Novel analytical superposed nonlinear wave structures for the eighth-order (3+1)-dimensional Kac-Wakimoto equation using improved modified extended tanh function method

Higher-order nonlinear partial differential equations, such as the eighth-order Kac-Wakimoto model, are useful for studying wave turbulence in fluids, where energy transfers across a range of wave numbers. This phenomenon is observed in oceanographic research involving sea surface and internal waves...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:AIMS mathematics Ročník 9; číslo 12; s. 33386 - 33400
Hlavní autoři: Rabie, Wafaa B., Ahmed, Hamdy M., Nofal, Taher A., Mohamed, E. M.
Médium: Journal Article
Jazyk:angličtina
Vydáno: AIMS Press 01.01.2024
Témata:
ISSN:2473-6988, 2473-6988
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Higher-order nonlinear partial differential equations, such as the eighth-order Kac-Wakimoto model, are useful for studying wave turbulence in fluids, where energy transfers across a range of wave numbers. This phenomenon is observed in oceanographic research involving sea surface and internal waves, where intricate multi-dimensional interactions play a crucial role. In this work, we use the improved modified extended tanh function method for the first time to extract the exact solutions of the eighth-order (3+1)-dimensional Kac-Wakimoto equation, which describes the dynamics of fields and the structure of solutions in various physical and mathematical contexts. The proposed method is simple and quick to execute, and it offers more innovative solutions than other methods. As a consequence, through the donation of suitable assumptions for the parameters, some new solutions for dark and singular soliton, as well as Jacobi elliptic, exponential, hyperbolic, and singular periodic forms, are developed. Furthermore, to enhance understanding, graphical representations of certain solutions are included.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.20241593