Fusion of Vis-NIR and XRF spectra for estimation of key soil attributes
•Fusion of Vis-NIR and XRF spectra in soil analysis is examined.•Spectra of 253 soil samples of 9 fields were used to evaluate the proposed methods.•Concatenation of Vis-NIR and XRF spectra may improve the soil prediction performance.•CNN with PCs of Vis-NIR and XRF spectra as input improves predict...
Gespeichert in:
| Veröffentlicht in: | Geoderma Jg. 385; S. 114851 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.03.2021
|
| Schlagworte: | |
| ISSN: | 0016-7061, 1872-6259 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Fusion of Vis-NIR and XRF spectra in soil analysis is examined.•Spectra of 253 soil samples of 9 fields were used to evaluate the proposed methods.•Concatenation of Vis-NIR and XRF spectra may improve the soil prediction performance.•CNN with PCs of Vis-NIR and XRF spectra as input improves prediction performance.
Precision agriculture (PA) is an integrated solution to optimize the application of farming inputs site-specifically to increase crops efficiency, reduce resources consumption, and protect the environment. Recently, visible-near- infrared (Vis-NIR) and X-ray-fluorescence (XRF) have emerged as efficient and inexpensive proximal soil sensing (PSS) methods for assessment of soil attributes in support of PA applications. The goal of this study was to explore the potential of data fusion in accuracy improvement of predicting key soil attributes using Vis-NIR and XRF spectra. More specifically, local weighted regression (LWR) and partial least squares (PLS) regression methods were examined and compared in prediction of the following soil attributes: pH, organic carbon (OC), phosphorous (P), magnesium (Mg), calcium (Ca), and sodium (Na). Besides the individual-sensor models, we evaluated three data fusion approaches basedon spectra fusion (SF). The first method concatenates the full Vis-NIR and XRF spectra before PLS (SF1-PLS). In the second SF approach (SF2-PLS), the concatenation of the principal components (PCs) of the two spectra types – each resulted from a principal component analysis (PCA) – were used as input to PLS. The last proposed method, SF-CNN, uses a convolutional neural network (CNN) with input in form of a matrix whose columns are the PCs of the Vis-NIR and the PCs of the XRF spectra. To evaluate the proposed methods, a total 267 soil samples of nine arable fields were collected and scanned in laboratory settings using a Vis-NIR and an XRF spectrometer. For each soil attribute, the samples of six fields were used as the calibration set while the samples of the remaining three fields were used for validating the prediction models. The individual-sensor and SF models were evaluated in terms of ratio of performance to inter-quartile (RPIQ), root mean square error (RMSE), and Lin’s concordance correlation coefficient (LCCC). The validation results showed that PLS generally outperforms LWR. Also, the prediction accuracy obtained from Vis-NIR spectra was better than that of XRF for all the attributes, except for Ca. The proposed SF schemes, especially the SF-CNN, outperformed the individual models in the prediction of all attributes, except P and Ca. The best improvement of the prediction results, compared to the individual-sensor models, was obtained for Mg (RPIQ = 1.60, RMSE = 6.88 mg/100 g, LCCC = 0.93), successively followed by pH (RPIQ = 2.52, RMSE = 0.36, LCCC = 0.68), and Na (RPIQ = 1.69, RMSE = 2.55 mg/100 g, LCCC = 0.65). Overall, the results of this study suggest the CNN-based fusion for the prediction of the studied key soil fertility attributes in order to enable making accurate decisions and control loop in PA applications using high-resolution data on spatiotemporal variability of soil. |
|---|---|
| AbstractList | Precision agriculture (PA) is an integrated solution to optimize the application of farming inputs site-specifically to increase crops efficiency, reduce resources consumption, and protect the environment. Recently, visible-near- infrared (Vis-NIR) and X-ray-fluorescence (XRF) have emerged as efficient and inexpensive proximal soil sensing (PSS) methods for assessment of soil attributes in support of PA applications. The goal of this study was to explore the potential of data fusion in accuracy improvement of predicting key soil attributes using Vis-NIR and XRF spectra. More specifically, local weighted regression (LWR) and partial least squares (PLS) regression methods were examined and compared in prediction of the following soil attributes: pH, organic carbon (OC), phosphorous (P), magnesium (Mg), calcium (Ca), and sodium (Na). Besides the individual-sensor models, we evaluated three data fusion approaches basedon spectra fusion (SF). The first method concatenates the full Vis-NIR and XRF spectra before PLS (SF1-PLS). In the second SF approach (SF2-PLS), the concatenation of the principal components (PCs) of the two spectra types – each resulted from a principal component analysis (PCA) – were used as input to PLS. The last proposed method, SF-CNN, uses a convolutional neural network (CNN) with input in form of a matrix whose columns are the PCs of the Vis-NIR and the PCs of the XRF spectra. To evaluate the proposed methods, a total 267 soil samples of nine arable fields were collected and scanned in laboratory settings using a Vis-NIR and an XRF spectrometer. For each soil attribute, the samples of six fields were used as the calibration set while the samples of the remaining three fields were used for validating the prediction models. The individual-sensor and SF models were evaluated in terms of ratio of performance to inter-quartile (RPIQ), root mean square error (RMSE), and Lin’s concordance correlation coefficient (LCCC). The validation results showed that PLS generally outperforms LWR. Also, the prediction accuracy obtained from Vis-NIR spectra was better than that of XRF for all the attributes, except for Ca. The proposed SF schemes, especially the SF-CNN, outperformed the individual models in the prediction of all attributes, except P and Ca. The best improvement of the prediction results, compared to the individual-sensor models, was obtained for Mg (RPIQ = 1.60, RMSE = 6.88 mg/100 g, LCCC = 0.93), successively followed by pH (RPIQ = 2.52, RMSE = 0.36, LCCC = 0.68), and Na (RPIQ = 1.69, RMSE = 2.55 mg/100 g, LCCC = 0.65). Overall, the results of this study suggest the CNN-based fusion for the prediction of the studied key soil fertility attributes in order to enable making accurate decisions and control loop in PA applications using high-resolution data on spatiotemporal variability of soil. •Fusion of Vis-NIR and XRF spectra in soil analysis is examined.•Spectra of 253 soil samples of 9 fields were used to evaluate the proposed methods.•Concatenation of Vis-NIR and XRF spectra may improve the soil prediction performance.•CNN with PCs of Vis-NIR and XRF spectra as input improves prediction performance. Precision agriculture (PA) is an integrated solution to optimize the application of farming inputs site-specifically to increase crops efficiency, reduce resources consumption, and protect the environment. Recently, visible-near- infrared (Vis-NIR) and X-ray-fluorescence (XRF) have emerged as efficient and inexpensive proximal soil sensing (PSS) methods for assessment of soil attributes in support of PA applications. The goal of this study was to explore the potential of data fusion in accuracy improvement of predicting key soil attributes using Vis-NIR and XRF spectra. More specifically, local weighted regression (LWR) and partial least squares (PLS) regression methods were examined and compared in prediction of the following soil attributes: pH, organic carbon (OC), phosphorous (P), magnesium (Mg), calcium (Ca), and sodium (Na). Besides the individual-sensor models, we evaluated three data fusion approaches basedon spectra fusion (SF). The first method concatenates the full Vis-NIR and XRF spectra before PLS (SF1-PLS). In the second SF approach (SF2-PLS), the concatenation of the principal components (PCs) of the two spectra types – each resulted from a principal component analysis (PCA) – were used as input to PLS. The last proposed method, SF-CNN, uses a convolutional neural network (CNN) with input in form of a matrix whose columns are the PCs of the Vis-NIR and the PCs of the XRF spectra. To evaluate the proposed methods, a total 267 soil samples of nine arable fields were collected and scanned in laboratory settings using a Vis-NIR and an XRF spectrometer. For each soil attribute, the samples of six fields were used as the calibration set while the samples of the remaining three fields were used for validating the prediction models. The individual-sensor and SF models were evaluated in terms of ratio of performance to inter-quartile (RPIQ), root mean square error (RMSE), and Lin’s concordance correlation coefficient (LCCC). The validation results showed that PLS generally outperforms LWR. Also, the prediction accuracy obtained from Vis-NIR spectra was better than that of XRF for all the attributes, except for Ca. The proposed SF schemes, especially the SF-CNN, outperformed the individual models in the prediction of all attributes, except P and Ca. The best improvement of the prediction results, compared to the individual-sensor models, was obtained for Mg (RPIQ = 1.60, RMSE = 6.88 mg/100 g, LCCC = 0.93), successively followed by pH (RPIQ = 2.52, RMSE = 0.36, LCCC = 0.68), and Na (RPIQ = 1.69, RMSE = 2.55 mg/100 g, LCCC = 0.65). Overall, the results of this study suggest the CNN-based fusion for the prediction of the studied key soil fertility attributes in order to enable making accurate decisions and control loop in PA applications using high-resolution data on spatiotemporal variability of soil. |
| ArticleNumber | 114851 |
| Author | Munnaf, Muhammad Abdul Javadi, S. Hamed Mouazen, Abdul M. |
| Author_xml | – sequence: 1 givenname: S. Hamed surname: Javadi fullname: Javadi, S. Hamed email: h.javadi@ugent.be – sequence: 2 givenname: Muhammad Abdul surname: Munnaf fullname: Munnaf, Muhammad Abdul email: munnaf.mabdul@ugent.be – sequence: 3 givenname: Abdul M. surname: Mouazen fullname: Mouazen, Abdul M. email: abdul.mouazen@ugent.be |
| BookMark | eNqFkE1LAzEQhoNUsK3-BcnRy9Z8bXYXPCjF1kJRKCreQpqdldTtpia7Qv-9qasXLz0NMzzvMPOM0KBxDSB0ScmEEiqvN5N3cCX4rZ4wwuKQijylJ2hI84wlkqXFAA1JJJOMSHqGRiFsYptFdojmsy5Y12BX4VcbksfFCuumxG-rGQ47MK3XuHIeQ2jtVre_5AfscXC2xrptvV13LYRzdFrpOsDFbx2jl9n98_QhWT7NF9O7ZaIFlW1SCWIIcKELVjFdUQpCciEybjgTRoiiKPIsBc0rkOuyFDwvea6zTBNp1mnK-Bhd9Xt33n128Sy1tcFAXesGXBcUixAhjEsa0ZseNd6F4KFSxrY_P8SvbK0oUQd_aqP-_KmDP9X7i3H5L77z0YHfHw_e9kGIHr4seBWMhcZAaX00qkpnj634BvBtjvI |
| CitedBy_id | crossref_primary_10_1016_j_geoderma_2023_116594 crossref_primary_10_1016_j_still_2024_106087 crossref_primary_10_1109_JSTARS_2024_3508817 crossref_primary_10_1016_j_foodchem_2025_143181 crossref_primary_10_1016_j_geoderma_2023_116752 crossref_primary_10_1016_j_chemolab_2022_104578 crossref_primary_10_1016_j_geoderma_2023_116754 crossref_primary_10_3390_agronomy15061367 crossref_primary_10_1002_xrs_70010 crossref_primary_10_1016_j_aiia_2025_02_001 crossref_primary_10_1093_mtomcs_mfad041 crossref_primary_10_1111_ejss_13208 crossref_primary_10_1016_j_geodrs_2022_e00573 crossref_primary_10_1016_j_geoderma_2023_116584 crossref_primary_10_1177_09670335231173140 crossref_primary_10_1016_j_chemer_2025_126292 crossref_primary_10_3390_rs13112023 crossref_primary_10_1016_j_eja_2025_127633 crossref_primary_10_1016_j_jes_2023_09_016 crossref_primary_10_1016_j_geoderma_2023_116582 crossref_primary_10_3389_fsoil_2025_1668732 crossref_primary_10_3390_rs16163009 crossref_primary_10_1016_j_geodrs_2024_e00783 crossref_primary_10_1016_j_compag_2024_109443 crossref_primary_10_1080_15320383_2025_2467013 crossref_primary_10_1016_j_geoderma_2023_116701 crossref_primary_10_3390_ai3040049 crossref_primary_10_3390_toxics12050357 crossref_primary_10_1016_j_microc_2023_108813 crossref_primary_10_3390_s22093459 crossref_primary_10_1016_j_scitotenv_2023_168381 crossref_primary_10_1016_j_compag_2024_108636 crossref_primary_10_1134_S1064229322601214 crossref_primary_10_1016_j_saa_2023_122452 crossref_primary_10_3390_s22020645 crossref_primary_10_1016_j_jenvman_2024_121311 crossref_primary_10_3390_agronomy11061028 crossref_primary_10_1016_j_still_2025_106546 crossref_primary_10_1016_j_geoderma_2021_115648 crossref_primary_10_1016_j_geoderma_2021_115649 crossref_primary_10_1016_j_still_2024_106307 crossref_primary_10_1007_s11119_024_10181_6 crossref_primary_10_5194_soil_11_553_2025 crossref_primary_10_1016_j_catena_2024_107914 crossref_primary_10_1016_j_geodrs_2023_e00752 crossref_primary_10_3390_s22155919 crossref_primary_10_1016_j_geoderma_2024_116938 crossref_primary_10_1016_j_fuel_2024_131420 crossref_primary_10_1016_j_compag_2022_107459 crossref_primary_10_3390_rs13234752 crossref_primary_10_1016_j_apt_2023_104055 crossref_primary_10_1021_acsagscitech_5c00345 crossref_primary_10_1016_j_compag_2023_107828 crossref_primary_10_3390_s23020662 crossref_primary_10_1016_j_geoderma_2022_116102 crossref_primary_10_1016_j_still_2021_105284 crossref_primary_10_1016_j_geoderma_2022_116301 crossref_primary_10_1016_j_still_2023_105768 crossref_primary_10_3390_land10020215 |
| Cites_doi | 10.3390/rs10030479 10.1016/j.talanta.2014.02.033 10.2136/sssaj2004.1945 10.1016/j.geoderma.2019.05.002 10.1016/S0169-7439(99)00047-7 10.1080/05704928.2019.1608110 10.1021/ac60214a047 10.1016/j.geoderma.2010.03.001 10.3390/rs12060963 10.2136/sssaj2001.652480x 10.1111/ejss.12729 10.1016/j.geoderma.2012.01.013 10.1255/jnirs.614 10.2307/2532051 10.1023/A:1006559212014 10.1255/jnirs.461 10.1016/S0065-2113(10)07005-7 10.1016/j.still.2019.03.006 10.1016/j.geoderma.2012.06.034 10.3390/rs12081308 10.1016/j.radphyschem.2018.08.035 10.1016/j.talanta.2012.06.081 10.1016/j.compag.2018.06.042 10.1016/B978-0-12-394275-3.00003-1 10.1016/j.still.2015.04.003 10.1016/j.geoderma.2018.10.015 10.2136/sssaj2011.0021 10.2136/sssaj2015.10.0361 10.1016/j.geoderma.2014.12.011 10.1016/j.inffus.2004.12.002 10.1016/j.biosystemseng.2007.09.007 10.1016/j.still.2008.10.006 10.1016/B978-0-12-812986-9.00023-3 10.1016/j.trac.2010.05.006 10.1016/j.geoderma.2017.05.031 10.1016/j.trac.2009.07.007 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.geoderma.2020.114851 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 1872-6259 |
| ExternalDocumentID | 10_1016_j_geoderma_2020_114851 S0016706120326069 |
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABYKQ ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACSBN ADBBV ADEZE ADQTV AEBSH AEFWE AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ATOGT AXJTR BKOJK BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SDF SDG SES SPC SPCBC SSA SSE SSZ T5K ~02 ~G- 29H 9DU AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABUFD ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 K-O OHT R2- SEN SEP SEW VH1 WUQ XPP Y6R ZMT ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-a416t-f40c0e34a92f2af11e4634473c324c44999875ea3fe6bdd438d38a77a06cb5523 |
| ISICitedReferencesCount | 64 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000609999200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0016-7061 |
| IngestDate | Thu Oct 02 05:43:12 EDT 2025 Tue Nov 18 22:51:05 EST 2025 Sat Nov 29 07:33:57 EST 2025 Fri Feb 23 02:47:03 EST 2024 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Spectra fusion (SF) Visible-near-infrared (Vis-NIR) Soil analysis X-ray fluorescence (XRF) Precision agriculture (PA) Convolutional neural network (CNN) Chemometrics Local weighted regression (LWR) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-a416t-f40c0e34a92f2af11e4634473c324c44999875ea3fe6bdd438d38a77a06cb5523 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016706120326069 |
| PQID | 2552002361 |
| PQPubID | 24069 |
| ParticipantIDs | proquest_miscellaneous_2552002361 crossref_citationtrail_10_1016_j_geoderma_2020_114851 crossref_primary_10_1016_j_geoderma_2020_114851 elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114851 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-01 2021-03-00 20210301 |
| PublicationDateYYYYMMDD | 2021-03-01 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Geoderma |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kaniu, Angeyo, Mwala, Mwangi (b0060) 2012; 98 Maleki, Mouazen, De Ketelaere, Ramon, De Baerdemaeker (b0075) 2008; 99 Wang, Chakraborty, Weindorf, Li, Sharma, Paul, Ali (b0200) 2015; 243–244 Mukhopadhyay, S., Maiti, S.K., 2018. Chapter 23 - Techniques for Quantative Evaluation of Mine Site Reclamation Success: Case Study, in: Prasad, M.N.V., Favas, P.J. de C., Maiti, S.K.B.T.-B.-G. for M.S.R. (Eds.), . Elsevier, pp. 415–438. DOI:10.1016/B978-0-12-812986-9.00023-3. Nawar, Cipullo, Douglas, Coulon, Mouazen (b0140) 2019; 55 Castrignanò, Wong, Stelluti, Benedetto, Sollitto (b0035) 2012; 175–176 Kuang, Mahmood, Quraishi, Hoogmoed, Mouazen, van Henten (b0065) 2012 Nawar, S., Abdul Munnaf, M., Mouazen, A.M., 2020. Machine Learning Based On-Line Prediction of Soil Organic Carbon after Removal of Soil Moisture Effect. Remote Sens. DOI:10.3390/rs12081308. Nawar, Mouazen (b0135) 2019; 190 Soodan, Pakade, Nagpal, Katnoria (b0175) 2014; 125 Xu, Zhao, Li, Chen, Jiang, Zhou, Shi (b0215) 2019; 70 Chang, Laird, Mausbach, Hurburgh (b0040) 2001; 65 Mouazen, Kuang (b0080) 2016; 155 Tekin, Tumsavas, Mouazen (b0190) 2012; 76 Moura-Bueno, Dalmolin, ten Caten, Dotto, Demattê (b0110) 2019; 337 Nawar, Mouazen (b0130) 2018; 151 Goodfellow, Bengio, Courville (b0050) 2016 Atkeson, Moore, Schaal (b0015) 1997; 11 Mouazen, Alexandridis, Buddenbaum, Cohen, Moshou, Mulla, Nawar, Sudduth (b0105) 2019 Munnaf, Haesaert, Meirvenne, Mouazen (b0120) 2019 Rinnan, Berg, Engelsen (b0155) 2009; 28 O'Rourke, Minasny, Holden, McBratney (b0150) 2016; 80 Hong, Chen, Yu, Liu, Liu, Zhang, Liu, Cheng (b0055) 2018; 10 Veum, Sudduth, Kremer, Kitchen (b0195) 2017; 305 Weindorf, Zhu, McDaniel, Valerio, Lynn, Michaelson, Clark, Ping (b0205) 2012; 189–190 Russ (b0160) 1984 Mouazen, Saeys, Xing, De Baerdemaeker, Ramon (b0085) 2005; 13 Mouazen, Kuang, De Baerdemaeker, Ramon (b0100) 2010; 158 Nawar, Delbecque, Declercq, De Smedt, Finke, Verdoodt, Van Meirvenne, Mouazen (b0145) 2019; 350 Mouazen, Maleki, Cockx, Van Meirvenne, Van Holm, Merckx, De Baerdemaeker, Ramon (b0095) 2009; 103 Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, McBratney (b0020) 2010; 29 Carroll, Ruppert (b0025) 2019 Casa, Castaldi, Pascucci, Basso, Pignatti (b0030) 2013; 12 Savitzky, Golay (b0170) 1964; 36 Tavares, T.R., Molin, J.P., Nunes, L.C., Alves, E.E.N., Melquiades, F.L., de Carvalho, H.W.P., Mouazen, A.M., 2020. Effect of X-Ray Tube Configuration on Measurement of Key Soil Fertility Attributes with XRF. Remote Sens. 12, 963. Stenberg, Rossel, Mouazen, Wetterlind (b0180) 2010 Yılmaz, Boydaş (b0225) 2018; 153 Munnaf, Nawar, Mouazen (b0005) 2019 Ryan (b0165) 1997 Ya’allah, Saradjian (b0220) 2005; 6 Andrews, Karlen, Cambardella (b0010) 2004; 68 Lin (b0070) 1989; 45 Mouazen, De Baerdemaeker, Ramon (b0090) 2006; 14 De Maesschalck, Jouan-Rimbaud, Massart (b0045) 2000; 50 Wong, Wittwer, Oliver, Robertson (b0210) 2010 Soodan (10.1016/j.geoderma.2020.114851_b0175) 2014; 125 Atkeson (10.1016/j.geoderma.2020.114851_b0015) 1997; 11 Nawar (10.1016/j.geoderma.2020.114851_b0145) 2019; 350 De Maesschalck (10.1016/j.geoderma.2020.114851_b0045) 2000; 50 Moura-Bueno (10.1016/j.geoderma.2020.114851_b0110) 2019; 337 Rinnan (10.1016/j.geoderma.2020.114851_b0155) 2009; 28 Maleki (10.1016/j.geoderma.2020.114851_b0075) 2008; 99 Mouazen (10.1016/j.geoderma.2020.114851_b0085) 2005; 13 Goodfellow (10.1016/j.geoderma.2020.114851_b0050) 2016 Mouazen (10.1016/j.geoderma.2020.114851_b0090) 2006; 14 Castrignanò (10.1016/j.geoderma.2020.114851_b0035) 2012; 175–176 Andrews (10.1016/j.geoderma.2020.114851_b0010) 2004; 68 Ryan (10.1016/j.geoderma.2020.114851_b0165) 1997 Savitzky (10.1016/j.geoderma.2020.114851_b0170) 1964; 36 Bellon-Maurel (10.1016/j.geoderma.2020.114851_b0020) 2010; 29 Weindorf (10.1016/j.geoderma.2020.114851_b0205) 2012; 189–190 Nawar (10.1016/j.geoderma.2020.114851_b0135) 2019; 190 Munnaf (10.1016/j.geoderma.2020.114851_b0005) 2019 Mouazen (10.1016/j.geoderma.2020.114851_b0100) 2010; 158 Munnaf (10.1016/j.geoderma.2020.114851_b0120) 2019 Wang (10.1016/j.geoderma.2020.114851_b0200) 2015; 243–244 10.1016/j.geoderma.2020.114851_b0185 Chang (10.1016/j.geoderma.2020.114851_b0040) 2001; 65 10.1016/j.geoderma.2020.114851_b0125 Nawar (10.1016/j.geoderma.2020.114851_b0140) 2019; 55 Kuang (10.1016/j.geoderma.2020.114851_b0065) 2012 O'Rourke (10.1016/j.geoderma.2020.114851_b0150) 2016; 80 Lin (10.1016/j.geoderma.2020.114851_b0070) 1989; 45 Wong (10.1016/j.geoderma.2020.114851_b0210) 2010 Nawar (10.1016/j.geoderma.2020.114851_b0130) 2018; 151 Casa (10.1016/j.geoderma.2020.114851_b0030) 2013; 12 Carroll (10.1016/j.geoderma.2020.114851_b0025) 2019 Mouazen (10.1016/j.geoderma.2020.114851_b0080) 2016; 155 Mouazen (10.1016/j.geoderma.2020.114851_b0095) 2009; 103 Stenberg (10.1016/j.geoderma.2020.114851_b0180) 2010 Russ (10.1016/j.geoderma.2020.114851_b0160) 1984 Kaniu (10.1016/j.geoderma.2020.114851_b0060) 2012; 98 Mouazen (10.1016/j.geoderma.2020.114851_b0105) 2019 Veum (10.1016/j.geoderma.2020.114851_b0195) 2017; 305 Hong (10.1016/j.geoderma.2020.114851_b0055) 2018; 10 10.1016/j.geoderma.2020.114851_b0115 Xu (10.1016/j.geoderma.2020.114851_b0215) 2019; 70 Ya’allah (10.1016/j.geoderma.2020.114851_b0220) 2005; 6 Yılmaz (10.1016/j.geoderma.2020.114851_b0225) 2018; 153 Tekin (10.1016/j.geoderma.2020.114851_b0190) 2012; 76 |
| References_xml | – volume: 28 start-page: 1201 year: 2009 end-page: 1222 ident: b0155 article-title: Review of the most common pre-processing techniques for near-infrared spectra publication-title: TrAC, Trends Anal. Chem. – volume: 14 start-page: 189 year: 2006 end-page: 199 ident: b0090 article-title: Effect of wavelength range on the measurement accuracy of some selected soil constituents using visual-near infrared spectroscopy publication-title: J. Near Infrared Spectrosc. – start-page: 163 year: 2010 end-page: 215 ident: b0180 article-title: Chapter five - visible and near infrared spectroscopy in soil science publication-title: Advances in Agronomy – volume: 151 start-page: 469 year: 2018 end-page: 477 ident: b0130 article-title: Optimal sample selection for measurement of soil organic carbon using on-line vis-NIR spectroscopy publication-title: Comput. Electron. Agric. – volume: 65 start-page: 480 year: 2001 end-page: 490 ident: b0040 article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties publication-title: Soil Sci. Soc. Am. J. – volume: 80 start-page: 888 year: 2016 end-page: 899 ident: b0150 article-title: Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry publication-title: Soil Sci. Soc. Am. J. – volume: 190 start-page: 120 year: 2019 end-page: 127 ident: b0135 article-title: On-line vis-NIR spectroscopy prediction of soil organic carbon using machine learning publication-title: Soil Tillage Res. – volume: 68 start-page: 1945 year: 2004 end-page: 1962 ident: b0010 article-title: The soil management assessment framework: a quantitative soil quality evaluation method publication-title: Soil Sci. Soc. Am. J. – volume: 337 start-page: 565 year: 2019 end-page: 581 ident: b0110 article-title: Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions publication-title: Geoderma – volume: 11 start-page: 11 year: 1997 end-page: 73 ident: b0015 article-title: Locally weighted learning publication-title: Artif. Intell. Rev. – start-page: 155 year: 2012 end-page: 223 ident: b0065 article-title: Chapter four - sensing soil properties in the laboratory, in situ, and on-line: a review publication-title: Advances in Agronomy, Advances in Agronomy – year: 2019 ident: b0025 article-title: Transformation and Weighting in Regression – volume: 243–244 start-page: 157 year: 2015 end-page: 167 ident: b0200 article-title: Synthesized use of VisNIR DRS and PXRF for soil characterization: total carbon and total nitrogen publication-title: Geoderma – volume: 103 start-page: 144 year: 2009 end-page: 152 ident: b0095 article-title: Optimum three-point linkage set up for improving the quality of soil spectra and the accuracy of soil phosphorus measured using an on-line visible and near infrared sensor publication-title: Soil Tillage Res. – volume: 50 start-page: 1 year: 2000 end-page: 18 ident: b0045 article-title: The Mahalanobis distance publication-title: Chemometrics Intelligent Lab. Syst. – volume: 13 start-page: 87 year: 2005 end-page: 97 ident: b0085 article-title: Near infrared spectroscopy for agricultural materials: an instrument comparison publication-title: J. Near Infrared Spectrosc. – volume: 189–190 start-page: 268 year: 2012 end-page: 277 ident: b0205 article-title: Characterizing soils via portable x-ray fluorescence spectrometer: 2. Spodic and Albic horizons publication-title: Geoderma – volume: 175–176 start-page: 78 year: 2012 end-page: 89 ident: b0035 article-title: Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation publication-title: Geoderma – reference: Nawar, S., Abdul Munnaf, M., Mouazen, A.M., 2020. Machine Learning Based On-Line Prediction of Soil Organic Carbon after Removal of Soil Moisture Effect. Remote Sens. DOI:10.3390/rs12081308. – volume: 99 start-page: 35 year: 2008 end-page: 46 ident: b0075 article-title: On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor publication-title: Biosyst. Eng. – volume: 12 year: 2013 ident: b0030 article-title: Geophysical and hyperspectral data fusion techniques for in-field estimation of soil properties publication-title: Vadose Zo. J. – volume: 76 start-page: 188 year: 2012 end-page: 198 ident: b0190 article-title: Effect of moisture content on prediction of organic carbon and pH using visible and near‐infrared spectroscopy publication-title: Soil Sci. Soc. Am. J. – volume: 125 start-page: 405 year: 2014 end-page: 410 ident: b0175 article-title: Analytical techniques for estimation of heavy metals in soil ecosystem: a tabulated review publication-title: Talanta – volume: 45 start-page: 255 year: 1989 ident: b0070 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics – volume: 36 start-page: 1627 year: 1964 end-page: 1639 ident: b0170 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. – volume: 29 start-page: 1073 year: 2010 end-page: 1081 ident: b0020 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: TrAC, Trends Anal. Chem. – volume: 6 start-page: 235 year: 2005 end-page: 241 ident: b0220 article-title: Automatic normalization of satellite images using unchanged pixels within urban areas publication-title: Information Fusion – volume: 10 year: 2018 ident: b0055 article-title: Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by VIS–NIR spectroscopy publication-title: Remote Sens. – start-page: 11 year: 2019 ident: b0005 article-title: Estimation of secondary soil properties by fusion of laboratory and on-line measured Vis–NIR Spectra publication-title: Remote Sens. – reference: Tavares, T.R., Molin, J.P., Nunes, L.C., Alves, E.E.N., Melquiades, F.L., de Carvalho, H.W.P., Mouazen, A.M., 2020. Effect of X-Ray Tube Configuration on Measurement of Key Soil Fertility Attributes with XRF. Remote Sens. 12, 963. – year: 2019 ident: b0120 article-title: Site-specific seeding using multi-sensor and data fusion techniques: a review publication-title: Advances in Agronomy – start-page: 343 year: 2010 end-page: 349 ident: b0210 article-title: Use of EM38 and gamma ray spectrometry as complementary sensors for high-resolution soil property mapping publication-title: Proximal Soil Sensing – start-page: 35 year: 2019 end-page: 138 ident: b0105 article-title: Monitoring publication-title: Agricultural Internet of Things and Decision Support for Precision Smart Farming – volume: 55 start-page: 525 year: 2019 end-page: 557 ident: b0140 article-title: The applicability of spectroscopy methods for estimating potentially toxic elements in soils: state-of-the-art and future trends publication-title: Appl. Spectrosc. Rev. – volume: 153 start-page: 17 year: 2018 end-page: 20 ident: b0225 article-title: The use of scattering peaks for matrix effect correction in WDXRF analysis publication-title: Radiat. Phys. Chem. – year: 1997 ident: b0165 article-title: Modern Regression Methods – volume: 305 start-page: 53 year: 2017 end-page: 61 ident: b0195 article-title: Sensor data fusion for soil health assessment publication-title: Geoderma – volume: 155 start-page: 471 year: 2016 end-page: 477 ident: b0080 article-title: On-line visible and near infrared spectroscopy for in-field phosphorous management publication-title: Soil Tillage Res. – reference: Mukhopadhyay, S., Maiti, S.K., 2018. Chapter 23 - Techniques for Quantative Evaluation of Mine Site Reclamation Success: Case Study, in: Prasad, M.N.V., Favas, P.J. de C., Maiti, S.K.B.T.-B.-G. for M.S.R. (Eds.), . Elsevier, pp. 415–438. DOI:10.1016/B978-0-12-812986-9.00023-3. – volume: 158 start-page: 23 year: 2010 end-page: 31 ident: b0100 article-title: Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy publication-title: Geoderma – year: 2016 ident: b0050 article-title: Deep Learning – volume: 350 start-page: 29 year: 2019 end-page: 39 ident: b0145 article-title: Can spectral analyses improve measurement of key soil fertility parameters with X-ray fluorescence spectrometry? publication-title: Geoderma – volume: 98 start-page: 236 year: 2012 end-page: 240 ident: b0060 article-title: Energy dispersive X-ray fluorescence and scattering assessment of soil quality via partial least squares and artificial neural networks analytical modeling approaches publication-title: Talanta – start-page: 208 year: 1984 end-page: 219 ident: b0160 article-title: Chapter 18 - X-ray fluorescence - fundamentals publication-title: Fundamentals of Energy Dispersive X-ray Analysis – volume: 70 start-page: 162 year: 2019 end-page: 173 ident: b0215 article-title: Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China: predictions based on multi-sensor fusion publication-title: Eur. J. Soil Sci. – volume: 10 year: 2018 ident: 10.1016/j.geoderma.2020.114851_b0055 article-title: Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by VIS–NIR spectroscopy publication-title: Remote Sens. doi: 10.3390/rs10030479 – volume: 125 start-page: 405 year: 2014 ident: 10.1016/j.geoderma.2020.114851_b0175 article-title: Analytical techniques for estimation of heavy metals in soil ecosystem: a tabulated review publication-title: Talanta doi: 10.1016/j.talanta.2014.02.033 – volume: 68 start-page: 1945 issue: 6 year: 2004 ident: 10.1016/j.geoderma.2020.114851_b0010 article-title: The soil management assessment framework: a quantitative soil quality evaluation method publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2004.1945 – year: 2016 ident: 10.1016/j.geoderma.2020.114851_b0050 – volume: 350 start-page: 29 year: 2019 ident: 10.1016/j.geoderma.2020.114851_b0145 article-title: Can spectral analyses improve measurement of key soil fertility parameters with X-ray fluorescence spectrometry? publication-title: Geoderma doi: 10.1016/j.geoderma.2019.05.002 – volume: 50 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.geoderma.2020.114851_b0045 article-title: The Mahalanobis distance publication-title: Chemometrics Intelligent Lab. Syst. doi: 10.1016/S0169-7439(99)00047-7 – volume: 55 start-page: 525 issue: 7 year: 2019 ident: 10.1016/j.geoderma.2020.114851_b0140 article-title: The applicability of spectroscopy methods for estimating potentially toxic elements in soils: state-of-the-art and future trends publication-title: Appl. Spectrosc. Rev. doi: 10.1080/05704928.2019.1608110 – volume: 36 start-page: 1627 issue: 8 year: 1964 ident: 10.1016/j.geoderma.2020.114851_b0170 article-title: Smoothing and differentiation of data by simplified least squares procedures publication-title: Anal. Chem. doi: 10.1021/ac60214a047 – volume: 158 start-page: 23 issue: 1-2 year: 2010 ident: 10.1016/j.geoderma.2020.114851_b0100 article-title: Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy publication-title: Geoderma doi: 10.1016/j.geoderma.2010.03.001 – ident: 10.1016/j.geoderma.2020.114851_b0185 doi: 10.3390/rs12060963 – volume: 65 start-page: 480 issue: 2 year: 2001 ident: 10.1016/j.geoderma.2020.114851_b0040 article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2001.652480x – volume: 70 start-page: 162 issue: 1 year: 2019 ident: 10.1016/j.geoderma.2020.114851_b0215 article-title: Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China: predictions based on multi-sensor fusion publication-title: Eur. J. Soil Sci. doi: 10.1111/ejss.12729 – volume: 175–176 start-page: 78 year: 2012 ident: 10.1016/j.geoderma.2020.114851_b0035 article-title: Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation publication-title: Geoderma doi: 10.1016/j.geoderma.2012.01.013 – start-page: 35 year: 2019 ident: 10.1016/j.geoderma.2020.114851_b0105 article-title: Monitoring – year: 1997 ident: 10.1016/j.geoderma.2020.114851_b0165 – volume: 14 start-page: 189 issue: 3 year: 2006 ident: 10.1016/j.geoderma.2020.114851_b0090 article-title: Effect of wavelength range on the measurement accuracy of some selected soil constituents using visual-near infrared spectroscopy publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.614 – volume: 45 start-page: 255 issue: 1 year: 1989 ident: 10.1016/j.geoderma.2020.114851_b0070 article-title: A concordance correlation coefficient to evaluate reproducibility publication-title: Biometrics doi: 10.2307/2532051 – volume: 11 start-page: 11 year: 1997 ident: 10.1016/j.geoderma.2020.114851_b0015 article-title: Locally weighted learning publication-title: Artif. Intell. Rev. doi: 10.1023/A:1006559212014 – start-page: 208 year: 1984 ident: 10.1016/j.geoderma.2020.114851_b0160 article-title: Chapter 18 - X-ray fluorescence - fundamentals – volume: 13 start-page: 87 issue: 2 year: 2005 ident: 10.1016/j.geoderma.2020.114851_b0085 article-title: Near infrared spectroscopy for agricultural materials: an instrument comparison publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.461 – start-page: 163 year: 2010 ident: 10.1016/j.geoderma.2020.114851_b0180 article-title: Chapter five - visible and near infrared spectroscopy in soil science doi: 10.1016/S0065-2113(10)07005-7 – volume: 190 start-page: 120 year: 2019 ident: 10.1016/j.geoderma.2020.114851_b0135 article-title: On-line vis-NIR spectroscopy prediction of soil organic carbon using machine learning publication-title: Soil Tillage Res. doi: 10.1016/j.still.2019.03.006 – volume: 189–190 start-page: 268 year: 2012 ident: 10.1016/j.geoderma.2020.114851_b0205 article-title: Characterizing soils via portable x-ray fluorescence spectrometer: 2. Spodic and Albic horizons publication-title: Geoderma doi: 10.1016/j.geoderma.2012.06.034 – year: 2019 ident: 10.1016/j.geoderma.2020.114851_b0120 article-title: Site-specific seeding using multi-sensor and data fusion techniques: a review – ident: 10.1016/j.geoderma.2020.114851_b0125 doi: 10.3390/rs12081308 – volume: 12 year: 2013 ident: 10.1016/j.geoderma.2020.114851_b0030 article-title: Geophysical and hyperspectral data fusion techniques for in-field estimation of soil properties publication-title: Vadose Zo. J. – volume: 153 start-page: 17 year: 2018 ident: 10.1016/j.geoderma.2020.114851_b0225 article-title: The use of scattering peaks for matrix effect correction in WDXRF analysis publication-title: Radiat. Phys. Chem. doi: 10.1016/j.radphyschem.2018.08.035 – year: 2019 ident: 10.1016/j.geoderma.2020.114851_b0025 – volume: 98 start-page: 236 year: 2012 ident: 10.1016/j.geoderma.2020.114851_b0060 article-title: Energy dispersive X-ray fluorescence and scattering assessment of soil quality via partial least squares and artificial neural networks analytical modeling approaches publication-title: Talanta doi: 10.1016/j.talanta.2012.06.081 – volume: 151 start-page: 469 year: 2018 ident: 10.1016/j.geoderma.2020.114851_b0130 article-title: Optimal sample selection for measurement of soil organic carbon using on-line vis-NIR spectroscopy publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.06.042 – start-page: 155 year: 2012 ident: 10.1016/j.geoderma.2020.114851_b0065 article-title: Chapter four - sensing soil properties in the laboratory, in situ, and on-line: a review doi: 10.1016/B978-0-12-394275-3.00003-1 – volume: 155 start-page: 471 year: 2016 ident: 10.1016/j.geoderma.2020.114851_b0080 article-title: On-line visible and near infrared spectroscopy for in-field phosphorous management publication-title: Soil Tillage Res. doi: 10.1016/j.still.2015.04.003 – volume: 337 start-page: 565 year: 2019 ident: 10.1016/j.geoderma.2020.114851_b0110 article-title: Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions publication-title: Geoderma doi: 10.1016/j.geoderma.2018.10.015 – volume: 76 start-page: 188 issue: 1 year: 2012 ident: 10.1016/j.geoderma.2020.114851_b0190 article-title: Effect of moisture content on prediction of organic carbon and pH using visible and near‐infrared spectroscopy publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2011.0021 – start-page: 343 year: 2010 ident: 10.1016/j.geoderma.2020.114851_b0210 article-title: Use of EM38 and gamma ray spectrometry as complementary sensors for high-resolution soil property mapping – volume: 80 start-page: 888 issue: 4 year: 2016 ident: 10.1016/j.geoderma.2020.114851_b0150 article-title: Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2015.10.0361 – volume: 243–244 start-page: 157 year: 2015 ident: 10.1016/j.geoderma.2020.114851_b0200 article-title: Synthesized use of VisNIR DRS and PXRF for soil characterization: total carbon and total nitrogen publication-title: Geoderma doi: 10.1016/j.geoderma.2014.12.011 – volume: 6 start-page: 235 issue: 3 year: 2005 ident: 10.1016/j.geoderma.2020.114851_b0220 article-title: Automatic normalization of satellite images using unchanged pixels within urban areas publication-title: Information Fusion doi: 10.1016/j.inffus.2004.12.002 – volume: 99 start-page: 35 issue: 1 year: 2008 ident: 10.1016/j.geoderma.2020.114851_b0075 article-title: On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2007.09.007 – volume: 103 start-page: 144 issue: 1 year: 2009 ident: 10.1016/j.geoderma.2020.114851_b0095 article-title: Optimum three-point linkage set up for improving the quality of soil spectra and the accuracy of soil phosphorus measured using an on-line visible and near infrared sensor publication-title: Soil Tillage Res. doi: 10.1016/j.still.2008.10.006 – start-page: 11 year: 2019 ident: 10.1016/j.geoderma.2020.114851_b0005 article-title: Estimation of secondary soil properties by fusion of laboratory and on-line measured Vis–NIR Spectra publication-title: Remote Sens. – ident: 10.1016/j.geoderma.2020.114851_b0115 doi: 10.1016/B978-0-12-812986-9.00023-3 – volume: 29 start-page: 1073 issue: 9 year: 2010 ident: 10.1016/j.geoderma.2020.114851_b0020 article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2010.05.006 – volume: 305 start-page: 53 year: 2017 ident: 10.1016/j.geoderma.2020.114851_b0195 article-title: Sensor data fusion for soil health assessment publication-title: Geoderma doi: 10.1016/j.geoderma.2017.05.031 – volume: 28 start-page: 1201 issue: 10 year: 2009 ident: 10.1016/j.geoderma.2020.114851_b0155 article-title: Review of the most common pre-processing techniques for near-infrared spectra publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2009.07.007 |
| SSID | ssj0017020 |
| Score | 2.5725842 |
| Snippet | •Fusion of Vis-NIR and XRF spectra in soil analysis is examined.•Spectra of 253 soil samples of 9 fields were used to evaluate the proposed... Precision agriculture (PA) is an integrated solution to optimize the application of farming inputs site-specifically to increase crops efficiency, reduce... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114851 |
| SubjectTerms | calcium Chemometrics Convolutional neural network (CNN) Local weighted regression (LWR) magnesium neural networks organic carbon phosphorus precision agriculture Precision agriculture (PA) prediction principal component analysis sodium Soil analysis soil fertility soil properties Spectra fusion (SF) spectrometers Visible-near-infrared (Vis-NIR) X-ray fluorescence (XRF) |
| Title | Fusion of Vis-NIR and XRF spectra for estimation of key soil attributes |
| URI | https://dx.doi.org/10.1016/j.geoderma.2020.114851 https://www.proquest.com/docview/2552002361 |
| Volume | 385 |
| WOSCitedRecordID | wos000609999200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6259 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017020 issn: 0016-7061 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFOUQmUkblFKEsd5HFeo24fUFSoF7S2aOE7ZqptUm01V9dczfiSblpbSA5cosmIr8Xwez8Qz3xDymTEuULSlyxkP3TCUngs85W5U8CIJcz-P01IXm4gnk2Q6Tb_ZdMVGlxOIqyq5vEzP_6uosQ2FrVJnHyDuflBswHsUOl5R7Hj9J8GP28YagT9njTvZP9LnA9OjsaOzKhdgWL5xac97cxFXstPUszMHlqYClo0stFbrrlQV01Ya_AAuoNBhAN-3nT2Y2wQpE1xYgeZ5PGx_wXwOhTPKi0HwYd3CldF0ut053B7-dwgGgVedLvUjN_YMlXqnS1nCB9pQ-VqGTvYPRW3-GZziZJkPQE890MTFtsN1ZuwbO1YfR9iFqJ1m3TiZGicz4zwm60HMU9R166P9nelBf7oUe5au037BIHP89je6y2i5sX1rm-T4BXlunQk6MiB4SR7J6hV5NjpZWEIV-ZrsGjjQuqQWDhThQBEO1MKBIhzoCg7qSYQDVXCgKzi8IT_GO8df91xbPMMFtLGXbhl6wpMshDQoAyh9X4aRYndkAk1oESpHF11VCayUUV4UIUsKlkAcgxeJnPOAvSVrVV3Jd4QqRiOZC5kIUAULRMJT3BQZQ1-eFRCLDcK72cmEZZZXBU7Osr_LZ4N86fudG26Ve3uk3eRn1kI0ll-GuLq376dOWhmqUHUuBpWs2yZDrzrQlRT89w9-o03ydLU4PpC15aKVH8kTcbGcNYstC7zf55uS1w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+Vis-NIR+and+XRF+spectra+for+estimation+of+key+soil+attributes&rft.jtitle=Geoderma&rft.au=Javadi%2C+S.+Hamed&rft.au=Munnaf%2C+Muhammad+Abdul&rft.au=Mouazen%2C+Abdul+M.&rft.date=2021-03-01&rft.issn=0016-7061&rft.volume=385&rft.spage=114851&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114851&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2020_114851 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |