Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes

Here we develop a general approach to calculating the energy spectrum and the wave functions of the low-lying magnetic levels of a lanthanoid ion submitted to the crystal field created by the surrounding ligands. This model allows us to propose general criteria for the rational design of new mononuc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry Jg. 51; H. 22; S. 12565
Hauptverfasser: Baldoví, José J, Cardona-Serra, Salvador, Clemente-Juan, Juan M, Coronado, Eugenio, Gaita-Ariño, Alejandro, Palii, Andrew
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States 19.11.2012
ISSN:1520-510X, 1520-510X
Online-Zugang:Weitere Angaben
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Here we develop a general approach to calculating the energy spectrum and the wave functions of the low-lying magnetic levels of a lanthanoid ion submitted to the crystal field created by the surrounding ligands. This model allows us to propose general criteria for the rational design of new mononuclear lanthanoid complexes behaving as single-molecule magnets (SMMs) or acting as robust spin qubits. Three typical environments exhibited by these metal complexes are considered, namely, (a) square antiprism, (b) triangular dodecahedron, and (c) trigonal prism. The developed model is used to explain the properties of some representative examples showing these geometries. Key questions in this area, such as the chemical tailoring of the superparamagnetic energy barrier, tunneling gap, or spin relaxation time, are discussed. Finally, in order to take into account delocalization and/or covalent effects of the ligands, this point-charge model is complemented with ab initio calculations, which provide accurate information on the charge distribution around the metal, allowing for an explanation of the SMM behavior displayed by some sandwich-type organometallic compounds.
AbstractList Here we develop a general approach to calculating the energy spectrum and the wave functions of the low-lying magnetic levels of a lanthanoid ion submitted to the crystal field created by the surrounding ligands. This model allows us to propose general criteria for the rational design of new mononuclear lanthanoid complexes behaving as single-molecule magnets (SMMs) or acting as robust spin qubits. Three typical environments exhibited by these metal complexes are considered, namely, (a) square antiprism, (b) triangular dodecahedron, and (c) trigonal prism. The developed model is used to explain the properties of some representative examples showing these geometries. Key questions in this area, such as the chemical tailoring of the superparamagnetic energy barrier, tunneling gap, or spin relaxation time, are discussed. Finally, in order to take into account delocalization and/or covalent effects of the ligands, this point-charge model is complemented with ab initio calculations, which provide accurate information on the charge distribution around the metal, allowing for an explanation of the SMM behavior displayed by some sandwich-type organometallic compounds.Here we develop a general approach to calculating the energy spectrum and the wave functions of the low-lying magnetic levels of a lanthanoid ion submitted to the crystal field created by the surrounding ligands. This model allows us to propose general criteria for the rational design of new mononuclear lanthanoid complexes behaving as single-molecule magnets (SMMs) or acting as robust spin qubits. Three typical environments exhibited by these metal complexes are considered, namely, (a) square antiprism, (b) triangular dodecahedron, and (c) trigonal prism. The developed model is used to explain the properties of some representative examples showing these geometries. Key questions in this area, such as the chemical tailoring of the superparamagnetic energy barrier, tunneling gap, or spin relaxation time, are discussed. Finally, in order to take into account delocalization and/or covalent effects of the ligands, this point-charge model is complemented with ab initio calculations, which provide accurate information on the charge distribution around the metal, allowing for an explanation of the SMM behavior displayed by some sandwich-type organometallic compounds.
Here we develop a general approach to calculating the energy spectrum and the wave functions of the low-lying magnetic levels of a lanthanoid ion submitted to the crystal field created by the surrounding ligands. This model allows us to propose general criteria for the rational design of new mononuclear lanthanoid complexes behaving as single-molecule magnets (SMMs) or acting as robust spin qubits. Three typical environments exhibited by these metal complexes are considered, namely, (a) square antiprism, (b) triangular dodecahedron, and (c) trigonal prism. The developed model is used to explain the properties of some representative examples showing these geometries. Key questions in this area, such as the chemical tailoring of the superparamagnetic energy barrier, tunneling gap, or spin relaxation time, are discussed. Finally, in order to take into account delocalization and/or covalent effects of the ligands, this point-charge model is complemented with ab initio calculations, which provide accurate information on the charge distribution around the metal, allowing for an explanation of the SMM behavior displayed by some sandwich-type organometallic compounds.
Author Cardona-Serra, Salvador
Baldoví, José J
Coronado, Eugenio
Gaita-Ariño, Alejandro
Clemente-Juan, Juan M
Palii, Andrew
Author_xml – sequence: 1
  givenname: José J
  surname: Baldoví
  fullname: Baldoví, José J
  organization: Instituto de Ciencia Molecular (ICMol), Universidad de Valencia , C/Catedrático José Beltrán 2, E-46980 Paterna, Spain
– sequence: 2
  givenname: Salvador
  surname: Cardona-Serra
  fullname: Cardona-Serra, Salvador
– sequence: 3
  givenname: Juan M
  surname: Clemente-Juan
  fullname: Clemente-Juan, Juan M
– sequence: 4
  givenname: Eugenio
  surname: Coronado
  fullname: Coronado, Eugenio
– sequence: 5
  givenname: Alejandro
  surname: Gaita-Ariño
  fullname: Gaita-Ariño, Alejandro
– sequence: 6
  givenname: Andrew
  surname: Palii
  fullname: Palii, Andrew
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23102271$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxTAQhYNc8T504R-QLN1UM0n6WsrFF1wQRMFdyWNaI23S27Sg_96KV3B1Zg7fDIezJgsfPBJyDuwKGIdrZwTjLCvMEVlBylmSAntb_JuXZB3jB2OsFDI7IUsu5juew4pUz2p0wauWWoyu8TTUNDrftJjMNu1U43GMVHlLY-883U_azbtWES39AcKcZTItqoG2yo_vygdnqQld3-InxlNyXKs24tlBN-T17vZl-5Dsnu4ftze7REnIxsSIHIosl9wW3IocAaSGHJkpOK-lEZmpudGIJehay4ylrNapLcFKYQsrgG_I5e_ffgj7CeNYdS4abOdMGKZYgSxL4HmeiRm9OKCT7tBW_eA6NXxVf6Xwb-6vZW0
CitedBy_id crossref_primary_10_1038_s41467_024_47682_x
crossref_primary_10_3390_inorganics6030072
crossref_primary_10_1039_D0SC01197E
crossref_primary_10_1002_chem_201702171
crossref_primary_10_1002_chem_201402392
crossref_primary_10_1002_ejic_201600335
crossref_primary_10_1016_j_ccr_2014_12_006
crossref_primary_10_1038_s41467_022_35336_9
crossref_primary_10_1021_ja403154z
crossref_primary_10_1080_00958972_2014_898756
crossref_primary_10_1002_chem_201902855
crossref_primary_10_1002_chem_201601741
crossref_primary_10_1002_jcc_23700
crossref_primary_10_1016_j_jlumin_2020_117548
crossref_primary_10_1002_zaac_202000438
crossref_primary_10_1021_ja4015138
crossref_primary_10_1038_srep03405
crossref_primary_10_1002_ejic_201600744
crossref_primary_10_1021_ja501569t
crossref_primary_10_1134_S1070328423601413
crossref_primary_10_1039_D5DT00749F
crossref_primary_10_1002_chem_201404218
crossref_primary_10_1016_j_jmmm_2019_165455
crossref_primary_10_1016_j_physb_2014_09_011
crossref_primary_10_1021_jacs_2c12959
crossref_primary_10_1016_j_ccr_2018_03_022
crossref_primary_10_1002_chem_201302600
crossref_primary_10_1039_D0SC01187H
crossref_primary_10_1002_chem_201503422
crossref_primary_10_1016_j_ccr_2017_03_015
crossref_primary_10_1039_D2QI00275B
crossref_primary_10_1002_ejic_201402326
crossref_primary_10_1016_j_poly_2019_06_034
crossref_primary_10_3390_magnetochemistry8090096
crossref_primary_10_1021_acs_inorgchem_5c00644
crossref_primary_10_1039_D4QI00161C
crossref_primary_10_1016_j_poly_2022_116271
crossref_primary_10_1016_j_poly_2020_114605
crossref_primary_10_1016_j_poly_2014_12_028
crossref_primary_10_1088_1361_648X_ab757b
crossref_primary_10_3390_inorganics6030066
crossref_primary_10_1039_D4QI02324B
crossref_primary_10_1002_chem_201402255
crossref_primary_10_1039_C9SC03133B
crossref_primary_10_1002_ejic_201700537
crossref_primary_10_1039_C5QI00296F
crossref_primary_10_1002_chem_202203664
crossref_primary_10_1039_C3CC48557A
crossref_primary_10_1016_j_ccr_2024_215865
crossref_primary_10_3390_molecules22060999
crossref_primary_10_1039_D5CE00491H
crossref_primary_10_1002_chem_201303833
crossref_primary_10_1002_cjoc_201500605
crossref_primary_10_1039_C9QI01412H
crossref_primary_10_1002_chem_201406666
crossref_primary_10_1038_s41467_018_03706_x
crossref_primary_10_1080_00958972_2016_1217409
crossref_primary_10_1039_C8CC04565H
crossref_primary_10_1002_jcc_23341
crossref_primary_10_1016_j_ica_2020_119690
crossref_primary_10_1515_pac_2017_0103
crossref_primary_10_1039_D0QI00996B
crossref_primary_10_1002_chem_201805090
crossref_primary_10_1002_ejic_201400121
crossref_primary_10_1002_kin_20815
crossref_primary_10_1039_D5DT01060H
crossref_primary_10_1039_C4CC00930D
crossref_primary_10_1016_j_poly_2013_02_039
crossref_primary_10_1002_ejic_202000798
crossref_primary_10_1038_s41557_019_0232_y
crossref_primary_10_3390_inorganics6010016
crossref_primary_10_1002_chem_201605528
crossref_primary_10_1016_j_poly_2013_01_058
crossref_primary_10_1002_adfm_202213951
crossref_primary_10_1039_D4QI02851A
crossref_primary_10_1039_C5CC07541F
crossref_primary_10_1002_chem_201705748
crossref_primary_10_1016_j_ccr_2020_213707
crossref_primary_10_3390_magnetochemistry4040056
crossref_primary_10_3390_magnetochemistry8110151
crossref_primary_10_1039_C6CC01251E
crossref_primary_10_1002_jcc_23699
crossref_primary_10_1039_C5SC02314A
crossref_primary_10_1209_0295_5075_110_33001
crossref_primary_10_1016_j_ccr_2023_215205
crossref_primary_10_1007_s12039_016_1147_4
crossref_primary_10_1016_j_ccr_2014_10_011
crossref_primary_10_1088_0953_8984_27_18_183203
crossref_primary_10_1002_adfm_201801846
crossref_primary_10_1002_chem_201703830
crossref_primary_10_1021_acs_inorgchem_5c00687
crossref_primary_10_1039_C5QI00142K
crossref_primary_10_3390_inorganics6040101
crossref_primary_10_1039_c3cc44838j
crossref_primary_10_1134_S1070328422040066
crossref_primary_10_1016_j_ccr_2023_215213
crossref_primary_10_1016_j_ica_2015_09_032
crossref_primary_10_1016_j_ccr_2015_01_021
crossref_primary_10_1039_C5QI00059A
crossref_primary_10_1016_j_poly_2013_01_034
crossref_primary_10_1021_ja4094814
crossref_primary_10_1021_jacs_6b02702
crossref_primary_10_1038_ncomms3551
crossref_primary_10_1002_chem_201402694
crossref_primary_10_1039_C5QI00098J
crossref_primary_10_1039_D2CC02068H
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/ic302068c
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-510X
ExternalDocumentID 23102271
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.K2
4.4
53G
55A
5GY
5VS
7~N
85S
AABXI
ABJNI
ABMVS
ABPPZ
ABQRX
ABUCX
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
DU5
EBS
ED~
EJD
F5P
GGK
GNL
IH2
IH9
IHE
JG~
LG6
NPM
ROL
RXW
TAE
TN5
TWZ
UI2
UKR
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
~02
7X8
ABBLG
ABLBI
ID FETCH-LOGICAL-a416t-c37186742d82d37e114b17e0c822f4c36cf2cbee91bfb46050fb5d91d43d8d312
IEDL.DBID 7X8
ISICitedReferencesCount 202
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000311173700055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-510X
IngestDate Thu Jul 10 17:54:59 EDT 2025
Thu Apr 03 07:00:35 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a416t-c37186742d82d37e114b17e0c822f4c36cf2cbee91bfb46050fb5d91d43d8d312
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://ibn.idsi.md/vizualizare_articol/183632
PMID 23102271
PQID 1499127763
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1499127763
pubmed_primary_23102271
PublicationCentury 2000
PublicationDate 2012-11-19
PublicationDateYYYYMMDD 2012-11-19
PublicationDate_xml – month: 11
  year: 2012
  text: 2012-11-19
  day: 19
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Inorganic chemistry
PublicationTitleAlternate Inorg Chem
PublicationYear 2012
SSID ssj0009346
Score 2.509944
Snippet Here we develop a general approach to calculating the energy spectrum and the wave functions of the low-lying magnetic levels of a lanthanoid ion submitted to...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 12565
Title Rational design of single-ion magnets and spin qubits based on mononuclear lanthanoid complexes
URI https://www.ncbi.nlm.nih.gov/pubmed/23102271
https://www.proquest.com/docview/1499127763
Volume 51
WOSCitedRecordID wos000311173700055&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA_qBH3x-2N-EcHXsiXpmvZJZDh8cQxR6FvJpxZmuq2b-Od76Qd7EgQfGmhJaXp3yf1yd7lD6I4IFmpivZPV6gA0VBgAjFAB5ZEyWoYMrqrYBB-P4zRNJo3BrWzCKts1sVqodaG8jbwHSD4hlMN0uJ_NA181yntXmxIam6jDAMp4qebpOlt4wurTRQPYIoHspW1mIUp6uWIAlKJY_Y4sKw0z2v_v2A7QXoMt8UMtDIdow7gjtDNsS7odo-ylMf1hXQVu4MJibyuYmgAe40_x7syyxMJpXM5yh-crmcO913Qa-w6FK5xPgCwWeAos-RCuyDWuwtLNtylP0Nvo8XX4FDQVFgIBQGwZKMZ9QruQ6phqxg1sjiThpq8ANthQsUhZqqQxCZFWeg9q38qBTogGHsaaEXqKtuDD5hzhAVfGitgKTkzYV0liNVDFSmt5JIiMuui2pV0Gf-3dEsKZYlVma-p10VnNgGxWp9rIPPqklJOLP7x9iXYBzVB_UJAkV6hjYf6aa7StvpZ5ubipRAPa8eT5ByYOxfo
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+design+of+single-ion+magnets+and+spin+qubits+based+on+mononuclear+lanthanoid+complexes&rft.jtitle=Inorganic+chemistry&rft.au=Baldov%C3%AD%2C+Jos%C3%A9+J&rft.au=Cardona-Serra%2C+Salvador&rft.au=Clemente-Juan%2C+Juan+M&rft.au=Coronado%2C+Eugenio&rft.date=2012-11-19&rft.eissn=1520-510X&rft.volume=51&rft.issue=22&rft.spage=12565&rft_id=info:doi/10.1021%2Fic302068c&rft_id=info%3Apmid%2F23102271&rft_id=info%3Apmid%2F23102271&rft.externalDocID=23102271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-510X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-510X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-510X&client=summon