Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm
With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration equation's solution is found for large membranes. In Caputo's sense, the fractional derivative is taken. Numerical experiments with v...
Saved in:
| Published in: | AIMS mathematics Vol. 7; no. 11; pp. 19739 - 19757 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
AIMS Press
01.01.2022
|
| Subjects: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration equation's solution is found for large membranes. In Caputo's sense, the fractional derivative is taken. Numerical experiments with various initial conditions are carried out through a few test examples. The findings are described using various wave velocity values. The outcomes demonstrate the competence and reliability of this analytical framework. Figures are used to discuss the solution of the fractional vibration equation using the suggested strategies for different orders of memory-dependent derivative. The suggested approaches reduce computation size and time even when the accurate solution of a nonlinear differential equation is unknown. It is helpful for both small and large parameters. The results show that the suggested techniques are trustworthy, accurate, appealing and effective strategies. |
|---|---|
| AbstractList | With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration equation's solution is found for large membranes. In Caputo's sense, the fractional derivative is taken. Numerical experiments with various initial conditions are carried out through a few test examples. The findings are described using various wave velocity values. The outcomes demonstrate the competence and reliability of this analytical framework. Figures are used to discuss the solution of the fractional vibration equation using the suggested strategies for different orders of memory-dependent derivative. The suggested approaches reduce computation size and time even when the accurate solution of a nonlinear differential equation is unknown. It is helpful for both small and large parameters. The results show that the suggested techniques are trustworthy, accurate, appealing and effective strategies. |
| Author | Ababneh, Osama Y. Nonlaopon, Kamsing Alshehry, Azzh Saad Al-Sawalha, M. Mossa Shah, Rasool |
| Author_xml | – sequence: 1 givenname: M. Mossa surname: Al-Sawalha fullname: Al-Sawalha, M. Mossa organization: Department of Mathematics, College of Science, University of Ha'il, Ha'il 2440, Saudi Arabia – sequence: 2 givenname: Azzh Saad surname: Alshehry fullname: Alshehry, Azzh Saad organization: Department of Mathematical Sciences, Faculty of Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia – sequence: 3 givenname: Kamsing surname: Nonlaopon fullname: Nonlaopon, Kamsing organization: Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand – sequence: 4 givenname: Rasool surname: Shah fullname: Shah, Rasool organization: Department of Mathematics, Abdul Wali khan university, Mardan 23200, Pakistan – sequence: 5 givenname: Osama Y. surname: Ababneh fullname: Ababneh, Osama Y. organization: Department of Mathematics, Faculty of Science, Zarqa University, Zarqa 13110, Jordan |
| BookMark | eNptUMtuwjAQtKpWKqUce88PhNrrxEmOCPWBhNRLe7bWjg1GJqZOQOXvG0KRqqqnHe3sjHbmjlw3oTGEPDA65RXPHrfYradAARgt4YqMICt4KqqyvP6Fb8mkbTeUUmCQQZGNiJ3tdjF8uV5uEmzQHzun0Sdt8PvOhSYJNunc1qQ2oj4teu7gVMSBNJ_7Mzg4TKLxDpU3SbPfmji4oF-F6Lr19p7cWPStmfzMMfl4fnqfv6bLt5fFfLZMMWOiSzXjFaiKWs4V0KxWmIMAbTlVWud9jKoQaGplRQkFAhpDa2ACsTA6rwD4mCzOvnXAjdzFPlc8yoBODosQVxJjn9AbCaowVItCFYiZtXWZZ317BkAJJgRjvRc_e-kY2jYaK7XrhrhdROclo_LUvDw1Ly_N96r0j-ryxf_3327uijo |
| CitedBy_id | crossref_primary_10_3390_fractalfract9040219 crossref_primary_10_3390_sym14112375 crossref_primary_10_2298_TSCI2403143Y crossref_primary_10_3390_fractalfract7020140 crossref_primary_10_3390_fractalfract7020103 |
| Cites_doi | 10.1016/j.chaos.2020.110145 10.1016/j.apm.2018.01.010 10.1007/s12043-019-1773-8 10.1142/s0219519412400088 10.3390/sym13071263 10.1080/00207160903474214 10.1186/s13662-020-03058-1 10.1122/1.549724 10.1140/epjp/i2019-12590-5 10.3390/en13112725 10.1016/j.apm.2016.12.008 10.1146/annurev.ne.04.030181.002335 10.1002/mma.7057 10.1016/j.jsv.2008.08.029 10.1007/s10598-012-9133-2 10.1007/s12648-019-01487-7 10.1016/j.nonrwa.2010.08.008 10.3390/en13082002 10.1155/2022/4935809 10.1007/s42417-021-00408-5 10.1063/1.5074099 10.1515/ijnsns.2008.9.4.361 10.1016/j.chaos.2021.110787 10.1016/j.jmaa.2007.06.023 10.3934/math.2022385 10.1186/s13662-018-1868-4 10.1186/s13662-018-1680-1 10.3390/app10010361 10.1016/j.cnsns.2019.104897 10.1016/j.camwa.2009.07.006 10.1155/2022/2754507 10.1155/2021/3248376 10.1049/iet-ipr.2017.1149 10.1016/j.chaos.2020.110007 10.1016/j.chaos.2018.09.039 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.20221082 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 19757 |
| ExternalDocumentID | oai_doaj_org_article_2b7e0c67b7aa4ffd854022e22b616611 10_3934_math_20221082 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a416t-c1392b90f33b204dba5262cf30bcc5247976aedbf6827a2aee0d216aa7ec59223 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000852740800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:53:27 EDT 2025 Tue Nov 18 22:25:46 EST 2025 Sat Nov 29 06:04:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a416t-c1392b90f33b204dba5262cf30bcc5247976aedbf6827a2aee0d216aa7ec59223 |
| OpenAccessLink | https://doaj.org/article/2b7e0c67b7aa4ffd854022e22b616611 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2b7e0c67b7aa4ffd854022e22b616611 crossref_citationtrail_10_3934_math_20221082 crossref_primary_10_3934_math_20221082 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2022 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.20221082-8 key-10.3934/math.20221082-7 key-10.3934/math.20221082-9 key-10.3934/math.20221082-12 key-10.3934/math.20221082-34 key-10.3934/math.20221082-13 key-10.3934/math.20221082-35 key-10.3934/math.20221082-14 key-10.3934/math.20221082-36 key-10.3934/math.20221082-15 key-10.3934/math.20221082-16 key-10.3934/math.20221082-17 key-10.3934/math.20221082-18 key-10.3934/math.20221082-19 key-10.3934/math.20221082-30 key-10.3934/math.20221082-31 key-10.3934/math.20221082-10 key-10.3934/math.20221082-32 key-10.3934/math.20221082-11 key-10.3934/math.20221082-33 key-10.3934/math.20221082-23 key-10.3934/math.20221082-24 key-10.3934/math.20221082-25 key-10.3934/math.20221082-26 key-10.3934/math.20221082-27 key-10.3934/math.20221082-28 key-10.3934/math.20221082-29 key-10.3934/math.20221082-2 key-10.3934/math.20221082-1 key-10.3934/math.20221082-4 key-10.3934/math.20221082-3 key-10.3934/math.20221082-20 key-10.3934/math.20221082-6 key-10.3934/math.20221082-21 key-10.3934/math.20221082-5 key-10.3934/math.20221082-22 |
| References_xml | – ident: key-10.3934/math.20221082-13 doi: 10.1016/j.chaos.2020.110145 – ident: key-10.3934/math.20221082-14 doi: 10.1016/j.apm.2018.01.010 – ident: key-10.3934/math.20221082-11 doi: 10.1007/s12043-019-1773-8 – ident: key-10.3934/math.20221082-23 doi: 10.1142/s0219519412400088 – ident: key-10.3934/math.20221082-4 doi: 10.3390/sym13071263 – ident: key-10.3934/math.20221082-35 doi: 10.1080/00207160903474214 – ident: key-10.3934/math.20221082-27 doi: 10.1186/s13662-020-03058-1 – ident: key-10.3934/math.20221082-7 doi: 10.1122/1.549724 – ident: key-10.3934/math.20221082-25 doi: 10.1140/epjp/i2019-12590-5 – ident: key-10.3934/math.20221082-28 doi: 10.3390/en13112725 – ident: key-10.3934/math.20221082-36 doi: 10.1016/j.apm.2016.12.008 – ident: key-10.3934/math.20221082-6 doi: 10.1146/annurev.ne.04.030181.002335 – ident: key-10.3934/math.20221082-10 doi: 10.1002/mma.7057 – ident: key-10.3934/math.20221082-32 doi: 10.1016/j.jsv.2008.08.029 – ident: key-10.3934/math.20221082-33 doi: 10.1007/s10598-012-9133-2 – ident: key-10.3934/math.20221082-9 doi: 10.1007/s12648-019-01487-7 – ident: key-10.3934/math.20221082-17 doi: 10.1016/j.nonrwa.2010.08.008 – ident: key-10.3934/math.20221082-30 doi: 10.3390/en13082002 – ident: key-10.3934/math.20221082-3 doi: 10.1155/2022/4935809 – ident: key-10.3934/math.20221082-12 doi: 10.1007/s42417-021-00408-5 – ident: key-10.3934/math.20221082-21 doi: 10.1063/1.5074099 – ident: key-10.3934/math.20221082-34 doi: 10.1515/ijnsns.2008.9.4.361 – ident: key-10.3934/math.20221082-31 doi: 10.1016/j.chaos.2021.110787 – ident: key-10.3934/math.20221082-8 doi: 10.1016/j.jmaa.2007.06.023 – ident: key-10.3934/math.20221082-29 doi: 10.3934/math.2022385 – ident: key-10.3934/math.20221082-26 doi: 10.1186/s13662-018-1868-4 – ident: key-10.3934/math.20221082-16 doi: 10.1186/s13662-018-1680-1 – ident: key-10.3934/math.20221082-1 doi: 10.1007/s10598-012-9133-2 – ident: key-10.3934/math.20221082-15 doi: 10.3390/app10010361 – ident: key-10.3934/math.20221082-22 doi: 10.1016/j.cnsns.2019.104897 – ident: key-10.3934/math.20221082-20 doi: 10.1016/j.camwa.2009.07.006 – ident: key-10.3934/math.20221082-2 doi: 10.1155/2022/2754507 – ident: key-10.3934/math.20221082-5 doi: 10.1155/2021/3248376 – ident: key-10.3934/math.20221082-18 doi: 10.1049/iet-ipr.2017.1149 – ident: key-10.3934/math.20221082-19 doi: 10.1016/j.chaos.2020.110007 – ident: key-10.3934/math.20221082-24 doi: 10.1016/j.chaos.2018.09.039 |
| SSID | ssj0002124274 |
| Score | 2.23594 |
| Snippet | With effective techniques like the homotopy perturbation approach and the Adomian decomposition method via the Yang transform, the time-fractional vibration... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 19739 |
| SubjectTerms | adomian decomposition method caputo operator fractional vibration equation homotopy perturbation method yang transform |
| Title | Approximate analytical solution of time-fractional vibration equation via reliable numerical algorithm |
| URI | https://doaj.org/article/2b7e0c67b7aa4ffd854022e22b616611 |
| Volume | 7 |
| WOSCitedRecordID | wos000852740800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQxQAD4inKSx4QE1HdsxMnY0FFDLRiAKlbZDs2VCotpA8x8ds5x2lVBsTCEim2FVln6-777Nx3hFwmBsMC0oYoBWEiwS2PFNNxBJYLxqWULOjMPsh-Px0Msse1Ul_-n7AgDxwM1wItLTOJ1FIp4VyRIsQAsAA6aWNsqYgPk9kamfI-GB2yQL4VRDV5xkUL8Z-_ewCkOCn8CEJrWv1VULnbJTs1GqSdMIs9smHH-2S7t5JSnR4Q1_Gq359DfLdUeQmR6vSZLvcMnTjqC8RHrgw5Cti38By46rQfQcobmxQt7WjoM6XoeB7uaUZUjV4m5XD2-nZInu-6T7f3UV0cIVKIoWaRQegGOmOOcw1MFFrFkIBxnGljYhAScYayhXZJClKBspYV0E6UktbEGYKCI9IYT8b2mNBCIS1xiBwAnOCaa9vWxqekInpAv-ya5HpprdzUyuG-gMUoRwbhjZt74-ZL4zbJ1Wr4e5DM-G3gjTf9apBXuq4acP3zev3zv9b_5D8-ckq2_KTC0coZaczKuT0nm2YxG07Li2pr4bP31f0GaXXV8g |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+analytical+solution+of+time-fractional+vibration+equation+via+reliable+numerical+algorithm&rft.jtitle=AIMS+mathematics&rft.au=Al-Sawalha%2C+M.+Mossa&rft.au=Alshehry%2C+Azzh+Saad&rft.au=Nonlaopon%2C+Kamsing&rft.au=Shah%2C+Rasool&rft.date=2022-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=7&rft.issue=11&rft.spage=19739&rft.epage=19757&rft_id=info:doi/10.3934%2Fmath.20221082&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20221082 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |