Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes
Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic cycle of dioxygen activation. In 2003, researchers first spectroscopically characterized a mononuclear nonheme iron(IV)-oxo intermediate in...
Saved in:
| Published in: | Accounts of chemical research Vol. 47; no. 4; p. 1146 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
15.04.2014
|
| Subjects: | |
| ISSN: | 1520-4898, 1520-4898 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic cycle of dioxygen activation. In 2003, researchers first spectroscopically characterized a mononuclear nonheme iron(IV)-oxo intermediate in the reaction of taurine: α-ketogultarate dioxygenase (TauD). This nonheme iron enzyme with an iron active center was coordinated to a 2-His-1- carboxylate facial triad motif. In the same year, researchers obtained the first crystal structure of a mononuclear nonheme iron(IV)-oxo complex bearing a macrocyclic supporting ligand, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecene), in studies that mimicked the biological enzymes. With these breakthrough results, many other studies have examined mononuclear nonheme iron(IV)-oxo intermediates trapped in enzymatic reactions or synthesized in biomimetic reactions. Over the past decade, researchers in the fields of biological, bioinorganic, and oxidation chemistry have extensively investigated the structure, spectroscopy, and reactivity of nonheme iron(IV)-oxo species, leading to a wealth of information from these enzymatic and biomimetic studies. This Account summarizes the reactivity and mechanisms of synthetic mononuclear nonheme iron(IV)-oxo complexes in oxidation reactions and examines factors that modulate their reactivities and change their reaction mechanisms. We focus on several reactions including the oxidation of organic and inorganic compounds, electron transfer, and oxygen atom exchange with water by synthetic mononuclear nonheme iron(IV)-oxo complexes. In addition, we recently observed that the C-H bond activation by nonheme iron(IV)-oxo and other nonheme metal(IV)-oxo complexes does not follow the H-atom abstraction/oxygen-rebound mechanism, which has been well-established in heme systems. The structural and electronic effects of supporting ligands on the oxidizing power of iron(IV)-oxo complexes are significant in these reactions. However, the difference in spin states between nonheme iron(IV)-oxo complexes with an octahedral geometry (with an S = 1 intermediate-spin state) or a trigonal bipyramidal (TBP) geometry (with an S = 2 high-spin state) does not lead to a significant change in reactivity in biomimetic systems. Thus, the importance of the high-spin state of iron(IV)-oxo species in nonheme iron enzymes remains unexplained. We also discuss how the axial and equatorial ligands and binding of redox-inactive metal ions and protons to the iron-oxo moiety influence the reactivities of the nonheme iron(IV)-oxo complexes. We emphasize how these changes can enhance the oxidizing power of nonheme metal(IV)-oxo complexes in oxygen atom transfer and electron-transfer reactions remarkably. This Account demonstrates great advancements in the understanding of the chemistry of mononuclear nonheme iron(IV)-oxo intermediates within the last 10 years. |
|---|---|
| AbstractList | Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic cycle of dioxygen activation. In 2003, researchers first spectroscopically characterized a mononuclear nonheme iron(IV)-oxo intermediate in the reaction of taurine: α-ketogultarate dioxygenase (TauD). This nonheme iron enzyme with an iron active center was coordinated to a 2-His-1- carboxylate facial triad motif. In the same year, researchers obtained the first crystal structure of a mononuclear nonheme iron(IV)-oxo complex bearing a macrocyclic supporting ligand, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecene), in studies that mimicked the biological enzymes. With these breakthrough results, many other studies have examined mononuclear nonheme iron(IV)-oxo intermediates trapped in enzymatic reactions or synthesized in biomimetic reactions. Over the past decade, researchers in the fields of biological, bioinorganic, and oxidation chemistry have extensively investigated the structure, spectroscopy, and reactivity of nonheme iron(IV)-oxo species, leading to a wealth of information from these enzymatic and biomimetic studies. This Account summarizes the reactivity and mechanisms of synthetic mononuclear nonheme iron(IV)-oxo complexes in oxidation reactions and examines factors that modulate their reactivities and change their reaction mechanisms. We focus on several reactions including the oxidation of organic and inorganic compounds, electron transfer, and oxygen atom exchange with water by synthetic mononuclear nonheme iron(IV)-oxo complexes. In addition, we recently observed that the C-H bond activation by nonheme iron(IV)-oxo and other nonheme metal(IV)-oxo complexes does not follow the H-atom abstraction/oxygen-rebound mechanism, which has been well-established in heme systems. The structural and electronic effects of supporting ligands on the oxidizing power of iron(IV)-oxo complexes are significant in these reactions. However, the difference in spin states between nonheme iron(IV)-oxo complexes with an octahedral geometry (with an S = 1 intermediate-spin state) or a trigonal bipyramidal (TBP) geometry (with an S = 2 high-spin state) does not lead to a significant change in reactivity in biomimetic systems. Thus, the importance of the high-spin state of iron(IV)-oxo species in nonheme iron enzymes remains unexplained. We also discuss how the axial and equatorial ligands and binding of redox-inactive metal ions and protons to the iron-oxo moiety influence the reactivities of the nonheme iron(IV)-oxo complexes. We emphasize how these changes can enhance the oxidizing power of nonheme metal(IV)-oxo complexes in oxygen atom transfer and electron-transfer reactions remarkably. This Account demonstrates great advancements in the understanding of the chemistry of mononuclear nonheme iron(IV)-oxo intermediates within the last 10 years. Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic cycle of dioxygen activation. In 2003, researchers first spectroscopically characterized a mononuclear nonheme iron(IV)-oxo intermediate in the reaction of taurine: α-ketogultarate dioxygenase (TauD). This nonheme iron enzyme with an iron active center was coordinated to a 2-His-1- carboxylate facial triad motif. In the same year, researchers obtained the first crystal structure of a mononuclear nonheme iron(IV)-oxo complex bearing a macrocyclic supporting ligand, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecene), in studies that mimicked the biological enzymes. With these breakthrough results, many other studies have examined mononuclear nonheme iron(IV)-oxo intermediates trapped in enzymatic reactions or synthesized in biomimetic reactions. Over the past decade, researchers in the fields of biological, bioinorganic, and oxidation chemistry have extensively investigated the structure, spectroscopy, and reactivity of nonheme iron(IV)-oxo species, leading to a wealth of information from these enzymatic and biomimetic studies. This Account summarizes the reactivity and mechanisms of synthetic mononuclear nonheme iron(IV)-oxo complexes in oxidation reactions and examines factors that modulate their reactivities and change their reaction mechanisms. We focus on several reactions including the oxidation of organic and inorganic compounds, electron transfer, and oxygen atom exchange with water by synthetic mononuclear nonheme iron(IV)-oxo complexes. In addition, we recently observed that the C-H bond activation by nonheme iron(IV)-oxo and other nonheme metal(IV)-oxo complexes does not follow the H-atom abstraction/oxygen-rebound mechanism, which has been well-established in heme systems. The structural and electronic effects of supporting ligands on the oxidizing power of iron(IV)-oxo complexes are significant in these reactions. However, the difference in spin states between nonheme iron(IV)-oxo complexes with an octahedral geometry (with an S = 1 intermediate-spin state) or a trigonal bipyramidal (TBP) geometry (with an S = 2 high-spin state) does not lead to a significant change in reactivity in biomimetic systems. Thus, the importance of the high-spin state of iron(IV)-oxo species in nonheme iron enzymes remains unexplained. We also discuss how the axial and equatorial ligands and binding of redox-inactive metal ions and protons to the iron-oxo moiety influence the reactivities of the nonheme iron(IV)-oxo complexes. We emphasize how these changes can enhance the oxidizing power of nonheme metal(IV)-oxo complexes in oxygen atom transfer and electron-transfer reactions remarkably. This Account demonstrates great advancements in the understanding of the chemistry of mononuclear nonheme iron(IV)-oxo intermediates within the last 10 years.Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic cycle of dioxygen activation. In 2003, researchers first spectroscopically characterized a mononuclear nonheme iron(IV)-oxo intermediate in the reaction of taurine: α-ketogultarate dioxygenase (TauD). This nonheme iron enzyme with an iron active center was coordinated to a 2-His-1- carboxylate facial triad motif. In the same year, researchers obtained the first crystal structure of a mononuclear nonheme iron(IV)-oxo complex bearing a macrocyclic supporting ligand, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecene), in studies that mimicked the biological enzymes. With these breakthrough results, many other studies have examined mononuclear nonheme iron(IV)-oxo intermediates trapped in enzymatic reactions or synthesized in biomimetic reactions. Over the past decade, researchers in the fields of biological, bioinorganic, and oxidation chemistry have extensively investigated the structure, spectroscopy, and reactivity of nonheme iron(IV)-oxo species, leading to a wealth of information from these enzymatic and biomimetic studies. This Account summarizes the reactivity and mechanisms of synthetic mononuclear nonheme iron(IV)-oxo complexes in oxidation reactions and examines factors that modulate their reactivities and change their reaction mechanisms. We focus on several reactions including the oxidation of organic and inorganic compounds, electron transfer, and oxygen atom exchange with water by synthetic mononuclear nonheme iron(IV)-oxo complexes. In addition, we recently observed that the C-H bond activation by nonheme iron(IV)-oxo and other nonheme metal(IV)-oxo complexes does not follow the H-atom abstraction/oxygen-rebound mechanism, which has been well-established in heme systems. The structural and electronic effects of supporting ligands on the oxidizing power of iron(IV)-oxo complexes are significant in these reactions. However, the difference in spin states between nonheme iron(IV)-oxo complexes with an octahedral geometry (with an S = 1 intermediate-spin state) or a trigonal bipyramidal (TBP) geometry (with an S = 2 high-spin state) does not lead to a significant change in reactivity in biomimetic systems. Thus, the importance of the high-spin state of iron(IV)-oxo species in nonheme iron enzymes remains unexplained. We also discuss how the axial and equatorial ligands and binding of redox-inactive metal ions and protons to the iron-oxo moiety influence the reactivities of the nonheme iron(IV)-oxo complexes. We emphasize how these changes can enhance the oxidizing power of nonheme metal(IV)-oxo complexes in oxygen atom transfer and electron-transfer reactions remarkably. This Account demonstrates great advancements in the understanding of the chemistry of mononuclear nonheme iron(IV)-oxo intermediates within the last 10 years. |
| Author | Nam, Wonwoo Lee, Yong-Min Fukuzumi, Shunichi |
| Author_xml | – sequence: 1 givenname: Wonwoo surname: Nam fullname: Nam, Wonwoo organization: Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic Systems, Ewha Womans University , Seoul 120-750, Korea – sequence: 2 givenname: Yong-Min surname: Lee fullname: Lee, Yong-Min – sequence: 3 givenname: Shunichi surname: Fukuzumi fullname: Fukuzumi, Shunichi |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24524675$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkEtLxDAUhYOMOA9d-Acky3FRTdKkzSxl8AUDbka3JUlvnUiT1KSVmX9vxRFc3e_Ax-Fw52jigweELim5oYTRWxU5IUzI7gTNqGAk43IlJ_94iuYpfZBR4kV5hqaMix8SM1RvB2_9O46gTG-_bH_AytfYgdkpb5PD1uOwt7XqbfBHK_iE9QG7MM4YTAsq4pF24ADbGPzy-e06C_uATXBdC3tI5-i0UW2Ci-NdoNeH--36Kdu8PD6v7zaZ4pT3mWYib4SQhLECBOdECyqlkiQva0pXeS6lVkUpG0aJ0tI0uRa6GVNtQDe8ZAu0_O3tYvgcIPWVs8lA2yoPYUgVFbQo2UpIPqpXR3XQDuqqi9apeKj-PsO-ATj9ZxM |
| CitedBy_id | crossref_primary_10_1002_tcr_201800033 crossref_primary_10_1016_j_cbpa_2015_01_014 crossref_primary_10_1002_ange_201808840 crossref_primary_10_1134_S1070328420110068 crossref_primary_10_1002_anie_201612225 crossref_primary_10_1016_j_mcat_2018_01_022 crossref_primary_10_1016_j_jorganchem_2021_121994 crossref_primary_10_1016_j_ccr_2021_213914 crossref_primary_10_1038_nchem_2366 crossref_primary_10_1007_s12274_018_2079_8 crossref_primary_10_1002_cssc_201901276 crossref_primary_10_1002_chem_201700666 crossref_primary_10_1039_C5CC00411J crossref_primary_10_1039_D1QI00522G crossref_primary_10_1016_j_cej_2018_01_112 crossref_primary_10_1002_1873_3468_12554 crossref_primary_10_1016_j_molcata_2016_08_013 crossref_primary_10_1002_ajoc_201600576 crossref_primary_10_1039_C6CP02216B crossref_primary_10_1002_anie_201507835 crossref_primary_10_1002_chem_202404250 crossref_primary_10_1039_C5DT04292E crossref_primary_10_1021_jacs_7b04695 crossref_primary_10_1039_C5SC01680K crossref_primary_10_1039_C4CC10411K crossref_primary_10_1038_s41557_023_01191_4 crossref_primary_10_1038_s41929_022_00845_9 crossref_primary_10_1016_j_apcatb_2023_122706 crossref_primary_10_1002_ange_202501338 crossref_primary_10_1002_anie_201611709 crossref_primary_10_1155_2016_3585781 crossref_primary_10_1002_ange_202209655 crossref_primary_10_1002_anie_201402537 crossref_primary_10_1021_jacs_8b08687 crossref_primary_10_1039_C4CP03053B crossref_primary_10_1002_bkcs_12584 crossref_primary_10_1002_cphc_202100810 crossref_primary_10_1002_anie_201603978 crossref_primary_10_1002_chem_201701986 crossref_primary_10_1021_jacs_4c09354 crossref_primary_10_1021_jacs_3c08950 crossref_primary_10_1246_bcsj_20180119 crossref_primary_10_1039_D2DT01529C crossref_primary_10_1021_jacs_7b03255 crossref_primary_10_1002_ange_201802641 crossref_primary_10_1021_jacsau_5c00589 crossref_primary_10_1016_j_ccr_2025_216536 crossref_primary_10_1002_anie_202013940 crossref_primary_10_1039_C4CC05313C crossref_primary_10_1002_chem_201804898 crossref_primary_10_1021_jacs_5b11579 crossref_primary_10_1039_C7CC04035K crossref_primary_10_1021_acs_jpclett_5c02491 crossref_primary_10_1039_D5QI00508F crossref_primary_10_1016_j_ccr_2024_215840 crossref_primary_10_1039_C8SC02599A crossref_primary_10_1002_anie_201610828 crossref_primary_10_1021_jacs_7b02839 crossref_primary_10_3390_molecules30102242 crossref_primary_10_1021_jacs_4c10120 crossref_primary_10_1002_anie_202005091 crossref_primary_10_1016_j_jinorgbio_2023_112367 crossref_primary_10_1002_chem_202404279 crossref_primary_10_1002_anie_201505796 crossref_primary_10_1039_C5CC04803F crossref_primary_10_1002_cphc_202400765 crossref_primary_10_1002_cplu_201900178 crossref_primary_10_1016_j_jinorgbio_2023_112123 crossref_primary_10_1002_ange_202013940 crossref_primary_10_1016_j_cplett_2019_136858 crossref_primary_10_1021_jacs_6b07633 crossref_primary_10_1016_j_inoche_2016_03_015 crossref_primary_10_3390_molecules28124745 crossref_primary_10_1002_chem_201805855 crossref_primary_10_1016_j_apcata_2023_119417 crossref_primary_10_1021_jacs_1c08198 crossref_primary_10_1016_j_ccr_2019_213176 crossref_primary_10_1021_jacs_7b00429 crossref_primary_10_1002_ejoc_202001201 crossref_primary_10_1002_ejic_201701072 crossref_primary_10_1155_2016_8296365 crossref_primary_10_1080_02603594_2018_1509856 crossref_primary_10_1002_cssc_201701612 crossref_primary_10_1002_ange_202005091 crossref_primary_10_1016_j_ccr_2020_213443 crossref_primary_10_1002_anie_201600287 crossref_primary_10_1002_anie_201600165 crossref_primary_10_1016_j_ccr_2018_03_003 crossref_primary_10_1002_anie_201602460 crossref_primary_10_3390_cryst6050058 crossref_primary_10_1039_C4CC07981G crossref_primary_10_1021_cr500425u crossref_primary_10_1021_jacs_7b08161 crossref_primary_10_1039_C5CC08734A crossref_primary_10_1002_ange_201804836 crossref_primary_10_1002_anie_201910032 crossref_primary_10_1002_ange_201800475 crossref_primary_10_1002_anie_201802641 crossref_primary_10_1002_cctc_202301534 crossref_primary_10_1002_ange_201600507 crossref_primary_10_1002_aoc_4161 crossref_primary_10_1002_slct_201700404 crossref_primary_10_1016_j_ccr_2024_216429 crossref_primary_10_1016_j_watres_2024_122255 crossref_primary_10_1021_jacs_8b02303 crossref_primary_10_1002_bkcs_12389 crossref_primary_10_1002_ange_201605099 crossref_primary_10_1002_ejic_201500001 crossref_primary_10_1039_C4CC07568D crossref_primary_10_1016_j_jcat_2022_01_002 crossref_primary_10_1002_chem_202104167 crossref_primary_10_1080_00268976_2018_1428375 crossref_primary_10_1002_chem_201902423 crossref_primary_10_1002_anie_201800475 crossref_primary_10_1021_ja502732p crossref_primary_10_1002_anie_201804836 crossref_primary_10_1002_ange_201910032 crossref_primary_10_1002_ange_201507835 crossref_primary_10_1142_S1088424615020010 crossref_primary_10_1021_jacs_6b05027 crossref_primary_10_1002_chem_201805148 crossref_primary_10_1016_j_saa_2015_07_038 crossref_primary_10_1002_adsc_202301453 crossref_primary_10_1021_jacs_8b00350 crossref_primary_10_1039_D2SC01232D crossref_primary_10_1002_ange_201600165 crossref_primary_10_1002_ange_201600287 crossref_primary_10_1039_C7CC03742B crossref_primary_10_1142_S1088424616300032 crossref_primary_10_1002_chem_201800380 crossref_primary_10_1002_ange_202512839 crossref_primary_10_1002_ejic_201600123 crossref_primary_10_1002_anov_70007 crossref_primary_10_1016_j_molstruc_2016_02_101 crossref_primary_10_1016_j_ccr_2016_09_018 crossref_primary_10_1021_jacs_5b05142 crossref_primary_10_1016_j_jinorgbio_2025_112989 crossref_primary_10_1021_ja503869j crossref_primary_10_1002_chem_201502143 crossref_primary_10_3390_molecules28207119 crossref_primary_10_1002_chem_202303955 crossref_primary_10_1080_00958972_2015_1065974 crossref_primary_10_1021_jacs_5b10299 crossref_primary_10_1021_jacs_9b13756 crossref_primary_10_1002_chem_202001818 crossref_primary_10_1002_ejic_202400837 crossref_primary_10_1002_cbic_202300119 crossref_primary_10_1038_s41467_025_56180_7 crossref_primary_10_1021_jacs_0c05738 crossref_primary_10_1021_jacs_6b03874 crossref_primary_10_1002_anie_202512839 crossref_primary_10_3390_molecules28041855 crossref_primary_10_1039_D2DT01822E crossref_primary_10_1016_j_jphotochem_2023_114961 crossref_primary_10_1134_S0036024421150127 crossref_primary_10_1002_adma_202304152 crossref_primary_10_1039_D0SC04069J crossref_primary_10_1021_jacs_9b01516 crossref_primary_10_1039_C6CP07771D crossref_primary_10_1002_ejoc_202300360 crossref_primary_10_1080_00268976_2018_1552799 crossref_primary_10_1039_D1SC01272J crossref_primary_10_1038_s41570_020_0197_9 crossref_primary_10_1002_anie_201812758 crossref_primary_10_1039_C8RA09825E crossref_primary_10_1002_anie_201605099 crossref_primary_10_1016_j_jcat_2024_115361 crossref_primary_10_1016_j_jorganchem_2018_11_008 crossref_primary_10_1021_jacs_3c14574 crossref_primary_10_1021_ja509465w crossref_primary_10_1021_jacs_0c05108 crossref_primary_10_3390_catal12090949 crossref_primary_10_1002_chem_201700820 crossref_primary_10_1021_acscatal_5c03268 crossref_primary_10_1002_chem_201403233 crossref_primary_10_1021_jacs_9b11682 crossref_primary_10_1016_j_jelechem_2014_07_040 crossref_primary_10_1038_s41467_017_02371_w crossref_primary_10_1016_j_poly_2020_114952 crossref_primary_10_1021_jacs_5b04787 crossref_primary_10_1021_jacs_6b06252 crossref_primary_10_1016_j_cej_2023_146622 crossref_primary_10_3390_catal11020186 crossref_primary_10_1002_cctc_201900242 crossref_primary_10_1002_anie_202114932 crossref_primary_10_1002_ijch_201900161 crossref_primary_10_1039_C4CC05972G crossref_primary_10_1002_ange_201602460 crossref_primary_10_1002_tcr_202400186 crossref_primary_10_1002_chem_202402468 crossref_primary_10_1039_C7CP01479A crossref_primary_10_1021_jacs_6b08661 crossref_primary_10_1002_ange_201505796 crossref_primary_10_1002_anie_201600507 crossref_primary_10_1002_ange_201402537 crossref_primary_10_1002_aoc_4825 crossref_primary_10_1002_chem_201604361 crossref_primary_10_1007_s11224_022_02030_x crossref_primary_10_1002_chem_201502693 crossref_primary_10_1021_ja507807v crossref_primary_10_1021_jacs_8b08950 crossref_primary_10_1016_j_watres_2018_06_023 crossref_primary_10_1002_chem_202300478 crossref_primary_10_1002_ange_201611709 crossref_primary_10_1007_s12039_021_01994_3 crossref_primary_10_1002_chem_201700363 crossref_primary_10_1021_jacs_3c14433 crossref_primary_10_1002_ejic_202200621 crossref_primary_10_1002_chem_202401163 crossref_primary_10_1002_cjoc_202100576 crossref_primary_10_1021_jacs_0c10159 crossref_primary_10_1002_anie_201808840 crossref_primary_10_1016_j_jpcs_2023_111563 crossref_primary_10_1021_jacs_8b11492 crossref_primary_10_1021_jacs_8b04904 crossref_primary_10_1039_C6CC07152J crossref_primary_10_1016_j_poly_2020_114609 crossref_primary_10_1002_ange_201612225 crossref_primary_10_1039_C5CP03784K crossref_primary_10_1002_advs_202310333 crossref_primary_10_1002_chem_201900708 crossref_primary_10_1021_jacs_8b06084 crossref_primary_10_1038_ncomms14839 crossref_primary_10_1002_cptc_201900219 crossref_primary_10_1021_jacs_6b03555 crossref_primary_10_1016_j_mcat_2017_08_006 crossref_primary_10_1002_chem_202304172 crossref_primary_10_1080_00958972_2018_1490414 crossref_primary_10_1002_chem_202103295 crossref_primary_10_1107_S2053230X16004933 crossref_primary_10_1002_anie_202501338 crossref_primary_10_1016_j_inoche_2017_08_007 crossref_primary_10_1016_j_cattod_2022_02_016 crossref_primary_10_3390_molecules29010058 crossref_primary_10_1002_ange_202114932 crossref_primary_10_1016_j_cej_2019_04_121 crossref_primary_10_1080_00958972_2015_1073270 crossref_primary_10_1002_ejic_201800273 crossref_primary_10_1021_jacs_6b12291 crossref_primary_10_1039_C7CC09492B crossref_primary_10_1002_ange_201603978 crossref_primary_10_1002_chem_202101045 crossref_primary_10_1021_jacs_4c16522 crossref_primary_10_1021_jacs_1c01674 crossref_primary_10_1002_chem_202400019 crossref_primary_10_1021_acs_analchem_5c00552 crossref_primary_10_1021_jacs_0c11420 crossref_primary_10_3390_catal9030209 crossref_primary_10_1016_j_ccr_2016_07_006 crossref_primary_10_1002_cctc_202300957 crossref_primary_10_1021_jasms_2c00094 crossref_primary_10_1021_jacs_3c08117 crossref_primary_10_1039_C4CC03234A crossref_primary_10_1007_s11244_025_02133_9 crossref_primary_10_1039_D2QO01310J crossref_primary_10_1002_ange_201812758 crossref_primary_10_1016_j_mcat_2019_110708 crossref_primary_10_1002_ange_201610828 crossref_primary_10_1021_jacs_5b13500 crossref_primary_10_1021_jacs_8b11045 crossref_primary_10_1039_D0CY01868F crossref_primary_10_1002_chem_201901735 crossref_primary_10_1039_D0RA08496D crossref_primary_10_1016_j_abb_2017_08_013 crossref_primary_10_1016_j_chemgeo_2020_119480 crossref_primary_10_1002_ange_202015478 crossref_primary_10_1007_s11244_021_01525_x crossref_primary_10_1080_09168451_2019_1625264 crossref_primary_10_1007_s41061_018_0197_0 crossref_primary_10_1016_j_jinorgbio_2025_112912 crossref_primary_10_1080_10426507_2016_1255623 crossref_primary_10_12688_f1000research_6314_1 crossref_primary_10_1002_ajoc_201500187 crossref_primary_10_1002_chem_202300271 crossref_primary_10_1021_jacs_8b12935 crossref_primary_10_1007_s00775_016_1434_z crossref_primary_10_1002_ange_202401694 crossref_primary_10_1002_anie_202209655 crossref_primary_10_1021_jacs_9b10526 crossref_primary_10_1080_17415993_2023_2182160 crossref_primary_10_1039_D4DT03503H crossref_primary_10_1016_j_cplett_2015_01_024 crossref_primary_10_1016_j_ica_2016_01_004 crossref_primary_10_1016_j_poly_2018_11_019 crossref_primary_10_1002_chem_201404749 crossref_primary_10_1021_jacs_3c01196 crossref_primary_10_1021_jacs_9b03688 crossref_primary_10_1002_bab_1976 crossref_primary_10_1002_adsc_201501024 crossref_primary_10_1002_anie_202015478 crossref_primary_10_3390_inorganics13010022 crossref_primary_10_1002_anie_202401694 crossref_primary_10_1021_jacs_5b01745 crossref_primary_10_1007_s11426_016_0330_3 crossref_primary_10_1002_chem_202403892 crossref_primary_10_1021_ja508403w crossref_primary_10_1021_jacs_1c04919 crossref_primary_10_1016_j_mcat_2025_115483 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1021/ar400258p |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-4898 |
| ExternalDocumentID | 24524675 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 6P2 7~N 85S AABXI ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AETEA AFEFF AFXLT AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CGR CS3 CUPRZ CUY CVF D0L EBS ECM ED~ EIF EJD F5P GGK GNL IH2 IH9 JG~ LG6 NPM P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 XSW YZZ ZCA ~02 7X8 |
| ID | FETCH-LOGICAL-a414t-b253f5580226e5440b5188a8037d1193388ba678f210ab8cf3b5bff21dcebf472 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 451 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334658200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-4898 |
| IngestDate | Thu Jul 10 23:00:08 EDT 2025 Mon Jul 21 05:35:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a414t-b253f5580226e5440b5188a8037d1193388ba678f210ab8cf3b5bff21dcebf472 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 24524675 |
| PQID | 1516729584 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_1516729584 pubmed_primary_24524675 |
| PublicationCentury | 2000 |
| PublicationDate | 2014-04-15 |
| PublicationDateYYYYMMDD | 2014-04-15 |
| PublicationDate_xml | – month: 04 year: 2014 text: 2014-04-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Accounts of chemical research |
| PublicationTitleAlternate | Acc Chem Res |
| PublicationYear | 2014 |
| SSID | ssj0002467 |
| Score | 2.6085582 |
| Snippet | Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 1146 |
| SubjectTerms | Biomimetics Electrons Heme Iron - chemistry Ligands Oxidation-Reduction Oxygen - chemistry Protons Water |
| Title | Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/24524675 https://www.proquest.com/docview/1516729584 |
| Volume | 47 |
| WOSCitedRecordID | wos000334658200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7qBH3xfpk3IvigD2Ftk7Tpk8hwKOjYwxx7G7kV-rB2rpvMf-9JL-xJEHwpLbRNm5zk-3JOcj6E7qTSnAFSEBpb57rhIfQ5ygg10ksMM9YvI_ijt6jfF-NxPKgdbkW9rLIZE8uB2uTa-cg7gEwhEEHAy8fZJ3GqUS66WktobKIWBSrjrDoar7OFB6xUkAWI8ggTsWgyCwV-R86Zg3sx-51ZlgjT2__vtx2gvZpb4qfKGA7Rhs2O0E63kXQ7Rma4dG4QDERRV6oRWGYGT63b_psWU5xmOF-llcxSfRdYJVbfGIrIM5f7WM4xnME7LXY75O5fRw8kX-W4XJtuV7Y4QR-952H3hdQyC0Qyny2ICjhNOHd7bkPLGfOUS9ImhUcj4wO_o0IoCZiWwOxQKqETqrhK4MpoqxIWBadoCwq25wgDXwlllDjIk8xoJX0tmPakbxQMZiZuo9umAifw6y42ITObL4vJugrb6KxqhcmsyrcxccFhaEl-8YenL9EuUJpybY3Pr1ArgU5sr9G2_lqkxfymtA849gfvPzHXxqY |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+reactivity+and+mechanism+in+oxidation+reactions+by+mononuclear+nonheme+iron%28IV%29-oxo+complexes&rft.jtitle=Accounts+of+chemical+research&rft.au=Nam%2C+Wonwoo&rft.au=Lee%2C+Yong-Min&rft.au=Fukuzumi%2C+Shunichi&rft.date=2014-04-15&rft.eissn=1520-4898&rft.volume=47&rft.issue=4&rft.spage=1146&rft_id=info:doi/10.1021%2Far400258p&rft_id=info%3Apmid%2F24524675&rft_id=info%3Apmid%2F24524675&rft.externalDocID=24524675 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon |