Fusion of Vis-NIR and XRF spectra for estimation of key soil attributes

•Fusion of Vis-NIR and XRF spectra in soil analysis is examined.•Spectra of 253 soil samples of 9 fields were used to evaluate the proposed methods.•Concatenation of Vis-NIR and XRF spectra may improve the soil prediction performance.•CNN with PCs of Vis-NIR and XRF spectra as input improves predict...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geoderma Jg. 385; S. 114851
Hauptverfasser: Javadi, S. Hamed, Munnaf, Muhammad Abdul, Mouazen, Abdul M.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.03.2021
Schlagworte:
ISSN:0016-7061, 1872-6259
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Fusion of Vis-NIR and XRF spectra in soil analysis is examined.•Spectra of 253 soil samples of 9 fields were used to evaluate the proposed methods.•Concatenation of Vis-NIR and XRF spectra may improve the soil prediction performance.•CNN with PCs of Vis-NIR and XRF spectra as input improves prediction performance. Precision agriculture (PA) is an integrated solution to optimize the application of farming inputs site-specifically to increase crops efficiency, reduce resources consumption, and protect the environment. Recently, visible-near- infrared (Vis-NIR) and X-ray-fluorescence (XRF) have emerged as efficient and inexpensive proximal soil sensing (PSS) methods for assessment of soil attributes in support of PA applications. The goal of this study was to explore the potential of data fusion in accuracy improvement of predicting key soil attributes using Vis-NIR and XRF spectra. More specifically, local weighted regression (LWR) and partial least squares (PLS) regression methods were examined and compared in prediction of the following soil attributes: pH, organic carbon (OC), phosphorous (P), magnesium (Mg), calcium (Ca), and sodium (Na). Besides the individual-sensor models, we evaluated three data fusion approaches basedon spectra fusion (SF). The first method concatenates the full Vis-NIR and XRF spectra before PLS (SF1-PLS). In the second SF approach (SF2-PLS), the concatenation of the principal components (PCs) of the two spectra types – each resulted from a principal component analysis (PCA) – were used as input to PLS. The last proposed method, SF-CNN, uses a convolutional neural network (CNN) with input in form of a matrix whose columns are the PCs of the Vis-NIR and the PCs of the XRF spectra. To evaluate the proposed methods, a total 267 soil samples of nine arable fields were collected and scanned in laboratory settings using a Vis-NIR and an XRF spectrometer. For each soil attribute, the samples of six fields were used as the calibration set while the samples of the remaining three fields were used for validating the prediction models. The individual-sensor and SF models were evaluated in terms of ratio of performance to inter-quartile (RPIQ), root mean square error (RMSE), and Lin’s concordance correlation coefficient (LCCC). The validation results showed that PLS generally outperforms LWR. Also, the prediction accuracy obtained from Vis-NIR spectra was better than that of XRF for all the attributes, except for Ca. The proposed SF schemes, especially the SF-CNN, outperformed the individual models in the prediction of all attributes, except P and Ca. The best improvement of the prediction results, compared to the individual-sensor models, was obtained for Mg (RPIQ = 1.60, RMSE = 6.88 mg/100 g, LCCC = 0.93), successively followed by pH (RPIQ = 2.52, RMSE = 0.36, LCCC = 0.68), and Na (RPIQ = 1.69, RMSE = 2.55 mg/100 g, LCCC = 0.65). Overall, the results of this study suggest the CNN-based fusion for the prediction of the studied key soil fertility attributes in order to enable making accurate decisions and control loop in PA applications using high-resolution data on spatiotemporal variability of soil.
AbstractList Precision agriculture (PA) is an integrated solution to optimize the application of farming inputs site-specifically to increase crops efficiency, reduce resources consumption, and protect the environment. Recently, visible-near- infrared (Vis-NIR) and X-ray-fluorescence (XRF) have emerged as efficient and inexpensive proximal soil sensing (PSS) methods for assessment of soil attributes in support of PA applications. The goal of this study was to explore the potential of data fusion in accuracy improvement of predicting key soil attributes using Vis-NIR and XRF spectra. More specifically, local weighted regression (LWR) and partial least squares (PLS) regression methods were examined and compared in prediction of the following soil attributes: pH, organic carbon (OC), phosphorous (P), magnesium (Mg), calcium (Ca), and sodium (Na). Besides the individual-sensor models, we evaluated three data fusion approaches basedon spectra fusion (SF). The first method concatenates the full Vis-NIR and XRF spectra before PLS (SF1-PLS). In the second SF approach (SF2-PLS), the concatenation of the principal components (PCs) of the two spectra types – each resulted from a principal component analysis (PCA) – were used as input to PLS. The last proposed method, SF-CNN, uses a convolutional neural network (CNN) with input in form of a matrix whose columns are the PCs of the Vis-NIR and the PCs of the XRF spectra. To evaluate the proposed methods, a total 267 soil samples of nine arable fields were collected and scanned in laboratory settings using a Vis-NIR and an XRF spectrometer. For each soil attribute, the samples of six fields were used as the calibration set while the samples of the remaining three fields were used for validating the prediction models. The individual-sensor and SF models were evaluated in terms of ratio of performance to inter-quartile (RPIQ), root mean square error (RMSE), and Lin’s concordance correlation coefficient (LCCC). The validation results showed that PLS generally outperforms LWR. Also, the prediction accuracy obtained from Vis-NIR spectra was better than that of XRF for all the attributes, except for Ca. The proposed SF schemes, especially the SF-CNN, outperformed the individual models in the prediction of all attributes, except P and Ca. The best improvement of the prediction results, compared to the individual-sensor models, was obtained for Mg (RPIQ = 1.60, RMSE = 6.88 mg/100 g, LCCC = 0.93), successively followed by pH (RPIQ = 2.52, RMSE = 0.36, LCCC = 0.68), and Na (RPIQ = 1.69, RMSE = 2.55 mg/100 g, LCCC = 0.65). Overall, the results of this study suggest the CNN-based fusion for the prediction of the studied key soil fertility attributes in order to enable making accurate decisions and control loop in PA applications using high-resolution data on spatiotemporal variability of soil.
•Fusion of Vis-NIR and XRF spectra in soil analysis is examined.•Spectra of 253 soil samples of 9 fields were used to evaluate the proposed methods.•Concatenation of Vis-NIR and XRF spectra may improve the soil prediction performance.•CNN with PCs of Vis-NIR and XRF spectra as input improves prediction performance. Precision agriculture (PA) is an integrated solution to optimize the application of farming inputs site-specifically to increase crops efficiency, reduce resources consumption, and protect the environment. Recently, visible-near- infrared (Vis-NIR) and X-ray-fluorescence (XRF) have emerged as efficient and inexpensive proximal soil sensing (PSS) methods for assessment of soil attributes in support of PA applications. The goal of this study was to explore the potential of data fusion in accuracy improvement of predicting key soil attributes using Vis-NIR and XRF spectra. More specifically, local weighted regression (LWR) and partial least squares (PLS) regression methods were examined and compared in prediction of the following soil attributes: pH, organic carbon (OC), phosphorous (P), magnesium (Mg), calcium (Ca), and sodium (Na). Besides the individual-sensor models, we evaluated three data fusion approaches basedon spectra fusion (SF). The first method concatenates the full Vis-NIR and XRF spectra before PLS (SF1-PLS). In the second SF approach (SF2-PLS), the concatenation of the principal components (PCs) of the two spectra types – each resulted from a principal component analysis (PCA) – were used as input to PLS. The last proposed method, SF-CNN, uses a convolutional neural network (CNN) with input in form of a matrix whose columns are the PCs of the Vis-NIR and the PCs of the XRF spectra. To evaluate the proposed methods, a total 267 soil samples of nine arable fields were collected and scanned in laboratory settings using a Vis-NIR and an XRF spectrometer. For each soil attribute, the samples of six fields were used as the calibration set while the samples of the remaining three fields were used for validating the prediction models. The individual-sensor and SF models were evaluated in terms of ratio of performance to inter-quartile (RPIQ), root mean square error (RMSE), and Lin’s concordance correlation coefficient (LCCC). The validation results showed that PLS generally outperforms LWR. Also, the prediction accuracy obtained from Vis-NIR spectra was better than that of XRF for all the attributes, except for Ca. The proposed SF schemes, especially the SF-CNN, outperformed the individual models in the prediction of all attributes, except P and Ca. The best improvement of the prediction results, compared to the individual-sensor models, was obtained for Mg (RPIQ = 1.60, RMSE = 6.88 mg/100 g, LCCC = 0.93), successively followed by pH (RPIQ = 2.52, RMSE = 0.36, LCCC = 0.68), and Na (RPIQ = 1.69, RMSE = 2.55 mg/100 g, LCCC = 0.65). Overall, the results of this study suggest the CNN-based fusion for the prediction of the studied key soil fertility attributes in order to enable making accurate decisions and control loop in PA applications using high-resolution data on spatiotemporal variability of soil.
ArticleNumber 114851
Author Munnaf, Muhammad Abdul
Javadi, S. Hamed
Mouazen, Abdul M.
Author_xml – sequence: 1
  givenname: S. Hamed
  surname: Javadi
  fullname: Javadi, S. Hamed
  email: h.javadi@ugent.be
– sequence: 2
  givenname: Muhammad Abdul
  surname: Munnaf
  fullname: Munnaf, Muhammad Abdul
  email: munnaf.mabdul@ugent.be
– sequence: 3
  givenname: Abdul M.
  surname: Mouazen
  fullname: Mouazen, Abdul M.
  email: abdul.mouazen@ugent.be
BookMark eNqFkE1LAzEQhoNUsK3-BcnRy9Z8bXYXPCjF1kJRKCreQpqdldTtpia7Qv-9qasXLz0NMzzvMPOM0KBxDSB0ScmEEiqvN5N3cCX4rZ4wwuKQijylJ2hI84wlkqXFAA1JJJOMSHqGRiFsYptFdojmsy5Y12BX4VcbksfFCuumxG-rGQ47MK3XuHIeQ2jtVre_5AfscXC2xrptvV13LYRzdFrpOsDFbx2jl9n98_QhWT7NF9O7ZaIFlW1SCWIIcKELVjFdUQpCciEybjgTRoiiKPIsBc0rkOuyFDwvea6zTBNp1mnK-Bhd9Xt33n128Sy1tcFAXesGXBcUixAhjEsa0ZseNd6F4KFSxrY_P8SvbK0oUQd_aqP-_KmDP9X7i3H5L77z0YHfHw_e9kGIHr4seBWMhcZAaX00qkpnj634BvBtjvI
CitedBy_id crossref_primary_10_1016_j_geoderma_2023_116594
crossref_primary_10_1016_j_still_2024_106087
crossref_primary_10_1109_JSTARS_2024_3508817
crossref_primary_10_1016_j_foodchem_2025_143181
crossref_primary_10_1016_j_geoderma_2023_116752
crossref_primary_10_1016_j_chemolab_2022_104578
crossref_primary_10_1016_j_geoderma_2023_116754
crossref_primary_10_3390_agronomy15061367
crossref_primary_10_1002_xrs_70010
crossref_primary_10_1016_j_aiia_2025_02_001
crossref_primary_10_1093_mtomcs_mfad041
crossref_primary_10_1111_ejss_13208
crossref_primary_10_1016_j_geodrs_2022_e00573
crossref_primary_10_1016_j_geoderma_2023_116584
crossref_primary_10_1177_09670335231173140
crossref_primary_10_1016_j_chemer_2025_126292
crossref_primary_10_3390_rs13112023
crossref_primary_10_1016_j_eja_2025_127633
crossref_primary_10_1016_j_jes_2023_09_016
crossref_primary_10_1016_j_geoderma_2023_116582
crossref_primary_10_3389_fsoil_2025_1668732
crossref_primary_10_3390_rs16163009
crossref_primary_10_1016_j_geodrs_2024_e00783
crossref_primary_10_1016_j_compag_2024_109443
crossref_primary_10_1080_15320383_2025_2467013
crossref_primary_10_1016_j_geoderma_2023_116701
crossref_primary_10_3390_ai3040049
crossref_primary_10_3390_toxics12050357
crossref_primary_10_1016_j_microc_2023_108813
crossref_primary_10_3390_s22093459
crossref_primary_10_1016_j_scitotenv_2023_168381
crossref_primary_10_1016_j_compag_2024_108636
crossref_primary_10_1134_S1064229322601214
crossref_primary_10_1016_j_saa_2023_122452
crossref_primary_10_3390_s22020645
crossref_primary_10_1016_j_jenvman_2024_121311
crossref_primary_10_3390_agronomy11061028
crossref_primary_10_1016_j_still_2025_106546
crossref_primary_10_1016_j_geoderma_2021_115648
crossref_primary_10_1016_j_geoderma_2021_115649
crossref_primary_10_1016_j_still_2024_106307
crossref_primary_10_1007_s11119_024_10181_6
crossref_primary_10_5194_soil_11_553_2025
crossref_primary_10_1016_j_catena_2024_107914
crossref_primary_10_1016_j_geodrs_2023_e00752
crossref_primary_10_3390_s22155919
crossref_primary_10_1016_j_geoderma_2024_116938
crossref_primary_10_1016_j_fuel_2024_131420
crossref_primary_10_1016_j_compag_2022_107459
crossref_primary_10_3390_rs13234752
crossref_primary_10_1016_j_apt_2023_104055
crossref_primary_10_1021_acsagscitech_5c00345
crossref_primary_10_1016_j_compag_2023_107828
crossref_primary_10_3390_s23020662
crossref_primary_10_1016_j_geoderma_2022_116102
crossref_primary_10_1016_j_still_2021_105284
crossref_primary_10_1016_j_geoderma_2022_116301
crossref_primary_10_1016_j_still_2023_105768
crossref_primary_10_3390_land10020215
Cites_doi 10.3390/rs10030479
10.1016/j.talanta.2014.02.033
10.2136/sssaj2004.1945
10.1016/j.geoderma.2019.05.002
10.1016/S0169-7439(99)00047-7
10.1080/05704928.2019.1608110
10.1021/ac60214a047
10.1016/j.geoderma.2010.03.001
10.3390/rs12060963
10.2136/sssaj2001.652480x
10.1111/ejss.12729
10.1016/j.geoderma.2012.01.013
10.1255/jnirs.614
10.2307/2532051
10.1023/A:1006559212014
10.1255/jnirs.461
10.1016/S0065-2113(10)07005-7
10.1016/j.still.2019.03.006
10.1016/j.geoderma.2012.06.034
10.3390/rs12081308
10.1016/j.radphyschem.2018.08.035
10.1016/j.talanta.2012.06.081
10.1016/j.compag.2018.06.042
10.1016/B978-0-12-394275-3.00003-1
10.1016/j.still.2015.04.003
10.1016/j.geoderma.2018.10.015
10.2136/sssaj2011.0021
10.2136/sssaj2015.10.0361
10.1016/j.geoderma.2014.12.011
10.1016/j.inffus.2004.12.002
10.1016/j.biosystemseng.2007.09.007
10.1016/j.still.2008.10.006
10.1016/B978-0-12-812986-9.00023-3
10.1016/j.trac.2010.05.006
10.1016/j.geoderma.2017.05.031
10.1016/j.trac.2009.07.007
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.geoderma.2020.114851
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6259
ExternalDocumentID 10_1016_j_geoderma_2020_114851
S0016706120326069
GroupedDBID --K
--M
-DZ
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABQEM
ABQYD
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACLVX
ACRLP
ACSBN
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KOM
LW9
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPC
SPCBC
SSA
SSE
SSZ
T5K
~02
~G-
29H
9DU
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
GROUPED_DOAJ
HLV
HMA
HMC
HVGLF
HZ~
H~9
K-O
OHT
R2-
SEN
SEP
SEW
VH1
WUQ
XPP
Y6R
ZMT
~HD
7S9
L.6
ID FETCH-LOGICAL-a416t-f40c0e34a92f2af11e4634473c324c44999875ea3fe6bdd438d38a77a06cb5523
ISICitedReferencesCount 64
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000609999200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0016-7061
IngestDate Thu Oct 02 05:43:12 EDT 2025
Tue Nov 18 22:51:05 EST 2025
Sat Nov 29 07:33:57 EST 2025
Fri Feb 23 02:47:03 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Spectra fusion (SF)
Visible-near-infrared (Vis-NIR)
Soil analysis
X-ray fluorescence (XRF)
Precision agriculture (PA)
Convolutional neural network (CNN)
Chemometrics
Local weighted regression (LWR)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-a416t-f40c0e34a92f2af11e4634473c324c44999875ea3fe6bdd438d38a77a06cb5523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0016706120326069
PQID 2552002361
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2552002361
crossref_citationtrail_10_1016_j_geoderma_2020_114851
crossref_primary_10_1016_j_geoderma_2020_114851
elsevier_sciencedirect_doi_10_1016_j_geoderma_2020_114851
PublicationCentury 2000
PublicationDate 2021-03-01
2021-03-00
20210301
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Geoderma
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kaniu, Angeyo, Mwala, Mwangi (b0060) 2012; 98
Maleki, Mouazen, De Ketelaere, Ramon, De Baerdemaeker (b0075) 2008; 99
Wang, Chakraborty, Weindorf, Li, Sharma, Paul, Ali (b0200) 2015; 243–244
Mukhopadhyay, S., Maiti, S.K., 2018. Chapter 23 - Techniques for Quantative Evaluation of Mine Site Reclamation Success: Case Study, in: Prasad, M.N.V., Favas, P.J. de C., Maiti, S.K.B.T.-B.-G. for M.S.R. (Eds.), . Elsevier, pp. 415–438. DOI:10.1016/B978-0-12-812986-9.00023-3.
Nawar, Cipullo, Douglas, Coulon, Mouazen (b0140) 2019; 55
Castrignanò, Wong, Stelluti, Benedetto, Sollitto (b0035) 2012; 175–176
Kuang, Mahmood, Quraishi, Hoogmoed, Mouazen, van Henten (b0065) 2012
Nawar, S., Abdul Munnaf, M., Mouazen, A.M., 2020. Machine Learning Based On-Line Prediction of Soil Organic Carbon after Removal of Soil Moisture Effect. Remote Sens. DOI:10.3390/rs12081308.
Nawar, Mouazen (b0135) 2019; 190
Soodan, Pakade, Nagpal, Katnoria (b0175) 2014; 125
Xu, Zhao, Li, Chen, Jiang, Zhou, Shi (b0215) 2019; 70
Chang, Laird, Mausbach, Hurburgh (b0040) 2001; 65
Mouazen, Kuang (b0080) 2016; 155
Tekin, Tumsavas, Mouazen (b0190) 2012; 76
Moura-Bueno, Dalmolin, ten Caten, Dotto, Demattê (b0110) 2019; 337
Nawar, Mouazen (b0130) 2018; 151
Goodfellow, Bengio, Courville (b0050) 2016
Atkeson, Moore, Schaal (b0015) 1997; 11
Mouazen, Alexandridis, Buddenbaum, Cohen, Moshou, Mulla, Nawar, Sudduth (b0105) 2019
Munnaf, Haesaert, Meirvenne, Mouazen (b0120) 2019
Rinnan, Berg, Engelsen (b0155) 2009; 28
O'Rourke, Minasny, Holden, McBratney (b0150) 2016; 80
Hong, Chen, Yu, Liu, Liu, Zhang, Liu, Cheng (b0055) 2018; 10
Veum, Sudduth, Kremer, Kitchen (b0195) 2017; 305
Weindorf, Zhu, McDaniel, Valerio, Lynn, Michaelson, Clark, Ping (b0205) 2012; 189–190
Russ (b0160) 1984
Mouazen, Saeys, Xing, De Baerdemaeker, Ramon (b0085) 2005; 13
Mouazen, Kuang, De Baerdemaeker, Ramon (b0100) 2010; 158
Nawar, Delbecque, Declercq, De Smedt, Finke, Verdoodt, Van Meirvenne, Mouazen (b0145) 2019; 350
Mouazen, Maleki, Cockx, Van Meirvenne, Van Holm, Merckx, De Baerdemaeker, Ramon (b0095) 2009; 103
Bellon-Maurel, Fernandez-Ahumada, Palagos, Roger, McBratney (b0020) 2010; 29
Carroll, Ruppert (b0025) 2019
Casa, Castaldi, Pascucci, Basso, Pignatti (b0030) 2013; 12
Savitzky, Golay (b0170) 1964; 36
Tavares, T.R., Molin, J.P., Nunes, L.C., Alves, E.E.N., Melquiades, F.L., de Carvalho, H.W.P., Mouazen, A.M., 2020. Effect of X-Ray Tube Configuration on Measurement of Key Soil Fertility Attributes with XRF. Remote Sens. 12, 963.
Stenberg, Rossel, Mouazen, Wetterlind (b0180) 2010
Yılmaz, Boydaş (b0225) 2018; 153
Munnaf, Nawar, Mouazen (b0005) 2019
Ryan (b0165) 1997
Ya’allah, Saradjian (b0220) 2005; 6
Andrews, Karlen, Cambardella (b0010) 2004; 68
Lin (b0070) 1989; 45
Mouazen, De Baerdemaeker, Ramon (b0090) 2006; 14
De Maesschalck, Jouan-Rimbaud, Massart (b0045) 2000; 50
Wong, Wittwer, Oliver, Robertson (b0210) 2010
Soodan (10.1016/j.geoderma.2020.114851_b0175) 2014; 125
Atkeson (10.1016/j.geoderma.2020.114851_b0015) 1997; 11
Nawar (10.1016/j.geoderma.2020.114851_b0145) 2019; 350
De Maesschalck (10.1016/j.geoderma.2020.114851_b0045) 2000; 50
Moura-Bueno (10.1016/j.geoderma.2020.114851_b0110) 2019; 337
Rinnan (10.1016/j.geoderma.2020.114851_b0155) 2009; 28
Maleki (10.1016/j.geoderma.2020.114851_b0075) 2008; 99
Mouazen (10.1016/j.geoderma.2020.114851_b0085) 2005; 13
Goodfellow (10.1016/j.geoderma.2020.114851_b0050) 2016
Mouazen (10.1016/j.geoderma.2020.114851_b0090) 2006; 14
Castrignanò (10.1016/j.geoderma.2020.114851_b0035) 2012; 175–176
Andrews (10.1016/j.geoderma.2020.114851_b0010) 2004; 68
Ryan (10.1016/j.geoderma.2020.114851_b0165) 1997
Savitzky (10.1016/j.geoderma.2020.114851_b0170) 1964; 36
Bellon-Maurel (10.1016/j.geoderma.2020.114851_b0020) 2010; 29
Weindorf (10.1016/j.geoderma.2020.114851_b0205) 2012; 189–190
Nawar (10.1016/j.geoderma.2020.114851_b0135) 2019; 190
Munnaf (10.1016/j.geoderma.2020.114851_b0005) 2019
Mouazen (10.1016/j.geoderma.2020.114851_b0100) 2010; 158
Munnaf (10.1016/j.geoderma.2020.114851_b0120) 2019
Wang (10.1016/j.geoderma.2020.114851_b0200) 2015; 243–244
10.1016/j.geoderma.2020.114851_b0185
Chang (10.1016/j.geoderma.2020.114851_b0040) 2001; 65
10.1016/j.geoderma.2020.114851_b0125
Nawar (10.1016/j.geoderma.2020.114851_b0140) 2019; 55
Kuang (10.1016/j.geoderma.2020.114851_b0065) 2012
O'Rourke (10.1016/j.geoderma.2020.114851_b0150) 2016; 80
Lin (10.1016/j.geoderma.2020.114851_b0070) 1989; 45
Wong (10.1016/j.geoderma.2020.114851_b0210) 2010
Nawar (10.1016/j.geoderma.2020.114851_b0130) 2018; 151
Casa (10.1016/j.geoderma.2020.114851_b0030) 2013; 12
Carroll (10.1016/j.geoderma.2020.114851_b0025) 2019
Mouazen (10.1016/j.geoderma.2020.114851_b0080) 2016; 155
Mouazen (10.1016/j.geoderma.2020.114851_b0095) 2009; 103
Stenberg (10.1016/j.geoderma.2020.114851_b0180) 2010
Russ (10.1016/j.geoderma.2020.114851_b0160) 1984
Kaniu (10.1016/j.geoderma.2020.114851_b0060) 2012; 98
Mouazen (10.1016/j.geoderma.2020.114851_b0105) 2019
Veum (10.1016/j.geoderma.2020.114851_b0195) 2017; 305
Hong (10.1016/j.geoderma.2020.114851_b0055) 2018; 10
10.1016/j.geoderma.2020.114851_b0115
Xu (10.1016/j.geoderma.2020.114851_b0215) 2019; 70
Ya’allah (10.1016/j.geoderma.2020.114851_b0220) 2005; 6
Yılmaz (10.1016/j.geoderma.2020.114851_b0225) 2018; 153
Tekin (10.1016/j.geoderma.2020.114851_b0190) 2012; 76
References_xml – volume: 28
  start-page: 1201
  year: 2009
  end-page: 1222
  ident: b0155
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: TrAC, Trends Anal. Chem.
– volume: 14
  start-page: 189
  year: 2006
  end-page: 199
  ident: b0090
  article-title: Effect of wavelength range on the measurement accuracy of some selected soil constituents using visual-near infrared spectroscopy
  publication-title: J. Near Infrared Spectrosc.
– start-page: 163
  year: 2010
  end-page: 215
  ident: b0180
  article-title: Chapter five - visible and near infrared spectroscopy in soil science
  publication-title: Advances in Agronomy
– volume: 151
  start-page: 469
  year: 2018
  end-page: 477
  ident: b0130
  article-title: Optimal sample selection for measurement of soil organic carbon using on-line vis-NIR spectroscopy
  publication-title: Comput. Electron. Agric.
– volume: 65
  start-page: 480
  year: 2001
  end-page: 490
  ident: b0040
  article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties
  publication-title: Soil Sci. Soc. Am. J.
– volume: 80
  start-page: 888
  year: 2016
  end-page: 899
  ident: b0150
  article-title: Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry
  publication-title: Soil Sci. Soc. Am. J.
– volume: 190
  start-page: 120
  year: 2019
  end-page: 127
  ident: b0135
  article-title: On-line vis-NIR spectroscopy prediction of soil organic carbon using machine learning
  publication-title: Soil Tillage Res.
– volume: 68
  start-page: 1945
  year: 2004
  end-page: 1962
  ident: b0010
  article-title: The soil management assessment framework: a quantitative soil quality evaluation method
  publication-title: Soil Sci. Soc. Am. J.
– volume: 337
  start-page: 565
  year: 2019
  end-page: 581
  ident: b0110
  article-title: Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions
  publication-title: Geoderma
– volume: 11
  start-page: 11
  year: 1997
  end-page: 73
  ident: b0015
  article-title: Locally weighted learning
  publication-title: Artif. Intell. Rev.
– start-page: 155
  year: 2012
  end-page: 223
  ident: b0065
  article-title: Chapter four - sensing soil properties in the laboratory, in situ, and on-line: a review
  publication-title: Advances in Agronomy, Advances in Agronomy
– year: 2019
  ident: b0025
  article-title: Transformation and Weighting in Regression
– volume: 243–244
  start-page: 157
  year: 2015
  end-page: 167
  ident: b0200
  article-title: Synthesized use of VisNIR DRS and PXRF for soil characterization: total carbon and total nitrogen
  publication-title: Geoderma
– volume: 103
  start-page: 144
  year: 2009
  end-page: 152
  ident: b0095
  article-title: Optimum three-point linkage set up for improving the quality of soil spectra and the accuracy of soil phosphorus measured using an on-line visible and near infrared sensor
  publication-title: Soil Tillage Res.
– volume: 50
  start-page: 1
  year: 2000
  end-page: 18
  ident: b0045
  article-title: The Mahalanobis distance
  publication-title: Chemometrics Intelligent Lab. Syst.
– volume: 13
  start-page: 87
  year: 2005
  end-page: 97
  ident: b0085
  article-title: Near infrared spectroscopy for agricultural materials: an instrument comparison
  publication-title: J. Near Infrared Spectrosc.
– volume: 189–190
  start-page: 268
  year: 2012
  end-page: 277
  ident: b0205
  article-title: Characterizing soils via portable x-ray fluorescence spectrometer: 2. Spodic and Albic horizons
  publication-title: Geoderma
– volume: 175–176
  start-page: 78
  year: 2012
  end-page: 89
  ident: b0035
  article-title: Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation
  publication-title: Geoderma
– reference: Nawar, S., Abdul Munnaf, M., Mouazen, A.M., 2020. Machine Learning Based On-Line Prediction of Soil Organic Carbon after Removal of Soil Moisture Effect. Remote Sens. DOI:10.3390/rs12081308.
– volume: 99
  start-page: 35
  year: 2008
  end-page: 46
  ident: b0075
  article-title: On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor
  publication-title: Biosyst. Eng.
– volume: 12
  year: 2013
  ident: b0030
  article-title: Geophysical and hyperspectral data fusion techniques for in-field estimation of soil properties
  publication-title: Vadose Zo. J.
– volume: 76
  start-page: 188
  year: 2012
  end-page: 198
  ident: b0190
  article-title: Effect of moisture content on prediction of organic carbon and pH using visible and near‐infrared spectroscopy
  publication-title: Soil Sci. Soc. Am. J.
– volume: 125
  start-page: 405
  year: 2014
  end-page: 410
  ident: b0175
  article-title: Analytical techniques for estimation of heavy metals in soil ecosystem: a tabulated review
  publication-title: Talanta
– volume: 45
  start-page: 255
  year: 1989
  ident: b0070
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
– volume: 36
  start-page: 1627
  year: 1964
  end-page: 1639
  ident: b0170
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
– volume: 29
  start-page: 1073
  year: 2010
  end-page: 1081
  ident: b0020
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC, Trends Anal. Chem.
– volume: 6
  start-page: 235
  year: 2005
  end-page: 241
  ident: b0220
  article-title: Automatic normalization of satellite images using unchanged pixels within urban areas
  publication-title: Information Fusion
– volume: 10
  year: 2018
  ident: b0055
  article-title: Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by VIS–NIR spectroscopy
  publication-title: Remote Sens.
– start-page: 11
  year: 2019
  ident: b0005
  article-title: Estimation of secondary soil properties by fusion of laboratory and on-line measured Vis–NIR Spectra
  publication-title: Remote Sens.
– reference: Tavares, T.R., Molin, J.P., Nunes, L.C., Alves, E.E.N., Melquiades, F.L., de Carvalho, H.W.P., Mouazen, A.M., 2020. Effect of X-Ray Tube Configuration on Measurement of Key Soil Fertility Attributes with XRF. Remote Sens. 12, 963.
– year: 2019
  ident: b0120
  article-title: Site-specific seeding using multi-sensor and data fusion techniques: a review
  publication-title: Advances in Agronomy
– start-page: 343
  year: 2010
  end-page: 349
  ident: b0210
  article-title: Use of EM38 and gamma ray spectrometry as complementary sensors for high-resolution soil property mapping
  publication-title: Proximal Soil Sensing
– start-page: 35
  year: 2019
  end-page: 138
  ident: b0105
  article-title: Monitoring
  publication-title: Agricultural Internet of Things and Decision Support for Precision Smart Farming
– volume: 55
  start-page: 525
  year: 2019
  end-page: 557
  ident: b0140
  article-title: The applicability of spectroscopy methods for estimating potentially toxic elements in soils: state-of-the-art and future trends
  publication-title: Appl. Spectrosc. Rev.
– volume: 153
  start-page: 17
  year: 2018
  end-page: 20
  ident: b0225
  article-title: The use of scattering peaks for matrix effect correction in WDXRF analysis
  publication-title: Radiat. Phys. Chem.
– year: 1997
  ident: b0165
  article-title: Modern Regression Methods
– volume: 305
  start-page: 53
  year: 2017
  end-page: 61
  ident: b0195
  article-title: Sensor data fusion for soil health assessment
  publication-title: Geoderma
– volume: 155
  start-page: 471
  year: 2016
  end-page: 477
  ident: b0080
  article-title: On-line visible and near infrared spectroscopy for in-field phosphorous management
  publication-title: Soil Tillage Res.
– reference: Mukhopadhyay, S., Maiti, S.K., 2018. Chapter 23 - Techniques for Quantative Evaluation of Mine Site Reclamation Success: Case Study, in: Prasad, M.N.V., Favas, P.J. de C., Maiti, S.K.B.T.-B.-G. for M.S.R. (Eds.), . Elsevier, pp. 415–438. DOI:10.1016/B978-0-12-812986-9.00023-3.
– volume: 158
  start-page: 23
  year: 2010
  end-page: 31
  ident: b0100
  article-title: Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy
  publication-title: Geoderma
– year: 2016
  ident: b0050
  article-title: Deep Learning
– volume: 350
  start-page: 29
  year: 2019
  end-page: 39
  ident: b0145
  article-title: Can spectral analyses improve measurement of key soil fertility parameters with X-ray fluorescence spectrometry?
  publication-title: Geoderma
– volume: 98
  start-page: 236
  year: 2012
  end-page: 240
  ident: b0060
  article-title: Energy dispersive X-ray fluorescence and scattering assessment of soil quality via partial least squares and artificial neural networks analytical modeling approaches
  publication-title: Talanta
– start-page: 208
  year: 1984
  end-page: 219
  ident: b0160
  article-title: Chapter 18 - X-ray fluorescence - fundamentals
  publication-title: Fundamentals of Energy Dispersive X-ray Analysis
– volume: 70
  start-page: 162
  year: 2019
  end-page: 173
  ident: b0215
  article-title: Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China: predictions based on multi-sensor fusion
  publication-title: Eur. J. Soil Sci.
– volume: 10
  year: 2018
  ident: 10.1016/j.geoderma.2020.114851_b0055
  article-title: Combining fractional order derivative and spectral variable selection for organic matter estimation of homogeneous soil samples by VIS–NIR spectroscopy
  publication-title: Remote Sens.
  doi: 10.3390/rs10030479
– volume: 125
  start-page: 405
  year: 2014
  ident: 10.1016/j.geoderma.2020.114851_b0175
  article-title: Analytical techniques for estimation of heavy metals in soil ecosystem: a tabulated review
  publication-title: Talanta
  doi: 10.1016/j.talanta.2014.02.033
– volume: 68
  start-page: 1945
  issue: 6
  year: 2004
  ident: 10.1016/j.geoderma.2020.114851_b0010
  article-title: The soil management assessment framework: a quantitative soil quality evaluation method
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2004.1945
– year: 2016
  ident: 10.1016/j.geoderma.2020.114851_b0050
– volume: 350
  start-page: 29
  year: 2019
  ident: 10.1016/j.geoderma.2020.114851_b0145
  article-title: Can spectral analyses improve measurement of key soil fertility parameters with X-ray fluorescence spectrometry?
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2019.05.002
– volume: 50
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.geoderma.2020.114851_b0045
  article-title: The Mahalanobis distance
  publication-title: Chemometrics Intelligent Lab. Syst.
  doi: 10.1016/S0169-7439(99)00047-7
– volume: 55
  start-page: 525
  issue: 7
  year: 2019
  ident: 10.1016/j.geoderma.2020.114851_b0140
  article-title: The applicability of spectroscopy methods for estimating potentially toxic elements in soils: state-of-the-art and future trends
  publication-title: Appl. Spectrosc. Rev.
  doi: 10.1080/05704928.2019.1608110
– volume: 36
  start-page: 1627
  issue: 8
  year: 1964
  ident: 10.1016/j.geoderma.2020.114851_b0170
  article-title: Smoothing and differentiation of data by simplified least squares procedures
  publication-title: Anal. Chem.
  doi: 10.1021/ac60214a047
– volume: 158
  start-page: 23
  issue: 1-2
  year: 2010
  ident: 10.1016/j.geoderma.2020.114851_b0100
  article-title: Comparison among principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2010.03.001
– ident: 10.1016/j.geoderma.2020.114851_b0185
  doi: 10.3390/rs12060963
– volume: 65
  start-page: 480
  issue: 2
  year: 2001
  ident: 10.1016/j.geoderma.2020.114851_b0040
  article-title: Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2001.652480x
– volume: 70
  start-page: 162
  issue: 1
  year: 2019
  ident: 10.1016/j.geoderma.2020.114851_b0215
  article-title: Multi-sensor fusion for the determination of several soil properties in the Yangtze River Delta, China: predictions based on multi-sensor fusion
  publication-title: Eur. J. Soil Sci.
  doi: 10.1111/ejss.12729
– volume: 175–176
  start-page: 78
  year: 2012
  ident: 10.1016/j.geoderma.2020.114851_b0035
  article-title: Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.01.013
– start-page: 35
  year: 2019
  ident: 10.1016/j.geoderma.2020.114851_b0105
  article-title: Monitoring
– year: 1997
  ident: 10.1016/j.geoderma.2020.114851_b0165
– volume: 14
  start-page: 189
  issue: 3
  year: 2006
  ident: 10.1016/j.geoderma.2020.114851_b0090
  article-title: Effect of wavelength range on the measurement accuracy of some selected soil constituents using visual-near infrared spectroscopy
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.614
– volume: 45
  start-page: 255
  issue: 1
  year: 1989
  ident: 10.1016/j.geoderma.2020.114851_b0070
  article-title: A concordance correlation coefficient to evaluate reproducibility
  publication-title: Biometrics
  doi: 10.2307/2532051
– volume: 11
  start-page: 11
  year: 1997
  ident: 10.1016/j.geoderma.2020.114851_b0015
  article-title: Locally weighted learning
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1006559212014
– start-page: 208
  year: 1984
  ident: 10.1016/j.geoderma.2020.114851_b0160
  article-title: Chapter 18 - X-ray fluorescence - fundamentals
– volume: 13
  start-page: 87
  issue: 2
  year: 2005
  ident: 10.1016/j.geoderma.2020.114851_b0085
  article-title: Near infrared spectroscopy for agricultural materials: an instrument comparison
  publication-title: J. Near Infrared Spectrosc.
  doi: 10.1255/jnirs.461
– start-page: 163
  year: 2010
  ident: 10.1016/j.geoderma.2020.114851_b0180
  article-title: Chapter five - visible and near infrared spectroscopy in soil science
  doi: 10.1016/S0065-2113(10)07005-7
– volume: 190
  start-page: 120
  year: 2019
  ident: 10.1016/j.geoderma.2020.114851_b0135
  article-title: On-line vis-NIR spectroscopy prediction of soil organic carbon using machine learning
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2019.03.006
– volume: 189–190
  start-page: 268
  year: 2012
  ident: 10.1016/j.geoderma.2020.114851_b0205
  article-title: Characterizing soils via portable x-ray fluorescence spectrometer: 2. Spodic and Albic horizons
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2012.06.034
– year: 2019
  ident: 10.1016/j.geoderma.2020.114851_b0120
  article-title: Site-specific seeding using multi-sensor and data fusion techniques: a review
– ident: 10.1016/j.geoderma.2020.114851_b0125
  doi: 10.3390/rs12081308
– volume: 12
  year: 2013
  ident: 10.1016/j.geoderma.2020.114851_b0030
  article-title: Geophysical and hyperspectral data fusion techniques for in-field estimation of soil properties
  publication-title: Vadose Zo. J.
– volume: 153
  start-page: 17
  year: 2018
  ident: 10.1016/j.geoderma.2020.114851_b0225
  article-title: The use of scattering peaks for matrix effect correction in WDXRF analysis
  publication-title: Radiat. Phys. Chem.
  doi: 10.1016/j.radphyschem.2018.08.035
– year: 2019
  ident: 10.1016/j.geoderma.2020.114851_b0025
– volume: 98
  start-page: 236
  year: 2012
  ident: 10.1016/j.geoderma.2020.114851_b0060
  article-title: Energy dispersive X-ray fluorescence and scattering assessment of soil quality via partial least squares and artificial neural networks analytical modeling approaches
  publication-title: Talanta
  doi: 10.1016/j.talanta.2012.06.081
– volume: 151
  start-page: 469
  year: 2018
  ident: 10.1016/j.geoderma.2020.114851_b0130
  article-title: Optimal sample selection for measurement of soil organic carbon using on-line vis-NIR spectroscopy
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.06.042
– start-page: 155
  year: 2012
  ident: 10.1016/j.geoderma.2020.114851_b0065
  article-title: Chapter four - sensing soil properties in the laboratory, in situ, and on-line: a review
  doi: 10.1016/B978-0-12-394275-3.00003-1
– volume: 155
  start-page: 471
  year: 2016
  ident: 10.1016/j.geoderma.2020.114851_b0080
  article-title: On-line visible and near infrared spectroscopy for in-field phosphorous management
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2015.04.003
– volume: 337
  start-page: 565
  year: 2019
  ident: 10.1016/j.geoderma.2020.114851_b0110
  article-title: Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2018.10.015
– volume: 76
  start-page: 188
  issue: 1
  year: 2012
  ident: 10.1016/j.geoderma.2020.114851_b0190
  article-title: Effect of moisture content on prediction of organic carbon and pH using visible and near‐infrared spectroscopy
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2011.0021
– start-page: 343
  year: 2010
  ident: 10.1016/j.geoderma.2020.114851_b0210
  article-title: Use of EM38 and gamma ray spectrometry as complementary sensors for high-resolution soil property mapping
– volume: 80
  start-page: 888
  issue: 4
  year: 2016
  ident: 10.1016/j.geoderma.2020.114851_b0150
  article-title: Synergistic use of Vis-NIR, MIR, and XRF spectroscopy for the determination of soil geochemistry
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2015.10.0361
– volume: 243–244
  start-page: 157
  year: 2015
  ident: 10.1016/j.geoderma.2020.114851_b0200
  article-title: Synthesized use of VisNIR DRS and PXRF for soil characterization: total carbon and total nitrogen
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2014.12.011
– volume: 6
  start-page: 235
  issue: 3
  year: 2005
  ident: 10.1016/j.geoderma.2020.114851_b0220
  article-title: Automatic normalization of satellite images using unchanged pixels within urban areas
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2004.12.002
– volume: 99
  start-page: 35
  issue: 1
  year: 2008
  ident: 10.1016/j.geoderma.2020.114851_b0075
  article-title: On-the-go variable-rate phosphorus fertilisation based on a visible and near-infrared soil sensor
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2007.09.007
– volume: 103
  start-page: 144
  issue: 1
  year: 2009
  ident: 10.1016/j.geoderma.2020.114851_b0095
  article-title: Optimum three-point linkage set up for improving the quality of soil spectra and the accuracy of soil phosphorus measured using an on-line visible and near infrared sensor
  publication-title: Soil Tillage Res.
  doi: 10.1016/j.still.2008.10.006
– start-page: 11
  year: 2019
  ident: 10.1016/j.geoderma.2020.114851_b0005
  article-title: Estimation of secondary soil properties by fusion of laboratory and on-line measured Vis–NIR Spectra
  publication-title: Remote Sens.
– ident: 10.1016/j.geoderma.2020.114851_b0115
  doi: 10.1016/B978-0-12-812986-9.00023-3
– volume: 29
  start-page: 1073
  issue: 9
  year: 2010
  ident: 10.1016/j.geoderma.2020.114851_b0020
  article-title: Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2010.05.006
– volume: 305
  start-page: 53
  year: 2017
  ident: 10.1016/j.geoderma.2020.114851_b0195
  article-title: Sensor data fusion for soil health assessment
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.05.031
– volume: 28
  start-page: 1201
  issue: 10
  year: 2009
  ident: 10.1016/j.geoderma.2020.114851_b0155
  article-title: Review of the most common pre-processing techniques for near-infrared spectra
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2009.07.007
SSID ssj0017020
Score 2.5725842
Snippet •Fusion of Vis-NIR and XRF spectra in soil analysis is examined.•Spectra of 253 soil samples of 9 fields were used to evaluate the proposed...
Precision agriculture (PA) is an integrated solution to optimize the application of farming inputs site-specifically to increase crops efficiency, reduce...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114851
SubjectTerms calcium
Chemometrics
Convolutional neural network (CNN)
Local weighted regression (LWR)
magnesium
neural networks
organic carbon
phosphorus
precision agriculture
Precision agriculture (PA)
prediction
principal component analysis
sodium
Soil analysis
soil fertility
soil properties
Spectra fusion (SF)
spectrometers
Visible-near-infrared (Vis-NIR)
X-ray fluorescence (XRF)
Title Fusion of Vis-NIR and XRF spectra for estimation of key soil attributes
URI https://dx.doi.org/10.1016/j.geoderma.2020.114851
https://www.proquest.com/docview/2552002361
Volume 385
WOSCitedRecordID wos000609999200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017020
  issn: 0016-7061
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5QAHxFOUQmUkblFKEsd5HFeo24fUFSoF7S2aOE7ZqptUm01V9dczfiSblpbSA5cosmIr8Xwez8Qz3xDymTEuULSlyxkP3TCUngs85W5U8CIJcz-P01IXm4gnk2Q6Tb_ZdMVGlxOIqyq5vEzP_6uosQ2FrVJnHyDuflBswHsUOl5R7Hj9J8GP28YagT9njTvZP9LnA9OjsaOzKhdgWL5xac97cxFXstPUszMHlqYClo0stFbrrlQV01Ya_AAuoNBhAN-3nT2Y2wQpE1xYgeZ5PGx_wXwOhTPKi0HwYd3CldF0ut053B7-dwgGgVedLvUjN_YMlXqnS1nCB9pQ-VqGTvYPRW3-GZziZJkPQE890MTFtsN1ZuwbO1YfR9iFqJ1m3TiZGicz4zwm60HMU9R166P9nelBf7oUe5au037BIHP89je6y2i5sX1rm-T4BXlunQk6MiB4SR7J6hV5NjpZWEIV-ZrsGjjQuqQWDhThQBEO1MKBIhzoCg7qSYQDVXCgKzi8IT_GO8df91xbPMMFtLGXbhl6wpMshDQoAyh9X4aRYndkAk1oESpHF11VCayUUV4UIUsKlkAcgxeJnPOAvSVrVV3Jd4QqRiOZC5kIUAULRMJT3BQZQ1-eFRCLDcK72cmEZZZXBU7Osr_LZ4N86fudG26Ve3uk3eRn1kI0ll-GuLq376dOWhmqUHUuBpWs2yZDrzrQlRT89w9-o03ydLU4PpC15aKVH8kTcbGcNYstC7zf55uS1w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fusion+of+Vis-NIR+and+XRF+spectra+for+estimation+of+key+soil+attributes&rft.jtitle=Geoderma&rft.au=Javadi%2C+S.+Hamed&rft.au=Munnaf%2C+Muhammad+Abdul&rft.au=Mouazen%2C+Abdul+M.&rft.date=2021-03-01&rft.issn=0016-7061&rft.volume=385&rft.spage=114851&rft_id=info:doi/10.1016%2Fj.geoderma.2020.114851&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2020_114851
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon