Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes

Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic cycle of dioxygen activation. In 2003, researchers first spectroscopically characterized a mononuclear nonheme iron(IV)-oxo intermediate in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Accounts of chemical research Ročník 47; číslo 4; s. 1146
Hlavní autoři: Nam, Wonwoo, Lee, Yong-Min, Fukuzumi, Shunichi
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 15.04.2014
Témata:
ISSN:1520-4898, 1520-4898
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic cycle of dioxygen activation. In 2003, researchers first spectroscopically characterized a mononuclear nonheme iron(IV)-oxo intermediate in the reaction of taurine: α-ketogultarate dioxygenase (TauD). This nonheme iron enzyme with an iron active center was coordinated to a 2-His-1- carboxylate facial triad motif. In the same year, researchers obtained the first crystal structure of a mononuclear nonheme iron(IV)-oxo complex bearing a macrocyclic supporting ligand, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecene), in studies that mimicked the biological enzymes. With these breakthrough results, many other studies have examined mononuclear nonheme iron(IV)-oxo intermediates trapped in enzymatic reactions or synthesized in biomimetic reactions. Over the past decade, researchers in the fields of biological, bioinorganic, and oxidation chemistry have extensively investigated the structure, spectroscopy, and reactivity of nonheme iron(IV)-oxo species, leading to a wealth of information from these enzymatic and biomimetic studies. This Account summarizes the reactivity and mechanisms of synthetic mononuclear nonheme iron(IV)-oxo complexes in oxidation reactions and examines factors that modulate their reactivities and change their reaction mechanisms. We focus on several reactions including the oxidation of organic and inorganic compounds, electron transfer, and oxygen atom exchange with water by synthetic mononuclear nonheme iron(IV)-oxo complexes. In addition, we recently observed that the C-H bond activation by nonheme iron(IV)-oxo and other nonheme metal(IV)-oxo complexes does not follow the H-atom abstraction/oxygen-rebound mechanism, which has been well-established in heme systems. The structural and electronic effects of supporting ligands on the oxidizing power of iron(IV)-oxo complexes are significant in these reactions. However, the difference in spin states between nonheme iron(IV)-oxo complexes with an octahedral geometry (with an S = 1 intermediate-spin state) or a trigonal bipyramidal (TBP) geometry (with an S = 2 high-spin state) does not lead to a significant change in reactivity in biomimetic systems. Thus, the importance of the high-spin state of iron(IV)-oxo species in nonheme iron enzymes remains unexplained. We also discuss how the axial and equatorial ligands and binding of redox-inactive metal ions and protons to the iron-oxo moiety influence the reactivities of the nonheme iron(IV)-oxo complexes. We emphasize how these changes can enhance the oxidizing power of nonheme metal(IV)-oxo complexes in oxygen atom transfer and electron-transfer reactions remarkably. This Account demonstrates great advancements in the understanding of the chemistry of mononuclear nonheme iron(IV)-oxo intermediates within the last 10 years.
AbstractList Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic cycle of dioxygen activation. In 2003, researchers first spectroscopically characterized a mononuclear nonheme iron(IV)-oxo intermediate in the reaction of taurine: α-ketogultarate dioxygenase (TauD). This nonheme iron enzyme with an iron active center was coordinated to a 2-His-1- carboxylate facial triad motif. In the same year, researchers obtained the first crystal structure of a mononuclear nonheme iron(IV)-oxo complex bearing a macrocyclic supporting ligand, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecene), in studies that mimicked the biological enzymes. With these breakthrough results, many other studies have examined mononuclear nonheme iron(IV)-oxo intermediates trapped in enzymatic reactions or synthesized in biomimetic reactions. Over the past decade, researchers in the fields of biological, bioinorganic, and oxidation chemistry have extensively investigated the structure, spectroscopy, and reactivity of nonheme iron(IV)-oxo species, leading to a wealth of information from these enzymatic and biomimetic studies. This Account summarizes the reactivity and mechanisms of synthetic mononuclear nonheme iron(IV)-oxo complexes in oxidation reactions and examines factors that modulate their reactivities and change their reaction mechanisms. We focus on several reactions including the oxidation of organic and inorganic compounds, electron transfer, and oxygen atom exchange with water by synthetic mononuclear nonheme iron(IV)-oxo complexes. In addition, we recently observed that the C-H bond activation by nonheme iron(IV)-oxo and other nonheme metal(IV)-oxo complexes does not follow the H-atom abstraction/oxygen-rebound mechanism, which has been well-established in heme systems. The structural and electronic effects of supporting ligands on the oxidizing power of iron(IV)-oxo complexes are significant in these reactions. However, the difference in spin states between nonheme iron(IV)-oxo complexes with an octahedral geometry (with an S = 1 intermediate-spin state) or a trigonal bipyramidal (TBP) geometry (with an S = 2 high-spin state) does not lead to a significant change in reactivity in biomimetic systems. Thus, the importance of the high-spin state of iron(IV)-oxo species in nonheme iron enzymes remains unexplained. We also discuss how the axial and equatorial ligands and binding of redox-inactive metal ions and protons to the iron-oxo moiety influence the reactivities of the nonheme iron(IV)-oxo complexes. We emphasize how these changes can enhance the oxidizing power of nonheme metal(IV)-oxo complexes in oxygen atom transfer and electron-transfer reactions remarkably. This Account demonstrates great advancements in the understanding of the chemistry of mononuclear nonheme iron(IV)-oxo intermediates within the last 10 years.
Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic cycle of dioxygen activation. In 2003, researchers first spectroscopically characterized a mononuclear nonheme iron(IV)-oxo intermediate in the reaction of taurine: α-ketogultarate dioxygenase (TauD). This nonheme iron enzyme with an iron active center was coordinated to a 2-His-1- carboxylate facial triad motif. In the same year, researchers obtained the first crystal structure of a mononuclear nonheme iron(IV)-oxo complex bearing a macrocyclic supporting ligand, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecene), in studies that mimicked the biological enzymes. With these breakthrough results, many other studies have examined mononuclear nonheme iron(IV)-oxo intermediates trapped in enzymatic reactions or synthesized in biomimetic reactions. Over the past decade, researchers in the fields of biological, bioinorganic, and oxidation chemistry have extensively investigated the structure, spectroscopy, and reactivity of nonheme iron(IV)-oxo species, leading to a wealth of information from these enzymatic and biomimetic studies. This Account summarizes the reactivity and mechanisms of synthetic mononuclear nonheme iron(IV)-oxo complexes in oxidation reactions and examines factors that modulate their reactivities and change their reaction mechanisms. We focus on several reactions including the oxidation of organic and inorganic compounds, electron transfer, and oxygen atom exchange with water by synthetic mononuclear nonheme iron(IV)-oxo complexes. In addition, we recently observed that the C-H bond activation by nonheme iron(IV)-oxo and other nonheme metal(IV)-oxo complexes does not follow the H-atom abstraction/oxygen-rebound mechanism, which has been well-established in heme systems. The structural and electronic effects of supporting ligands on the oxidizing power of iron(IV)-oxo complexes are significant in these reactions. However, the difference in spin states between nonheme iron(IV)-oxo complexes with an octahedral geometry (with an S = 1 intermediate-spin state) or a trigonal bipyramidal (TBP) geometry (with an S = 2 high-spin state) does not lead to a significant change in reactivity in biomimetic systems. Thus, the importance of the high-spin state of iron(IV)-oxo species in nonheme iron enzymes remains unexplained. We also discuss how the axial and equatorial ligands and binding of redox-inactive metal ions and protons to the iron-oxo moiety influence the reactivities of the nonheme iron(IV)-oxo complexes. We emphasize how these changes can enhance the oxidizing power of nonheme metal(IV)-oxo complexes in oxygen atom transfer and electron-transfer reactions remarkably. This Account demonstrates great advancements in the understanding of the chemistry of mononuclear nonheme iron(IV)-oxo intermediates within the last 10 years.Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic cycle of dioxygen activation. In 2003, researchers first spectroscopically characterized a mononuclear nonheme iron(IV)-oxo intermediate in the reaction of taurine: α-ketogultarate dioxygenase (TauD). This nonheme iron enzyme with an iron active center was coordinated to a 2-His-1- carboxylate facial triad motif. In the same year, researchers obtained the first crystal structure of a mononuclear nonheme iron(IV)-oxo complex bearing a macrocyclic supporting ligand, [(TMC)Fe(IV)(O)](2+) (TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecene), in studies that mimicked the biological enzymes. With these breakthrough results, many other studies have examined mononuclear nonheme iron(IV)-oxo intermediates trapped in enzymatic reactions or synthesized in biomimetic reactions. Over the past decade, researchers in the fields of biological, bioinorganic, and oxidation chemistry have extensively investigated the structure, spectroscopy, and reactivity of nonheme iron(IV)-oxo species, leading to a wealth of information from these enzymatic and biomimetic studies. This Account summarizes the reactivity and mechanisms of synthetic mononuclear nonheme iron(IV)-oxo complexes in oxidation reactions and examines factors that modulate their reactivities and change their reaction mechanisms. We focus on several reactions including the oxidation of organic and inorganic compounds, electron transfer, and oxygen atom exchange with water by synthetic mononuclear nonheme iron(IV)-oxo complexes. In addition, we recently observed that the C-H bond activation by nonheme iron(IV)-oxo and other nonheme metal(IV)-oxo complexes does not follow the H-atom abstraction/oxygen-rebound mechanism, which has been well-established in heme systems. The structural and electronic effects of supporting ligands on the oxidizing power of iron(IV)-oxo complexes are significant in these reactions. However, the difference in spin states between nonheme iron(IV)-oxo complexes with an octahedral geometry (with an S = 1 intermediate-spin state) or a trigonal bipyramidal (TBP) geometry (with an S = 2 high-spin state) does not lead to a significant change in reactivity in biomimetic systems. Thus, the importance of the high-spin state of iron(IV)-oxo species in nonheme iron enzymes remains unexplained. We also discuss how the axial and equatorial ligands and binding of redox-inactive metal ions and protons to the iron-oxo moiety influence the reactivities of the nonheme iron(IV)-oxo complexes. We emphasize how these changes can enhance the oxidizing power of nonheme metal(IV)-oxo complexes in oxygen atom transfer and electron-transfer reactions remarkably. This Account demonstrates great advancements in the understanding of the chemistry of mononuclear nonheme iron(IV)-oxo intermediates within the last 10 years.
Author Nam, Wonwoo
Lee, Yong-Min
Fukuzumi, Shunichi
Author_xml – sequence: 1
  givenname: Wonwoo
  surname: Nam
  fullname: Nam, Wonwoo
  organization: Department of Chemistry and Nano Science, Department of Bioinspired Science, Center for Biomimetic Systems, Ewha Womans University , Seoul 120-750, Korea
– sequence: 2
  givenname: Yong-Min
  surname: Lee
  fullname: Lee, Yong-Min
– sequence: 3
  givenname: Shunichi
  surname: Fukuzumi
  fullname: Fukuzumi, Shunichi
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24524675$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAUhYOMOA9d-Acky3FRTdKkzSxl8AUDbka3JUlvnUiT1KSVmX9vxRFc3e_Ax-Fw52jigweELim5oYTRWxU5IUzI7gTNqGAk43IlJ_94iuYpfZBR4kV5hqaMix8SM1RvB2_9O46gTG-_bH_AytfYgdkpb5PD1uOwt7XqbfBHK_iE9QG7MM4YTAsq4pF24ADbGPzy-e06C_uATXBdC3tI5-i0UW2Ci-NdoNeH--36Kdu8PD6v7zaZ4pT3mWYib4SQhLECBOdECyqlkiQva0pXeS6lVkUpG0aJ0tI0uRa6GVNtQDe8ZAu0_O3tYvgcIPWVs8lA2yoPYUgVFbQo2UpIPqpXR3XQDuqqi9apeKj-PsO-ATj9ZxM
CitedBy_id crossref_primary_10_1002_tcr_201800033
crossref_primary_10_1016_j_cbpa_2015_01_014
crossref_primary_10_1002_ange_201808840
crossref_primary_10_1134_S1070328420110068
crossref_primary_10_1002_anie_201612225
crossref_primary_10_1016_j_mcat_2018_01_022
crossref_primary_10_1016_j_jorganchem_2021_121994
crossref_primary_10_1016_j_ccr_2021_213914
crossref_primary_10_1038_nchem_2366
crossref_primary_10_1007_s12274_018_2079_8
crossref_primary_10_1002_cssc_201901276
crossref_primary_10_1002_chem_201700666
crossref_primary_10_1039_C5CC00411J
crossref_primary_10_1039_D1QI00522G
crossref_primary_10_1016_j_cej_2018_01_112
crossref_primary_10_1002_1873_3468_12554
crossref_primary_10_1016_j_molcata_2016_08_013
crossref_primary_10_1002_ajoc_201600576
crossref_primary_10_1039_C6CP02216B
crossref_primary_10_1002_anie_201507835
crossref_primary_10_1002_chem_202404250
crossref_primary_10_1039_C5DT04292E
crossref_primary_10_1021_jacs_7b04695
crossref_primary_10_1039_C5SC01680K
crossref_primary_10_1039_C4CC10411K
crossref_primary_10_1038_s41557_023_01191_4
crossref_primary_10_1038_s41929_022_00845_9
crossref_primary_10_1016_j_apcatb_2023_122706
crossref_primary_10_1002_ange_202501338
crossref_primary_10_1002_anie_201611709
crossref_primary_10_1155_2016_3585781
crossref_primary_10_1002_ange_202209655
crossref_primary_10_1002_anie_201402537
crossref_primary_10_1021_jacs_8b08687
crossref_primary_10_1039_C4CP03053B
crossref_primary_10_1002_bkcs_12584
crossref_primary_10_1002_cphc_202100810
crossref_primary_10_1002_anie_201603978
crossref_primary_10_1002_chem_201701986
crossref_primary_10_1021_jacs_4c09354
crossref_primary_10_1021_jacs_3c08950
crossref_primary_10_1246_bcsj_20180119
crossref_primary_10_1039_D2DT01529C
crossref_primary_10_1021_jacs_7b03255
crossref_primary_10_1002_ange_201802641
crossref_primary_10_1021_jacsau_5c00589
crossref_primary_10_1016_j_ccr_2025_216536
crossref_primary_10_1002_anie_202013940
crossref_primary_10_1039_C4CC05313C
crossref_primary_10_1002_chem_201804898
crossref_primary_10_1021_jacs_5b11579
crossref_primary_10_1039_C7CC04035K
crossref_primary_10_1021_acs_jpclett_5c02491
crossref_primary_10_1039_D5QI00508F
crossref_primary_10_1016_j_ccr_2024_215840
crossref_primary_10_1039_C8SC02599A
crossref_primary_10_1002_anie_201610828
crossref_primary_10_1021_jacs_7b02839
crossref_primary_10_3390_molecules30102242
crossref_primary_10_1021_jacs_4c10120
crossref_primary_10_1002_anie_202005091
crossref_primary_10_1016_j_jinorgbio_2023_112367
crossref_primary_10_1002_chem_202404279
crossref_primary_10_1002_anie_201505796
crossref_primary_10_1039_C5CC04803F
crossref_primary_10_1002_cphc_202400765
crossref_primary_10_1002_cplu_201900178
crossref_primary_10_1016_j_jinorgbio_2023_112123
crossref_primary_10_1002_ange_202013940
crossref_primary_10_1016_j_cplett_2019_136858
crossref_primary_10_1021_jacs_6b07633
crossref_primary_10_1016_j_inoche_2016_03_015
crossref_primary_10_3390_molecules28124745
crossref_primary_10_1002_chem_201805855
crossref_primary_10_1016_j_apcata_2023_119417
crossref_primary_10_1021_jacs_1c08198
crossref_primary_10_1016_j_ccr_2019_213176
crossref_primary_10_1021_jacs_7b00429
crossref_primary_10_1002_ejoc_202001201
crossref_primary_10_1002_ejic_201701072
crossref_primary_10_1155_2016_8296365
crossref_primary_10_1080_02603594_2018_1509856
crossref_primary_10_1002_cssc_201701612
crossref_primary_10_1002_ange_202005091
crossref_primary_10_1016_j_ccr_2020_213443
crossref_primary_10_1002_anie_201600287
crossref_primary_10_1002_anie_201600165
crossref_primary_10_1016_j_ccr_2018_03_003
crossref_primary_10_1002_anie_201602460
crossref_primary_10_3390_cryst6050058
crossref_primary_10_1039_C4CC07981G
crossref_primary_10_1021_cr500425u
crossref_primary_10_1021_jacs_7b08161
crossref_primary_10_1039_C5CC08734A
crossref_primary_10_1002_ange_201804836
crossref_primary_10_1002_anie_201910032
crossref_primary_10_1002_ange_201800475
crossref_primary_10_1002_anie_201802641
crossref_primary_10_1002_cctc_202301534
crossref_primary_10_1002_ange_201600507
crossref_primary_10_1002_aoc_4161
crossref_primary_10_1002_slct_201700404
crossref_primary_10_1016_j_ccr_2024_216429
crossref_primary_10_1016_j_watres_2024_122255
crossref_primary_10_1021_jacs_8b02303
crossref_primary_10_1002_bkcs_12389
crossref_primary_10_1002_ange_201605099
crossref_primary_10_1002_ejic_201500001
crossref_primary_10_1039_C4CC07568D
crossref_primary_10_1016_j_jcat_2022_01_002
crossref_primary_10_1002_chem_202104167
crossref_primary_10_1080_00268976_2018_1428375
crossref_primary_10_1002_chem_201902423
crossref_primary_10_1002_anie_201800475
crossref_primary_10_1021_ja502732p
crossref_primary_10_1002_anie_201804836
crossref_primary_10_1002_ange_201910032
crossref_primary_10_1002_ange_201507835
crossref_primary_10_1142_S1088424615020010
crossref_primary_10_1021_jacs_6b05027
crossref_primary_10_1002_chem_201805148
crossref_primary_10_1016_j_saa_2015_07_038
crossref_primary_10_1002_adsc_202301453
crossref_primary_10_1021_jacs_8b00350
crossref_primary_10_1039_D2SC01232D
crossref_primary_10_1002_ange_201600165
crossref_primary_10_1002_ange_201600287
crossref_primary_10_1039_C7CC03742B
crossref_primary_10_1142_S1088424616300032
crossref_primary_10_1002_chem_201800380
crossref_primary_10_1002_ange_202512839
crossref_primary_10_1002_ejic_201600123
crossref_primary_10_1002_anov_70007
crossref_primary_10_1016_j_molstruc_2016_02_101
crossref_primary_10_1016_j_ccr_2016_09_018
crossref_primary_10_1021_jacs_5b05142
crossref_primary_10_1016_j_jinorgbio_2025_112989
crossref_primary_10_1021_ja503869j
crossref_primary_10_1002_chem_201502143
crossref_primary_10_3390_molecules28207119
crossref_primary_10_1002_chem_202303955
crossref_primary_10_1080_00958972_2015_1065974
crossref_primary_10_1021_jacs_5b10299
crossref_primary_10_1021_jacs_9b13756
crossref_primary_10_1002_chem_202001818
crossref_primary_10_1002_ejic_202400837
crossref_primary_10_1002_cbic_202300119
crossref_primary_10_1038_s41467_025_56180_7
crossref_primary_10_1021_jacs_0c05738
crossref_primary_10_1021_jacs_6b03874
crossref_primary_10_1002_anie_202512839
crossref_primary_10_3390_molecules28041855
crossref_primary_10_1039_D2DT01822E
crossref_primary_10_1016_j_jphotochem_2023_114961
crossref_primary_10_1134_S0036024421150127
crossref_primary_10_1002_adma_202304152
crossref_primary_10_1039_D0SC04069J
crossref_primary_10_1021_jacs_9b01516
crossref_primary_10_1039_C6CP07771D
crossref_primary_10_1002_ejoc_202300360
crossref_primary_10_1080_00268976_2018_1552799
crossref_primary_10_1039_D1SC01272J
crossref_primary_10_1038_s41570_020_0197_9
crossref_primary_10_1002_anie_201812758
crossref_primary_10_1039_C8RA09825E
crossref_primary_10_1002_anie_201605099
crossref_primary_10_1016_j_jcat_2024_115361
crossref_primary_10_1016_j_jorganchem_2018_11_008
crossref_primary_10_1021_jacs_3c14574
crossref_primary_10_1021_ja509465w
crossref_primary_10_1021_jacs_0c05108
crossref_primary_10_3390_catal12090949
crossref_primary_10_1002_chem_201700820
crossref_primary_10_1021_acscatal_5c03268
crossref_primary_10_1002_chem_201403233
crossref_primary_10_1021_jacs_9b11682
crossref_primary_10_1016_j_jelechem_2014_07_040
crossref_primary_10_1038_s41467_017_02371_w
crossref_primary_10_1016_j_poly_2020_114952
crossref_primary_10_1021_jacs_5b04787
crossref_primary_10_1021_jacs_6b06252
crossref_primary_10_1016_j_cej_2023_146622
crossref_primary_10_3390_catal11020186
crossref_primary_10_1002_cctc_201900242
crossref_primary_10_1002_anie_202114932
crossref_primary_10_1002_ijch_201900161
crossref_primary_10_1039_C4CC05972G
crossref_primary_10_1002_ange_201602460
crossref_primary_10_1002_tcr_202400186
crossref_primary_10_1002_chem_202402468
crossref_primary_10_1039_C7CP01479A
crossref_primary_10_1021_jacs_6b08661
crossref_primary_10_1002_ange_201505796
crossref_primary_10_1002_anie_201600507
crossref_primary_10_1002_ange_201402537
crossref_primary_10_1002_aoc_4825
crossref_primary_10_1002_chem_201604361
crossref_primary_10_1007_s11224_022_02030_x
crossref_primary_10_1002_chem_201502693
crossref_primary_10_1021_ja507807v
crossref_primary_10_1021_jacs_8b08950
crossref_primary_10_1016_j_watres_2018_06_023
crossref_primary_10_1002_chem_202300478
crossref_primary_10_1002_ange_201611709
crossref_primary_10_1007_s12039_021_01994_3
crossref_primary_10_1002_chem_201700363
crossref_primary_10_1021_jacs_3c14433
crossref_primary_10_1002_ejic_202200621
crossref_primary_10_1002_chem_202401163
crossref_primary_10_1002_cjoc_202100576
crossref_primary_10_1021_jacs_0c10159
crossref_primary_10_1002_anie_201808840
crossref_primary_10_1016_j_jpcs_2023_111563
crossref_primary_10_1021_jacs_8b11492
crossref_primary_10_1021_jacs_8b04904
crossref_primary_10_1039_C6CC07152J
crossref_primary_10_1016_j_poly_2020_114609
crossref_primary_10_1002_ange_201612225
crossref_primary_10_1039_C5CP03784K
crossref_primary_10_1002_advs_202310333
crossref_primary_10_1002_chem_201900708
crossref_primary_10_1021_jacs_8b06084
crossref_primary_10_1038_ncomms14839
crossref_primary_10_1002_cptc_201900219
crossref_primary_10_1021_jacs_6b03555
crossref_primary_10_1016_j_mcat_2017_08_006
crossref_primary_10_1002_chem_202304172
crossref_primary_10_1080_00958972_2018_1490414
crossref_primary_10_1002_chem_202103295
crossref_primary_10_1107_S2053230X16004933
crossref_primary_10_1002_anie_202501338
crossref_primary_10_1016_j_inoche_2017_08_007
crossref_primary_10_1016_j_cattod_2022_02_016
crossref_primary_10_3390_molecules29010058
crossref_primary_10_1002_ange_202114932
crossref_primary_10_1016_j_cej_2019_04_121
crossref_primary_10_1080_00958972_2015_1073270
crossref_primary_10_1002_ejic_201800273
crossref_primary_10_1021_jacs_6b12291
crossref_primary_10_1039_C7CC09492B
crossref_primary_10_1002_ange_201603978
crossref_primary_10_1002_chem_202101045
crossref_primary_10_1021_jacs_4c16522
crossref_primary_10_1021_jacs_1c01674
crossref_primary_10_1002_chem_202400019
crossref_primary_10_1021_acs_analchem_5c00552
crossref_primary_10_1021_jacs_0c11420
crossref_primary_10_3390_catal9030209
crossref_primary_10_1016_j_ccr_2016_07_006
crossref_primary_10_1002_cctc_202300957
crossref_primary_10_1021_jasms_2c00094
crossref_primary_10_1021_jacs_3c08117
crossref_primary_10_1039_C4CC03234A
crossref_primary_10_1007_s11244_025_02133_9
crossref_primary_10_1039_D2QO01310J
crossref_primary_10_1002_ange_201812758
crossref_primary_10_1016_j_mcat_2019_110708
crossref_primary_10_1002_ange_201610828
crossref_primary_10_1021_jacs_5b13500
crossref_primary_10_1021_jacs_8b11045
crossref_primary_10_1039_D0CY01868F
crossref_primary_10_1002_chem_201901735
crossref_primary_10_1039_D0RA08496D
crossref_primary_10_1016_j_abb_2017_08_013
crossref_primary_10_1016_j_chemgeo_2020_119480
crossref_primary_10_1002_ange_202015478
crossref_primary_10_1007_s11244_021_01525_x
crossref_primary_10_1080_09168451_2019_1625264
crossref_primary_10_1007_s41061_018_0197_0
crossref_primary_10_1016_j_jinorgbio_2025_112912
crossref_primary_10_1080_10426507_2016_1255623
crossref_primary_10_12688_f1000research_6314_1
crossref_primary_10_1002_ajoc_201500187
crossref_primary_10_1002_chem_202300271
crossref_primary_10_1021_jacs_8b12935
crossref_primary_10_1007_s00775_016_1434_z
crossref_primary_10_1002_ange_202401694
crossref_primary_10_1002_anie_202209655
crossref_primary_10_1021_jacs_9b10526
crossref_primary_10_1080_17415993_2023_2182160
crossref_primary_10_1039_D4DT03503H
crossref_primary_10_1016_j_cplett_2015_01_024
crossref_primary_10_1016_j_ica_2016_01_004
crossref_primary_10_1016_j_poly_2018_11_019
crossref_primary_10_1002_chem_201404749
crossref_primary_10_1021_jacs_3c01196
crossref_primary_10_1021_jacs_9b03688
crossref_primary_10_1002_bab_1976
crossref_primary_10_1002_adsc_201501024
crossref_primary_10_1002_anie_202015478
crossref_primary_10_3390_inorganics13010022
crossref_primary_10_1002_anie_202401694
crossref_primary_10_1021_jacs_5b01745
crossref_primary_10_1007_s11426_016_0330_3
crossref_primary_10_1002_chem_202403892
crossref_primary_10_1021_ja508403w
crossref_primary_10_1021_jacs_1c04919
crossref_primary_10_1016_j_mcat_2025_115483
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1021/ar400258p
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
ExternalDocumentID 24524675
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
6P2
7~N
85S
AABXI
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AETEA
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CGR
CS3
CUPRZ
CUY
CVF
D0L
EBS
ECM
ED~
EIF
EJD
F5P
GGK
GNL
IH2
IH9
JG~
LG6
NPM
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
ZCA
~02
7X8
ID FETCH-LOGICAL-a414t-b253f5580226e5440b5188a8037d1193388ba678f210ab8cf3b5bff21dcebf472
IEDL.DBID 7X8
ISICitedReferencesCount 451
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000334658200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-4898
IngestDate Thu Jul 10 23:00:08 EDT 2025
Mon Jul 21 05:35:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-b253f5580226e5440b5188a8037d1193388ba678f210ab8cf3b5bff21dcebf472
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24524675
PQID 1516729584
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1516729584
pubmed_primary_24524675
PublicationCentury 2000
PublicationDate 2014-04-15
PublicationDateYYYYMMDD 2014-04-15
PublicationDate_xml – month: 04
  year: 2014
  text: 2014-04-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc Chem Res
PublicationYear 2014
SSID ssj0002467
Score 2.6085582
Snippet Mononuclear nonheme iron enzymes generate high-valent iron(IV)-oxo intermediates that effect metabolically important oxidative transformations in the catalytic...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1146
SubjectTerms Biomimetics
Electrons
Heme
Iron - chemistry
Ligands
Oxidation-Reduction
Oxygen - chemistry
Protons
Water
Title Tuning reactivity and mechanism in oxidation reactions by mononuclear nonheme iron(IV)-oxo complexes
URI https://www.ncbi.nlm.nih.gov/pubmed/24524675
https://www.proquest.com/docview/1516729584
Volume 47
WOSCitedRecordID wos000334658200017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaAIsHC-1FeMhIDDFbzsGNnQqiiAgmqDqXqVtmxLWVoUpoWlX_POQ91QkJiiTIkcWJffJ_vfN-H0J3QnqXWZyQRVBGqlCbK2pjwSGlHniJNWeE9euP9vhiP40EdcCvqbZXNnFhO1DpPXIy8A54pAiAI_vJx9kmcapTLrtYSGpuoFQKUcVbNx2u28ICWCrLgojxCRSwaZqHA78g5de5ezH5HlqWH6e3_990O0F6NLfFTZQyHaMNkR2in20i6HSM9XLowCAagmFSqEVhmGk-NK_9NiylOM5yv0kpmqb4KrBKrbwxN5JnjPpZzDGfwTINdhdz96-iB5Kscl3vTzcoUJ-ij9zzsvpBaZoFI6tMFUQELLWOu5jYyjFJPOZI2KbyQax_wXSiEkuDTLKwOpRKJDRWD8Qx8nRhlKQ9O0RY0bM4RFoYC4IoplyyhPOIyFprJuOTEl0z4bXTbdOAEPt3lJmRm8mUxWXdhG51VozCZVXwbE5cchpFkF3-4-xLtAqQp99b47Aq1LPzE5hptJ1-LtJjflPYBx_7g_Qcp0Mah
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuning+reactivity+and+mechanism+in+oxidation+reactions+by+mononuclear+nonheme+iron%28IV%29-oxo+complexes&rft.jtitle=Accounts+of+chemical+research&rft.au=Nam%2C+Wonwoo&rft.au=Lee%2C+Yong-Min&rft.au=Fukuzumi%2C+Shunichi&rft.date=2014-04-15&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=47&rft.issue=4&rft.spage=1146&rft_id=info:doi/10.1021%2Far400258p&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon