3 different outcomes: estimation bias, mean errors, and confidence interval coverage. The 2-step approach using EM consistently yielded the most accurate reliability estimates and produced coverage rates close to the advertised 95% rate. An easy method of implementing the procedure is outlined.
AbstractList A 2-step approach for obtaining internal consistency reliability estimates with item-level missing data is outlined. In the 1st step, a covariance matrix and mean vector are obtained using the expectation maximization (EM) algorithm. In the 2nd step, reliability analyses are carried out in the usual fashion using the EM covariance matrix as input. A Monte Carlo simulation examined the impact of 6 variables (scale length, response categories, item correlations, sample size, missing data, and missing data technique) on 3 different outcomes: estimation bias, mean errors, and confidence interval coverage. The 2-step approach using EM consistently yielded the most accurate reliability estimates and produced coverage rates close to the advertised 95% rate. An easy method of implementing the procedure is outlined.A 2-step approach for obtaining internal consistency reliability estimates with item-level missing data is outlined. In the 1st step, a covariance matrix and mean vector are obtained using the expectation maximization (EM) algorithm. In the 2nd step, reliability analyses are carried out in the usual fashion using the EM covariance matrix as input. A Monte Carlo simulation examined the impact of 6 variables (scale length, response categories, item correlations, sample size, missing data, and missing data technique) on 3 different outcomes: estimation bias, mean errors, and confidence interval coverage. The 2-step approach using EM consistently yielded the most accurate reliability estimates and produced coverage rates close to the advertised 95% rate. An easy method of implementing the procedure is outlined.
A 2-step approach for obtaining internal consistency reliability estimates with item-level missing data is outlined. In the 1st step, a covariance matrix and mean vector are obtained using the expectation maximization (EM) algorithm. In the 2nd step, reliability analyses are carried out in the usual fashion using the EM covariance matrix as input. A Monte Carlo simulation examined the impact of 6 variables (scale length, response categories, item correlations, sample size, missing data, and missing data technique) on 3 different outcomes: estimation bias, mean errors, and confidence interval coverage. The 2-step approach using EM consistently yielded the most accurate reliability estimates and produced coverage rates close to the advertised 95% rate. An easy method of implementing the procedure is outlined.
Author Enders, Craig K
Author_xml – sequence: 1
  givenname: Craig K
  surname: Enders
  fullname: Enders, Craig K
  email: cenders@unl.edu
  organization: Department of Educational and Psychological Studies, University of Miami, USA. cenders@unl.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/14596494$$D View this record in MEDLINE/PubMed
BookMark eNo9kE1Lw0AQhvdQsR_6A7zInrwlZj-SzR6laBUKXix4C5Nk0q4k2ZjdavXXu9gqDLzM8PDOOzMnk972SMgVS2KWCHXLkpxHOtevcR6LWHA-IbP_2ZTMnXtLEiZFLs_JlMlUZ1LLGRk3zvRb6ndI8TBg5cEb29MODqYz38cG2q0djd911FuKzpsOPNLKYtOYymDvAzHsgDZ2pK6CFh39DDg1HruoxQ9saWfc754aPFyQswZah5cnXZDNw_3L8jFaP6-elnfrCCRTPmIZqIzpLAWd1LxmUGoRSqQSuSgVZjrN8oyDQg6shAYbSJlukpRVOa9ryRfk5ug7jPZ9H3IXIUWFbQs92r0rFBNCyVQF8PoE7ssO62IYw4XjV_H3Jf4Dvwhr6Q
CitedBy_id crossref_primary_10_1016_j_soncn_2020_151112
crossref_primary_10_1177_2156759X19870794
crossref_primary_10_3389_feduc_2024_1495043
crossref_primary_10_3390_educsci14101042
crossref_primary_10_1080_02643294_2024_2373842
crossref_primary_10_1177_0361684319851718
crossref_primary_10_1371_journal_pone_0248367
crossref_primary_10_9778_cmajo_20200152
crossref_primary_10_1016_j_jrp_2013_08_009
crossref_primary_10_1080_23311975_2023_2229099
crossref_primary_10_1080_14681994_2021_1959545
crossref_primary_10_1080_15582159_2020_1783476
crossref_primary_10_1080_15374410902851713
crossref_primary_10_1016_j_childyouth_2014_12_023
crossref_primary_10_1016_j_jvb_2018_11_015
crossref_primary_10_1007_s10072_020_04499_y
crossref_primary_10_1080_00220973_2023_2196678
crossref_primary_10_1097_01_psy_0000221275_75056_d8
crossref_primary_10_1146_annurev_psych_58_110405_085530
crossref_primary_10_1177_0897190018810595
crossref_primary_10_1177_21676968241258306
crossref_primary_10_1016_j_eatbeh_2021_101494
crossref_primary_10_1017_S1352465821000291
crossref_primary_10_1007_s10803_018_3739_y
crossref_primary_10_1186_s12912_022_01156_x
crossref_primary_10_1080_07481187_2019_1686090
crossref_primary_10_1177_0013164415594658
crossref_primary_10_1177_07435584221091488
crossref_primary_10_3389_fspor_2020_595619
crossref_primary_10_1080_19419899_2022_2031263
crossref_primary_10_1111_sltb_12000
crossref_primary_10_1016_j_urolonc_2025_06_007
crossref_primary_10_1016_j_jsp_2023_101254
crossref_primary_10_1136_bmjopen_2020_046007
crossref_primary_10_3390_healthcare9121720
crossref_primary_10_1016_j_chiabu_2019_01_012
crossref_primary_10_1177_00111287231207378
crossref_primary_10_1108_JMTM_06_2017_0116
crossref_primary_10_1177_10538151231190627
crossref_primary_10_3389_fpsyg_2019_01118
crossref_primary_10_1016_j_chiabu_2025_107362
crossref_primary_10_5172_jmo_2012_18_1_36
crossref_primary_10_1016_j_techfore_2024_123414
crossref_primary_10_1007_s41884_022_00080_y
crossref_primary_10_1017_S183336720000105X
crossref_primary_10_1080_15564886_2022_2052214
crossref_primary_10_1007_s11162_015_9405_8
crossref_primary_10_1177_0030222817719805
crossref_primary_10_1016_j_cedpsych_2021_102023
crossref_primary_10_1093_swr_svad001
crossref_primary_10_1348_000711007X249603
crossref_primary_10_1007_s11145_020_10105_6
crossref_primary_10_1177_0018720816669646
crossref_primary_10_1007_s12187_015_9313_7
crossref_primary_10_1080_10409289_2023_2260680
crossref_primary_10_1123_jpah_2020_0028
crossref_primary_10_1186_s12872_021_02178_0
crossref_primary_10_3389_fpsyt_2022_878818
crossref_primary_10_1097_OR9_0000000000000021
crossref_primary_10_1002_csr_2594
crossref_primary_10_1017_S1047951121003188
crossref_primary_10_1016_j_lindif_2006_12_005
crossref_primary_10_1080_20008198_2022_2057674
crossref_primary_10_1016_j_jretconser_2025_104322
crossref_primary_10_1016_j_spinee_2016_02_049
crossref_primary_10_1177_01454455231212265
crossref_primary_10_1007_s10508_021_01999_6
crossref_primary_10_1007_s10639_018_9784_5
crossref_primary_10_1063_5_0250296
crossref_primary_10_1080_13527266_2018_1467477
crossref_primary_10_3758_s13428_020_01355_x
crossref_primary_10_1007_s11126_024_10071_0
crossref_primary_10_1108_CDI_07_2022_0209
crossref_primary_10_1108_JIBR_09_2017_0162
crossref_primary_10_1007_s12529_020_09936_y
crossref_primary_10_12973_ejmste_78097
crossref_primary_10_1177_0004865816628594
crossref_primary_10_3102_00346543074004525
crossref_primary_10_3390_ijerph17176254
crossref_primary_10_1016_j_jocrd_2020_100578
crossref_primary_10_1089_cap_2016_0085
crossref_primary_10_5194_nhess_20_695_2020
crossref_primary_10_1007_s12134_024_01173_6
crossref_primary_10_1080_10696679_2024_2376052
crossref_primary_10_1515_rmeef_2012_0038
crossref_primary_10_1123_pes_2020_0249
crossref_primary_10_1111_jonm_13562
crossref_primary_10_3390_ijerph19169948
crossref_primary_10_1002_jts_22059
crossref_primary_10_1308_rcsann_2018_0153
crossref_primary_10_1007_s10803_015_2687_z
crossref_primary_10_1111_ssqu_12689
crossref_primary_10_1007_s10212_020_00499_w
crossref_primary_10_1093_her_cym092
crossref_primary_10_1177_10748407221111079
crossref_primary_10_1177_13872877251365642
crossref_primary_10_1027_2151_2604_a000290
crossref_primary_10_1177_2150132719845819
crossref_primary_10_3390_su12229337
crossref_primary_10_1016_j_neucom_2019_07_010
crossref_primary_10_1080_09581596_2025_2486500
crossref_primary_10_3758_s13428_020_01429_w
crossref_primary_10_1080_16506073_2020_1819866
crossref_primary_10_1016_j_parkreldis_2025_107316
crossref_primary_10_3138_cjhs_2020_0009
crossref_primary_10_1016_j_ecresq_2024_10_004
crossref_primary_10_1111_josh_12563
crossref_primary_10_1186_s12955_023_02200_3
crossref_primary_10_1159_000501735
crossref_primary_10_1016_j_eatbeh_2020_101451
crossref_primary_10_1177_0962280219897706
crossref_primary_10_1016_j_pec_2019_05_023
crossref_primary_10_5172_jmo_2012_36
crossref_primary_10_3389_fpubh_2022_784066
crossref_primary_10_1007_s12310_025_09766_x
crossref_primary_10_1093_fampra_cmac005
crossref_primary_10_1111_j_0026_7902_2005_00265_x
crossref_primary_10_1016_j_jadohealth_2023_07_023
crossref_primary_10_1007_s10826_018_1063_y
crossref_primary_10_1007_s00787_016_0879_5
crossref_primary_10_1002_hpja_890
crossref_primary_10_3390_ijerph19126957
crossref_primary_10_1007_s10802_024_01283_w
crossref_primary_10_1007_s10899_017_9734_y
crossref_primary_10_3389_feduc_2025_1580683
crossref_primary_10_1080_00273171_2022_2029339
crossref_primary_10_1016_j_jpsychires_2016_09_007
crossref_primary_10_1016_j_agrformet_2019_107706
crossref_primary_10_1080_08941920_2023_2288195
crossref_primary_10_1108_SASBE_12_2020_0181
crossref_primary_10_1007_s10578_025_01841_3
crossref_primary_10_1111_pops_12621
crossref_primary_10_1187_cbe_17_12_0288
crossref_primary_10_1007_s40615_022_01435_y
crossref_primary_10_1177_0145445517747287
crossref_primary_10_1177_23328584241310429
crossref_primary_10_1177_1475240918768984
crossref_primary_10_1016_j_jad_2020_09_009
crossref_primary_10_1177_0272431617725197
crossref_primary_10_1016_j_surge_2017_10_001
crossref_primary_10_1080_15623599_2024_2408179
crossref_primary_10_1371_journal_pone_0284763
crossref_primary_10_3390_bs14070587
crossref_primary_10_1080_23737484_2022_2115430
crossref_primary_10_1061__ASCE_CP_1943_5487_0000941
crossref_primary_10_1108_SRJ_01_2023_0012
crossref_primary_10_1177_00957984241311773
crossref_primary_10_1177_0022427817693036
crossref_primary_10_3390_ijerph17082862
crossref_primary_10_1155_2024_5582411
crossref_primary_10_1080_02739615_2015_1124768
crossref_primary_10_1080_1359432X_2022_2162881
crossref_primary_10_1089_lgbt_2021_0240
crossref_primary_10_1016_j_jocrd_2016_07_002
crossref_primary_10_3389_fpsyg_2020_01578
crossref_primary_10_1097_PSY_0000000000001110
crossref_primary_10_1136_oem_2007_037622
crossref_primary_10_1007_s10803_021_05280_6
crossref_primary_10_1080_00273171_2014_999267
crossref_primary_10_1159_000501951
crossref_primary_10_1080_00273171_2015_1022644
crossref_primary_10_1186_2193_1801_2_222
crossref_primary_10_1016_j_ergon_2020_103017
crossref_primary_10_1016_j_socscimed_2018_05_008
crossref_primary_10_1007_s11336_012_9301_5
crossref_primary_10_3389_fpsyg_2023_1177415
crossref_primary_10_1111_j_1552_6909_2012_01409_x
crossref_primary_10_1093_ptj_pzz179
crossref_primary_10_1111_psyg_12279
crossref_primary_10_1016_j_pec_2018_04_017
crossref_primary_10_1016_j_lindif_2017_03_012
crossref_primary_10_1016_j_jad_2016_04_027
crossref_primary_10_1038_s41598_022_26412_7
crossref_primary_10_1186_s12888_023_04687_y
crossref_primary_10_1093_pubmed_fdac131
crossref_primary_10_1080_21683603_2024_2409107
crossref_primary_10_1177_1056492610374648
crossref_primary_10_1080_00273171_2012_640589
crossref_primary_10_1186_s40814_022_01048_6
crossref_primary_10_1016_j_chb_2020_106373
crossref_primary_10_1007_s10964_022_01693_3
crossref_primary_10_1002_bjs5_7
crossref_primary_10_1177_0013164403261050
crossref_primary_10_1002_osp4_281
crossref_primary_10_1080_00273171_2015_1068157
crossref_primary_10_1016_j_ijinfomgt_2013_05_002
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1037/1082-989X.8.3.322
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Psychology
ExternalDocumentID 14596494
Genre Journal Article
GroupedDBID ---
--Z
-~X
.-4
07C
0R~
123
29P
354
53G
5VS
7RZ
ABIVO
ABNCP
ACHQT
ACPQG
AEHFB
ALMA_UNASSIGNED_HOLDINGS
AWKKM
AZXWR
CGNQK
CGR
CS3
CUY
CVF
ECM
EIF
EPA
F5P
FTD
HVGLF
HZ~
ISO
LW5
NPM
O9-
OHT
OPA
OVD
P2P
ROL
SES
SPA
TEORI
TN5
UHS
XJT
YNT
ZPI
3KI
7X8
ABVOZ
AETEA
PHGZT
PUEGO
ID FETCH-LOGICAL-a417t-16a761965a90d2d1ab93b93354e23b7e6956862a7e2a1bafefa519f051c82dd42
IEDL.DBID 7X8
ISICitedReferencesCount 227
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000185747000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1082-989X
IngestDate Sun Sep 28 09:52:04 EDT 2025
Thu Jan 02 21:55:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a417t-16a761965a90d2d1ab93b93354e23b7e6956862a7e2a1bafefa519f051c82dd42
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 14596494
PQID 71337457
PQPubID 23479
ParticipantIDs proquest_miscellaneous_71337457
pubmed_primary_14596494
PublicationCentury 2000
PublicationDate 2003-09-01
PublicationDateYYYYMMDD 2003-09-01
PublicationDate_xml – month: 09
  year: 2003
  text: 2003-09-01
  day: 01
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Psychological methods
PublicationTitleAlternate Psychol Methods
PublicationYear 2003
SSID ssj0014384
Score 2.20635
Snippet A 2-step approach for obtaining internal consistency reliability estimates with item-level missing data is outlined. In the 1st step, a covariance matrix and...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 322
SubjectTerms Algorithms
Humans
Models, Psychological
Psychology - methods
Title Using the expectation maximization algorithm to estimate coefficient alpha for scales with item-level missing data
URI https://www.ncbi.nlm.nih.gov/pubmed/14596494
https://www.proquest.com/docview/71337457
Volume 8
WOSCitedRecordID wos000185747000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYKZejC-1GeHlhdiO0mtoSEEKJioeoAUrfqEjtQqW1KWxD8e-7cBCbEgBRliJTEss93n-_1MXYee4SpyjgRQ-SF1ioVeGzORaZcblIVgUkhkE0k3a7p922vxq6qWhhKq6x0YlDUrsjIR35Bh6lEt5Pr6asgziiKrZYEGiusrhDIkEwn_Z8YglaBbzhCIyessf0qpqmo2Lx81jIt1VLEnPsbvgx2prPxvxFusvUSX_KbpUBssZqfbLPGt5r73GGzkCXAEfhxau-fLWPxfAwfw3FZlMlh9IzfXryM-aLg1IcDca3nWeFDwwm0UzzU6HJEvHyOq-znnBy6nDzBYkR5SBzlJ_yHUlB32VPn7vH2XpTMCwJ0lCxEFAO5N-I22EsnXQSpVXiptvZSpYmPqcgwlpB4CVEKuc8BkWCOGzwz0jkt99jqpJj4A8ZNLqnnfJZHymnrwCZSOo9aQZo0MwBNdlbN5gBHRuEKmPjibT6o5rPJ9pcLMpguG3DgcaVtY2314Z_vHrFGyL4LSWHHrJ7jnvYnbC17Xwzns9MgMHjv9h6-ADetzO8
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+the+expectation+maximization+algorithm+to+estimate+coefficient+alpha+for+scales+with+item-level+missing+data&rft.jtitle=Psychological+methods&rft.au=Enders%2C+Craig+K&rft.date=2003-09-01&rft.issn=1082-989X&rft.volume=8&rft.issue=3&rft.spage=322&rft_id=info:doi/10.1037%2F1082-989X.8.3.322&rft_id=info%3Apmid%2F14596494&rft_id=info%3Apmid%2F14596494&rft.externalDocID=14596494
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1082-989X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1082-989X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1082-989X&client=summon