Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm

With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration equation's solution is found for large membranes. In Caputo's sense, the fractional derivative is taken. Numerical experiments with v...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 7; číslo 11; s. 19739 - 19757
Hlavní autoři: Al-Sawalha, M. Mossa, Alshehry, Azzh Saad, Nonlaopon, Kamsing, Shah, Rasool, Ababneh, Osama Y.
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2022
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration equation's solution is found for large membranes. In Caputo's sense, the fractional derivative is taken. Numerical experiments with various initial conditions are carried out through a few test examples. The findings are described using various wave velocity values. The outcomes demonstrate the competence and reliability of this analytical framework. Figures are used to discuss the solution of the fractional vibration equation using the suggested strategies for different orders of memory-dependent derivative. The suggested approaches reduce computation size and time even when the accurate solution of a nonlinear differential equation is unknown. It is helpful for both small and large parameters. The results show that the suggested techniques are trustworthy, accurate, appealing and effective strategies.
AbstractList With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration equation's solution is found for large membranes. In Caputo's sense, the fractional derivative is taken. Numerical experiments with various initial conditions are carried out through a few test examples. The findings are described using various wave velocity values. The outcomes demonstrate the competence and reliability of this analytical framework. Figures are used to discuss the solution of the fractional vibration equation using the suggested strategies for different orders of memory-dependent derivative. The suggested approaches reduce computation size and time even when the accurate solution of a nonlinear differential equation is unknown. It is helpful for both small and large parameters. The results show that the suggested techniques are trustworthy, accurate, appealing and effective strategies.
Author Ababneh, Osama Y.
Nonlaopon, Kamsing
Alshehry, Azzh Saad
Al-Sawalha, M. Mossa
Shah, Rasool
Author_xml – sequence: 1
  givenname: M. Mossa
  surname: Al-Sawalha
  fullname: Al-Sawalha, M. Mossa
  organization: Department of Mathematics, College of Science, University of Ha'il, Ha'il 2440, Saudi Arabia
– sequence: 2
  givenname: Azzh Saad
  surname: Alshehry
  fullname: Alshehry, Azzh Saad
  organization: Department of Mathematical Sciences, Faculty of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
– sequence: 3
  givenname: Kamsing
  surname: Nonlaopon
  fullname: Nonlaopon, Kamsing
  organization: Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
– sequence: 4
  givenname: Rasool
  surname: Shah
  fullname: Shah, Rasool
  organization: Department of Mathematics, Abdul Wali khan university, Mardan 23200, Pakistan
– sequence: 5
  givenname: Osama Y.
  surname: Ababneh
  fullname: Ababneh, Osama Y.
  organization: Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan
BookMark eNptUMtuwjAQtKpWKqUce88PhNrrxEmOCPWBhNRLe7bWjg1GJqZOQOXvG0KRqqqnHe3sjHbmjlw3oTGEPDA65RXPHrfYradAARgt4YqMICt4KqqyvP6Fb8mkbTeUUmCQQZGNiJ3tdjF8uV5uEmzQHzun0Sdt8PvOhSYJNunc1qQ2oj4teu7gVMSBNJ_7Mzg4TKLxDpU3SbPfmji4oF-F6Lr19p7cWPStmfzMMfl4fnqfv6bLt5fFfLZMMWOiSzXjFaiKWs4V0KxWmIMAbTlVWud9jKoQaGplRQkFAhpDa2ACsTA6rwD4mCzOvnXAjdzFPlc8yoBODosQVxJjn9AbCaowVItCFYiZtXWZZ317BkAJJgRjvRc_e-kY2jYaK7XrhrhdROclo_LUvDw1Ly_N96r0j-ryxf_3327uijo
CitedBy_id crossref_primary_10_3390_fractalfract9040219
crossref_primary_10_3390_sym14112375
crossref_primary_10_2298_TSCI2403143Y
crossref_primary_10_3390_fractalfract7020140
crossref_primary_10_3390_fractalfract7020103
Cites_doi 10.1016/j.chaos.2020.110145
10.1016/j.apm.2018.01.010
10.1007/s12043-019-1773-8
10.1142/s0219519412400088
10.3390/sym13071263
10.1080/00207160903474214
10.1186/s13662-020-03058-1
10.1122/1.549724
10.1140/epjp/i2019-12590-5
10.3390/en13112725
10.1016/j.apm.2016.12.008
10.1146/annurev.ne.04.030181.002335
10.1002/mma.7057
10.1016/j.jsv.2008.08.029
10.1007/s10598-012-9133-2
10.1007/s12648-019-01487-7
10.1016/j.nonrwa.2010.08.008
10.3390/en13082002
10.1155/2022/4935809
10.1007/s42417-021-00408-5
10.1063/1.5074099
10.1515/ijnsns.2008.9.4.361
10.1016/j.chaos.2021.110787
10.1016/j.jmaa.2007.06.023
10.3934/math.2022385
10.1186/s13662-018-1868-4
10.1186/s13662-018-1680-1
10.3390/app10010361
10.1016/j.cnsns.2019.104897
10.1016/j.camwa.2009.07.006
10.1155/2022/2754507
10.1155/2021/3248376
10.1049/iet-ipr.2017.1149
10.1016/j.chaos.2020.110007
10.1016/j.chaos.2018.09.039
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.20221082
DatabaseName CrossRef
Open Access: DOAJ - Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 19757
ExternalDocumentID oai_doaj_org_article_2b7e0c67b7aa4ffd854022e22b616611
10_3934_math_20221082
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-a416t-c1392b90f33b204dba5262cf30bcc5247976aedbf6827a2aee0d216aa7ec59223
IEDL.DBID DOA
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852740800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2473-6988
IngestDate Fri Oct 03 12:53:27 EDT 2025
Tue Nov 18 22:25:46 EST 2025
Sat Nov 29 06:04:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a416t-c1392b90f33b204dba5262cf30bcc5247976aedbf6827a2aee0d216aa7ec59223
OpenAccessLink https://doaj.org/article/2b7e0c67b7aa4ffd854022e22b616611
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_2b7e0c67b7aa4ffd854022e22b616611
crossref_citationtrail_10_3934_math_20221082
crossref_primary_10_3934_math_20221082
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2022
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20221082-8
key-10.3934/math.20221082-7
key-10.3934/math.20221082-9
key-10.3934/math.20221082-12
key-10.3934/math.20221082-34
key-10.3934/math.20221082-13
key-10.3934/math.20221082-35
key-10.3934/math.20221082-14
key-10.3934/math.20221082-36
key-10.3934/math.20221082-15
key-10.3934/math.20221082-16
key-10.3934/math.20221082-17
key-10.3934/math.20221082-18
key-10.3934/math.20221082-19
key-10.3934/math.20221082-30
key-10.3934/math.20221082-31
key-10.3934/math.20221082-10
key-10.3934/math.20221082-32
key-10.3934/math.20221082-11
key-10.3934/math.20221082-33
key-10.3934/math.20221082-23
key-10.3934/math.20221082-24
key-10.3934/math.20221082-25
key-10.3934/math.20221082-26
key-10.3934/math.20221082-27
key-10.3934/math.20221082-28
key-10.3934/math.20221082-29
key-10.3934/math.20221082-2
key-10.3934/math.20221082-1
key-10.3934/math.20221082-4
key-10.3934/math.20221082-3
key-10.3934/math.20221082-20
key-10.3934/math.20221082-6
key-10.3934/math.20221082-21
key-10.3934/math.20221082-5
key-10.3934/math.20221082-22
References_xml – ident: key-10.3934/math.20221082-13
  doi: 10.1016/j.chaos.2020.110145
– ident: key-10.3934/math.20221082-14
  doi: 10.1016/j.apm.2018.01.010
– ident: key-10.3934/math.20221082-11
  doi: 10.1007/s12043-019-1773-8
– ident: key-10.3934/math.20221082-23
  doi: 10.1142/s0219519412400088
– ident: key-10.3934/math.20221082-4
  doi: 10.3390/sym13071263
– ident: key-10.3934/math.20221082-35
  doi: 10.1080/00207160903474214
– ident: key-10.3934/math.20221082-27
  doi: 10.1186/s13662-020-03058-1
– ident: key-10.3934/math.20221082-7
  doi: 10.1122/1.549724
– ident: key-10.3934/math.20221082-25
  doi: 10.1140/epjp/i2019-12590-5
– ident: key-10.3934/math.20221082-28
  doi: 10.3390/en13112725
– ident: key-10.3934/math.20221082-36
  doi: 10.1016/j.apm.2016.12.008
– ident: key-10.3934/math.20221082-6
  doi: 10.1146/annurev.ne.04.030181.002335
– ident: key-10.3934/math.20221082-10
  doi: 10.1002/mma.7057
– ident: key-10.3934/math.20221082-32
  doi: 10.1016/j.jsv.2008.08.029
– ident: key-10.3934/math.20221082-33
  doi: 10.1007/s10598-012-9133-2
– ident: key-10.3934/math.20221082-9
  doi: 10.1007/s12648-019-01487-7
– ident: key-10.3934/math.20221082-17
  doi: 10.1016/j.nonrwa.2010.08.008
– ident: key-10.3934/math.20221082-30
  doi: 10.3390/en13082002
– ident: key-10.3934/math.20221082-3
  doi: 10.1155/2022/4935809
– ident: key-10.3934/math.20221082-12
  doi: 10.1007/s42417-021-00408-5
– ident: key-10.3934/math.20221082-21
  doi: 10.1063/1.5074099
– ident: key-10.3934/math.20221082-34
  doi: 10.1515/ijnsns.2008.9.4.361
– ident: key-10.3934/math.20221082-31
  doi: 10.1016/j.chaos.2021.110787
– ident: key-10.3934/math.20221082-8
  doi: 10.1016/j.jmaa.2007.06.023
– ident: key-10.3934/math.20221082-29
  doi: 10.3934/math.2022385
– ident: key-10.3934/math.20221082-26
  doi: 10.1186/s13662-018-1868-4
– ident: key-10.3934/math.20221082-16
  doi: 10.1186/s13662-018-1680-1
– ident: key-10.3934/math.20221082-1
  doi: 10.1007/s10598-012-9133-2
– ident: key-10.3934/math.20221082-15
  doi: 10.3390/app10010361
– ident: key-10.3934/math.20221082-22
  doi: 10.1016/j.cnsns.2019.104897
– ident: key-10.3934/math.20221082-20
  doi: 10.1016/j.camwa.2009.07.006
– ident: key-10.3934/math.20221082-2
  doi: 10.1155/2022/2754507
– ident: key-10.3934/math.20221082-5
  doi: 10.1155/2021/3248376
– ident: key-10.3934/math.20221082-18
  doi: 10.1049/iet-ipr.2017.1149
– ident: key-10.3934/math.20221082-19
  doi: 10.1016/j.chaos.2020.110007
– ident: key-10.3934/math.20221082-24
  doi: 10.1016/j.chaos.2018.09.039
SSID ssj0002124274
Score 2.2358396
Snippet With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 19739
SubjectTerms adomian decomposition method
caputo operator
fractional vibration equation
homotopy perturbation method
yang transform
Title Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm
URI https://doaj.org/article/2b7e0c67b7aa4ffd854022e22b616611
Volume 7
WOSCitedRecordID wos000852740800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV05T8MwFLZQxQAD4hTlkgfERFTHORyPBbVioBUDoG6RT4hUWkjTionfznOcVmVALCyRYluR9fnF73s-vofQJRiKBtslAbehCGJuSCATEwVxmHGdgMuw9Ub78z0bDrPRiD-spfpyZ8K8PLAHrkMlM0SlTDIhYmt1BhSDUkOpTEPwLXXgQxhfC6bcHAwTcgzxlhfVjHgUd4D_ub0HCiFORn84oTWt_tqp9HfRTsMGcdf3Yg9tmMk-2h6spFRnB8h2ner3ZwHvBgsnIVKvPuOlzeCpxS5BfGBLf0cB6hYuBq4rzYeX8oYigUszLtxNKTyZ-32aMRbjl2lZVK9vh-ip33u8vQua5AiBAA5VBQqoG5Wc2CiSlMRaioSmVNmISKUAZAY8QxgtbZpRJqgwhmgapkIwoxIOpOAItSbTiTlGOLU2UzrkJktJHGsmnISLTHSkiYb_XbTR9RKtXDXK4S6BxTiHCMKBmztw8yW4bXS1av7uJTN-a3jjoF81ckrXdQGMf96Mf_7X-J_8x0dO0ZbrlF9aOUOtqpybc7SpFlUxKy9q04Ln4Kv3DZeg1k4
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+analytical+solution+of+time-fractional+vibration+equation+via+reliable+numerical+algorithm&rft.jtitle=AIMS+mathematics&rft.au=M.+Mossa+Al-Sawalha&rft.au=Azzh+Saad+Alshehry&rft.au=Kamsing+Nonlaopon&rft.au=Rasool+Shah&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=11&rft.spage=19739&rft.epage=17757&rft_id=info:doi/10.3934%2Fmath.20221082&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2b7e0c67b7aa4ffd854022e22b616611
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon