From Molecules to Interactions to Crystal Engineering: Mechanical Properties of Organic Solids
Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with diverse fields such as mechanochemistry, phase transformations, polymorphism, and chemical, mechanical, and materials engineering have slowed und...
Saved in:
| Published in: | Accounts of chemical research Vol. 51; no. 11; p. 2957 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
20.11.2018
|
| ISSN: | 1520-4898, 1520-4898 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with diverse fields such as mechanochemistry, phase transformations, polymorphism, and chemical, mechanical, and materials engineering have slowed understanding. Any such understanding also needs conceptual advances-sophisticated instrumentation, computational modeling, and chemical insight-lack of such synergy has surely hindered progress in this important field. This Account describes our efforts at focusing down into this interesting subject from the viewpoint of crystal engineering, which is the synthesis and design of functional molecular solids. Mechanical properties of soft molecular crystals imply molecular movement within the solid; the type of property depends on the likelihood of such movement in relation to the applied stress, including the ability of molecules to restore themselves to their original positions when the stress is removed. Therefore, one is interested in properties such as elasticity, plasticity, and brittleness, which are linked to structural anisotropy and the degree to which a structure veers toward isotropic character. However, these matters are still by no means settled and are system dependent. While elasticity and brittleness are probably displayed by all molecular solids, the window of plasticity is perhaps the one that is most amenable to crystal engineering strategies and methods. In all this, one needs to note that mechanical properties have a kinetic component: a crystal that is elastic under slow stress application may become plastic or brittle if the same stress is applied quickly. In this context, nanoindentation studies have shown themselves to be of invaluable importance in understanding structural anisotropy. Several problems in solid state chemistry, including classical ones, such as the melting point alternation in aliphatic straight chain dicarboxylic acids and hardness modulation in solid solutions, have been understood more clearly with this technique. The way may even be open to picoindentation studies and the observation of molecular level movements. As in all types of crystal engineering, an understanding of the intermolecular interactions can lead to property oriented crystal design, and we present examples where complex properties may be deliberately turned on or off in organic crystals: one essentially fine-tunes the degree of isotropy/anisotropy by modulating interactions such as hydrogen bonding, halogen bonding, π···π interactions, and C-H···π interactions. The field is now wide open as is attested by the activities of several research groups working in the area. It is set to take off into the domains of smart materials, soft crystals, and superelasticity and a full understanding of solid state reactivity. |
|---|---|
| AbstractList | Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with diverse fields such as mechanochemistry, phase transformations, polymorphism, and chemical, mechanical, and materials engineering have slowed understanding. Any such understanding also needs conceptual advances-sophisticated instrumentation, computational modeling, and chemical insight-lack of such synergy has surely hindered progress in this important field. This Account describes our efforts at focusing down into this interesting subject from the viewpoint of crystal engineering, which is the synthesis and design of functional molecular solids. Mechanical properties of soft molecular crystals imply molecular movement within the solid; the type of property depends on the likelihood of such movement in relation to the applied stress, including the ability of molecules to restore themselves to their original positions when the stress is removed. Therefore, one is interested in properties such as elasticity, plasticity, and brittleness, which are linked to structural anisotropy and the degree to which a structure veers toward isotropic character. However, these matters are still by no means settled and are system dependent. While elasticity and brittleness are probably displayed by all molecular solids, the window of plasticity is perhaps the one that is most amenable to crystal engineering strategies and methods. In all this, one needs to note that mechanical properties have a kinetic component: a crystal that is elastic under slow stress application may become plastic or brittle if the same stress is applied quickly. In this context, nanoindentation studies have shown themselves to be of invaluable importance in understanding structural anisotropy. Several problems in solid state chemistry, including classical ones, such as the melting point alternation in aliphatic straight chain dicarboxylic acids and hardness modulation in solid solutions, have been understood more clearly with this technique. The way may even be open to picoindentation studies and the observation of molecular level movements. As in all types of crystal engineering, an understanding of the intermolecular interactions can lead to property oriented crystal design, and we present examples where complex properties may be deliberately turned on or off in organic crystals: one essentially fine-tunes the degree of isotropy/anisotropy by modulating interactions such as hydrogen bonding, halogen bonding, π···π interactions, and C-H···π interactions. The field is now wide open as is attested by the activities of several research groups working in the area. It is set to take off into the domains of smart materials, soft crystals, and superelasticity and a full understanding of solid state reactivity.Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with diverse fields such as mechanochemistry, phase transformations, polymorphism, and chemical, mechanical, and materials engineering have slowed understanding. Any such understanding also needs conceptual advances-sophisticated instrumentation, computational modeling, and chemical insight-lack of such synergy has surely hindered progress in this important field. This Account describes our efforts at focusing down into this interesting subject from the viewpoint of crystal engineering, which is the synthesis and design of functional molecular solids. Mechanical properties of soft molecular crystals imply molecular movement within the solid; the type of property depends on the likelihood of such movement in relation to the applied stress, including the ability of molecules to restore themselves to their original positions when the stress is removed. Therefore, one is interested in properties such as elasticity, plasticity, and brittleness, which are linked to structural anisotropy and the degree to which a structure veers toward isotropic character. However, these matters are still by no means settled and are system dependent. While elasticity and brittleness are probably displayed by all molecular solids, the window of plasticity is perhaps the one that is most amenable to crystal engineering strategies and methods. In all this, one needs to note that mechanical properties have a kinetic component: a crystal that is elastic under slow stress application may become plastic or brittle if the same stress is applied quickly. In this context, nanoindentation studies have shown themselves to be of invaluable importance in understanding structural anisotropy. Several problems in solid state chemistry, including classical ones, such as the melting point alternation in aliphatic straight chain dicarboxylic acids and hardness modulation in solid solutions, have been understood more clearly with this technique. The way may even be open to picoindentation studies and the observation of molecular level movements. As in all types of crystal engineering, an understanding of the intermolecular interactions can lead to property oriented crystal design, and we present examples where complex properties may be deliberately turned on or off in organic crystals: one essentially fine-tunes the degree of isotropy/anisotropy by modulating interactions such as hydrogen bonding, halogen bonding, π···π interactions, and C-H···π interactions. The field is now wide open as is attested by the activities of several research groups working in the area. It is set to take off into the domains of smart materials, soft crystals, and superelasticity and a full understanding of solid state reactivity. Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with diverse fields such as mechanochemistry, phase transformations, polymorphism, and chemical, mechanical, and materials engineering have slowed understanding. Any such understanding also needs conceptual advances-sophisticated instrumentation, computational modeling, and chemical insight-lack of such synergy has surely hindered progress in this important field. This Account describes our efforts at focusing down into this interesting subject from the viewpoint of crystal engineering, which is the synthesis and design of functional molecular solids. Mechanical properties of soft molecular crystals imply molecular movement within the solid; the type of property depends on the likelihood of such movement in relation to the applied stress, including the ability of molecules to restore themselves to their original positions when the stress is removed. Therefore, one is interested in properties such as elasticity, plasticity, and brittleness, which are linked to structural anisotropy and the degree to which a structure veers toward isotropic character. However, these matters are still by no means settled and are system dependent. While elasticity and brittleness are probably displayed by all molecular solids, the window of plasticity is perhaps the one that is most amenable to crystal engineering strategies and methods. In all this, one needs to note that mechanical properties have a kinetic component: a crystal that is elastic under slow stress application may become plastic or brittle if the same stress is applied quickly. In this context, nanoindentation studies have shown themselves to be of invaluable importance in understanding structural anisotropy. Several problems in solid state chemistry, including classical ones, such as the melting point alternation in aliphatic straight chain dicarboxylic acids and hardness modulation in solid solutions, have been understood more clearly with this technique. The way may even be open to picoindentation studies and the observation of molecular level movements. As in all types of crystal engineering, an understanding of the intermolecular interactions can lead to property oriented crystal design, and we present examples where complex properties may be deliberately turned on or off in organic crystals: one essentially fine-tunes the degree of isotropy/anisotropy by modulating interactions such as hydrogen bonding, halogen bonding, π···π interactions, and C-H···π interactions. The field is now wide open as is attested by the activities of several research groups working in the area. It is set to take off into the domains of smart materials, soft crystals, and superelasticity and a full understanding of solid state reactivity. |
| Author | Reddy, C Malla Mishra, Manish Kumar Saha, Subhankar Desiraju, Gautam R |
| Author_xml | – sequence: 1 givenname: Subhankar orcidid: 0000-0001-6619-9591 surname: Saha fullname: Saha, Subhankar organization: Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur Campus, Mohanpur 741 246 , India – sequence: 2 givenname: Manish Kumar orcidid: 0000-0002-8193-3499 surname: Mishra fullname: Mishra, Manish Kumar organization: Department of Pharmaceutics, College of Pharmacy , University of Minnesota , 9-127B Weaver-Densford Hall, 308 Harvard Street S.E. , Minneapolis , Minnesota 55455 , United States – sequence: 3 givenname: C Malla orcidid: 0000-0002-1247-7880 surname: Reddy fullname: Reddy, C Malla organization: Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur Campus, Mohanpur 741 246 , India – sequence: 4 givenname: Gautam R orcidid: 0000-0002-7708-9176 surname: Desiraju fullname: Desiraju, Gautam R organization: Solid State and Structural Chemistry Unit , Indian Institute of Science , Bangalore 560 012 , India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30351918$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkM1OwzAQhC0Eoj_wBgjlyCXFdpzE5oaqFiq1KhJwJbKdTTFK7GI7h749AYrEaXZG3660M0Gn1llA6IrgGcGU3EodZlJr19sYZlxhzGh-gsYkpzhlXPDTf_MITUL4wBhTVpTnaJThLCeC8DF6W3rXJRvXgu5bCEl0ycpG8FJH4-yPn_tDiLJNFnZnLIA3dneXbEC_S2v0kD95twcfzbDtmmTrd9958uxaU4cLdNbINsDlUafodbl4mT-m6-3Dan6_TiUjLKYKK9XUteA51kLRAupSiRqILhrMFdBSilppKHLNM501uWTDL7pgXBKly0LQKbr5vbv37rOHEKvOBA1tKy24PlSU0JyKkhdsQK-PaK86qKu9N530h-qvE_oFStFpxw |
| CitedBy_id | crossref_primary_10_1002_anie_202001060 crossref_primary_10_1002_adom_202000926 crossref_primary_10_1002_chem_202403293 crossref_primary_10_1002_chem_201904481 crossref_primary_10_1002_smll_202401317 crossref_primary_10_1016_j_cej_2022_138333 crossref_primary_10_1039_D5SC01260K crossref_primary_10_1134_S0022476625050154 crossref_primary_10_1039_D2CC02047E crossref_primary_10_1002_adma_202102811 crossref_primary_10_1002_adma_202200471 crossref_primary_10_1021_jacs_5c10439 crossref_primary_10_1002_chem_202301825 crossref_primary_10_1016_j_cbpa_2021_06_006 crossref_primary_10_1016_j_jlumin_2025_121423 crossref_primary_10_1002_ange_202011857 crossref_primary_10_1016_j_cclet_2022_03_090 crossref_primary_10_1107_S2052520620006113 crossref_primary_10_1002_advs_202403949 crossref_primary_10_1002_ange_202113073 crossref_primary_10_1016_j_powtec_2021_117066 crossref_primary_10_1039_D5CE00397K crossref_primary_10_1126_science_abg3886 crossref_primary_10_1002_pol_20210290 crossref_primary_10_1107_S205225251901604X crossref_primary_10_1002_adma_202209166 crossref_primary_10_3389_fchem_2022_858946 crossref_primary_10_1002_ange_202114985 crossref_primary_10_1107_S2052252519004755 crossref_primary_10_1002_ange_202411405 crossref_primary_10_1002_ange_202113988 crossref_primary_10_1002_chem_202103559 crossref_primary_10_1016_j_chempr_2024_01_019 crossref_primary_10_1021_acs_cgd_4c00187 crossref_primary_10_1103_PhysRevResearch_5_033185 crossref_primary_10_1134_S0022476624090099 crossref_primary_10_1016_j_ifset_2022_103193 crossref_primary_10_1002_smll_202412561 crossref_primary_10_1002_anie_202217547 crossref_primary_10_1002_anie_201914026 crossref_primary_10_1002_smll_202006795 crossref_primary_10_1002_smll_202501145 crossref_primary_10_1107_S2053229623004072 crossref_primary_10_1039_D3SC03267A crossref_primary_10_1002_ange_201811313 crossref_primary_10_1002_anie_202108441 crossref_primary_10_1016_j_ijpharm_2024_123837 crossref_primary_10_1038_s41598_021_82703_5 crossref_primary_10_1002_adma_202203842 crossref_primary_10_1002_ange_202424496 crossref_primary_10_1021_acs_cgd_5c01046 crossref_primary_10_1002_anie_201905769 crossref_primary_10_1016_j_jics_2021_100202 crossref_primary_10_1038_s41467_019_11657_0 crossref_primary_10_1002_anie_202202708 crossref_primary_10_1002_anie_202500151 crossref_primary_10_1016_j_cherd_2024_08_042 crossref_primary_10_1002_ange_202006474 crossref_primary_10_1002_ange_202201234 crossref_primary_10_1039_D1RA03943A crossref_primary_10_1039_D2SC05217B crossref_primary_10_1002_adom_202000959 crossref_primary_10_1016_j_compositesa_2024_108311 crossref_primary_10_1021_jacs_0c03643 crossref_primary_10_1038_s41467_022_35647_x crossref_primary_10_1007_s00894_020_04624_w crossref_primary_10_1002_ange_202407924 crossref_primary_10_1016_j_molstruc_2022_133293 crossref_primary_10_1016_j_molstruc_2019_06_073 crossref_primary_10_1002_ange_202500151 crossref_primary_10_1002_ejoc_202001564 crossref_primary_10_1002_anie_202320223 crossref_primary_10_1016_j_matt_2025_102098 crossref_primary_10_1016_j_tet_2024_134245 crossref_primary_10_1021_jacs_4c11689 crossref_primary_10_1002_smtd_202400982 crossref_primary_10_1007_s11224_023_02200_5 crossref_primary_10_1039_D2SC06470G crossref_primary_10_1002_anie_202114985 crossref_primary_10_1021_acs_cgd_5c00491 crossref_primary_10_1002_anie_202215286 crossref_primary_10_1002_adom_202201150 crossref_primary_10_1016_j_molstruc_2025_142700 crossref_primary_10_1021_acs_inorgchem_5c00943 crossref_primary_10_1038_s41467_023_35924_3 crossref_primary_10_1107_S2052520619000441 crossref_primary_10_1002_ange_201914026 crossref_primary_10_1002_anie_202212688 crossref_primary_10_1002_anie_202011857 crossref_primary_10_1002_anie_202420139 crossref_primary_10_1002_smll_202412482 crossref_primary_10_1002_anie_202417409 crossref_primary_10_1002_anie_202005738 crossref_primary_10_1002_ange_202110716 crossref_primary_10_1021_jacs_2c00724 crossref_primary_10_1039_D2SC03729G crossref_primary_10_1039_D2RA02205B crossref_primary_10_3390_ma15227958 crossref_primary_10_1016_j_polymer_2023_126305 crossref_primary_10_1002_chem_202200905 crossref_primary_10_1016_j_colcom_2021_100534 crossref_primary_10_1002_ange_202420139 crossref_primary_10_1021_acsmaterialslett_5c01042 crossref_primary_10_3390_sym12122022 crossref_primary_10_1002_chem_202002238 crossref_primary_10_1016_j_molstruc_2021_132317 crossref_primary_10_1002_chem_202300554 crossref_primary_10_1016_j_addr_2022_114167 crossref_primary_10_1038_s41467_023_43084_7 crossref_primary_10_1002_ange_202215286 crossref_primary_10_1002_chem_202203178 crossref_primary_10_1134_S0022476624040085 crossref_primary_10_1016_j_poly_2021_115503 crossref_primary_10_1021_jacs_9b07645 crossref_primary_10_1002_chem_202003311 crossref_primary_10_1021_jacs_3c00132 crossref_primary_10_1107_S2052252525000363 crossref_primary_10_1002_adom_201900927 crossref_primary_10_1021_jacs_5c00598 crossref_primary_10_1021_jacs_2c13210 crossref_primary_10_1002_anie_201907889 crossref_primary_10_1002_anie_202411405 crossref_primary_10_1016_j_dyepig_2022_110428 crossref_primary_10_1038_s41467_023_42131_7 crossref_primary_10_1039_D3SC03155A crossref_primary_10_1002_anie_202110716 crossref_primary_10_1002_ange_202005738 crossref_primary_10_1002_ange_202417409 crossref_primary_10_1002_chem_202404229 crossref_primary_10_1002_jcc_26507 crossref_primary_10_1039_D3SC06800E crossref_primary_10_1002_ange_202212688 crossref_primary_10_1002_anie_202006474 crossref_primary_10_1002_anie_202115359 crossref_primary_10_3390_inorganics8030018 crossref_primary_10_1021_jacs_5c05118 crossref_primary_10_1002_ange_201907889 crossref_primary_10_1002_anie_202201234 crossref_primary_10_3390_cryst11111397 crossref_primary_10_1016_j_chempr_2022_06_007 crossref_primary_10_1002_ange_202003820 crossref_primary_10_1002_ange_202417459 crossref_primary_10_1002_anie_201914798 crossref_primary_10_1038_s41467_024_47881_6 crossref_primary_10_1002_ange_202320223 crossref_primary_10_1073_pnas_2426814122 crossref_primary_10_1002_agt2_500 crossref_primary_10_1007_s00894_021_04743_y crossref_primary_10_1039_D2SC03414J crossref_primary_10_1002_chem_202301437 crossref_primary_10_1038_s42004_025_01527_w crossref_primary_10_1107_S2052520619012514 crossref_primary_10_1002_ange_202108441 crossref_primary_10_1021_acs_cgd_4c01559 crossref_primary_10_1002_anie_202424496 crossref_primary_10_1002_cplu_202000362 crossref_primary_10_1246_bcsj_20220040 crossref_primary_10_1002_chem_202202598 crossref_primary_10_1021_jacs_3c06371 crossref_primary_10_1039_D5CC01375E crossref_primary_10_1002_sus2_70034 crossref_primary_10_1016_j_chempr_2022_02_011 crossref_primary_10_1039_D3SC06462J crossref_primary_10_1002_chem_202501777 crossref_primary_10_1002_adom_202400539 crossref_primary_10_1021_jacs_2c12951 crossref_primary_10_1039_D3RA08885E crossref_primary_10_1093_nsr_nwac090 crossref_primary_10_1002_anie_202407924 crossref_primary_10_1002_ange_202217547 crossref_primary_10_1016_j_ica_2024_122335 crossref_primary_10_1002_chem_202103286 crossref_primary_10_1016_j_molstruc_2024_140229 crossref_primary_10_1002_ange_202001060 crossref_primary_10_1021_jacs_0c11122 crossref_primary_10_1021_jacs_9b03369 crossref_primary_10_1021_acs_chemmater_5c01859 crossref_primary_10_1002_anie_202009714 crossref_primary_10_1007_s11426_021_1203_3 crossref_primary_10_1002_adfm_202103285 crossref_primary_10_1039_D2SC02969C crossref_primary_10_1063_5_0059919 crossref_primary_10_1002_aoc_6698 crossref_primary_10_1002_anie_202113988 crossref_primary_10_1016_j_saa_2023_123093 crossref_primary_10_1002_anie_201811313 crossref_primary_10_1016_j_rechem_2022_100336 crossref_primary_10_1021_jacs_1c05647 crossref_primary_10_1208_s12249_023_02522_x crossref_primary_10_1002_adom_202001768 crossref_primary_10_1016_j_cej_2024_157905 crossref_primary_10_1002_anie_202113073 crossref_primary_10_1016_j_molstruc_2021_132182 crossref_primary_10_1002_anie_202207817 crossref_primary_10_1021_jacs_5c02849 crossref_primary_10_1016_j_ccr_2022_214890 crossref_primary_10_1021_jacs_1c10263 crossref_primary_10_1007_s10870_021_00885_2 crossref_primary_10_1021_acs_cgd_5c00097 crossref_primary_10_1002_adfm_202211760 crossref_primary_10_1016_j_dyepig_2019_03_030 crossref_primary_10_1002_sstr_202100163 crossref_primary_10_1016_j_carbon_2020_07_061 crossref_primary_10_1002_chem_202103228 crossref_primary_10_1002_anie_202002627 crossref_primary_10_1016_j_molstruc_2025_143876 crossref_primary_10_1016_j_molstruc_2020_128914 crossref_primary_10_1007_s44211_025_00778_w crossref_primary_10_1107_S205225251900890X crossref_primary_10_1002_adfm_202202364 crossref_primary_10_1002_advs_202302426 crossref_primary_10_1021_acs_molpharmaceut_5c00188 crossref_primary_10_1002_jcc_27549 crossref_primary_10_1016_j_xphs_2021_03_010 crossref_primary_10_1107_S205322962201018X crossref_primary_10_1002_asia_202401518 crossref_primary_10_1039_D3NR02229C crossref_primary_10_1002_ange_202115359 crossref_primary_10_1002_chem_202002641 crossref_primary_10_1002_ange_201905769 crossref_primary_10_1002_chem_202101732 crossref_primary_10_1016_j_cclet_2022_108057 crossref_primary_10_1021_jacs_4c07370 crossref_primary_10_1007_s11426_024_2321_3 crossref_primary_10_1134_S1070363225604259 crossref_primary_10_1002_anie_202001544 crossref_primary_10_1002_ange_202009714 crossref_primary_10_1002_ange_202202708 crossref_primary_10_1002_anie_202000570 crossref_primary_10_1016_j_molstruc_2022_133670 crossref_primary_10_1002_anie_202007760 crossref_primary_10_1002_ange_201914798 crossref_primary_10_1002_anie_202417459 crossref_primary_10_1007_s11095_024_03712_3 crossref_primary_10_1002_prep_202000306 crossref_primary_10_1002_anie_202003820 crossref_primary_10_1007_s40843_021_1989_8 crossref_primary_10_1021_jacs_0c05440 crossref_primary_10_1002_smll_202403035 crossref_primary_10_1002_ange_202001544 crossref_primary_10_1002_adma_202311762 crossref_primary_10_1038_s41467_025_58138_1 crossref_primary_10_1007_s11095_020_02850_8 crossref_primary_10_1039_D4SC04157G crossref_primary_10_1002_adfm_202004116 crossref_primary_10_1002_smm2_1213 crossref_primary_10_1002_ange_202000570 crossref_primary_10_1002_ange_202007760 crossref_primary_10_1039_D4SC07313D crossref_primary_10_1002_ange_202207817 crossref_primary_10_1107_S205322962200081X crossref_primary_10_1002_ejic_201900244 crossref_primary_10_1016_j_molstruc_2021_130765 crossref_primary_10_1007_s11172_024_4359_7 crossref_primary_10_1002_ange_202002627 crossref_primary_10_1038_s41467_020_15663_5 crossref_primary_10_1016_j_molstruc_2024_140533 crossref_primary_10_1002_chem_202203462 crossref_primary_10_1007_s10854_023_10362_5 crossref_primary_10_1016_j_jphotochemrev_2021_100479 crossref_primary_10_1002_cplu_202100042 crossref_primary_10_1038_s41467_022_34351_0 crossref_primary_10_1134_S0022476621100164 crossref_primary_10_1002_tcr_202200173 crossref_primary_10_1016_j_heliyon_2024_e34875 crossref_primary_10_1002_adom_202201518 |
| ContentType | Journal Article |
| DBID | NPM 7X8 |
| DOI | 10.1021/acs.accounts.8b00425 |
| DatabaseName | PubMed MEDLINE - Academic |
| DatabaseTitle | PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1520-4898 |
| ExternalDocumentID | 30351918 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- -DZ -~X 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 6P2 7~N 85S AABXI ABJNI ABMVS ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AFXLT AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CS3 CUPRZ D0L EBS ED~ EJD F5P GGK GNL IH2 IH9 JG~ LG6 NPM P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 XSW YIN YZZ ZCA ~02 7X8 ABBLG ABLBI ABUFD |
| ID | FETCH-LOGICAL-a414t-b0bbfdd9850c9b26ed7b9de1c6f08be27a9dbce65c83c3f5a4000c648a1bc7692 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 431 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451245900039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1520-4898 |
| IngestDate | Sun Nov 09 09:56:08 EST 2025 Wed Feb 19 02:36:30 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a414t-b0bbfdd9850c9b26ed7b9de1c6f08be27a9dbce65c83c3f5a4000c648a1bc7692 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-6619-9591 0000-0002-8193-3499 0000-0002-7708-9176 0000-0002-1247-7880 |
| PMID | 30351918 |
| PQID | 2125297864 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2125297864 pubmed_primary_30351918 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-11-20 |
| PublicationDateYYYYMMDD | 2018-11-20 |
| PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-20 day: 20 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Accounts of chemical research |
| PublicationTitleAlternate | Acc Chem Res |
| PublicationYear | 2018 |
| SSID | ssj0002467 |
| Score | 2.6864495 |
| Snippet | Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2957 |
| Title | From Molecules to Interactions to Crystal Engineering: Mechanical Properties of Organic Solids |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30351918 https://www.proquest.com/docview/2125297864 |
| Volume | 51 |
| WOSCitedRecordID | wos000451245900039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qCnrx_VhfRPBat2mbNPEisrh4cJcFFfZkyaQJLKzt2q6C_96kD9aLIHgp7aGQTCYzX2Yy8yF0JYmWNKTgaQmh5xC4x5l9MxArCQK4b6ru-o_xaMQnEzFuAm5lc62ytYmVoU5z5WLkPWtiaWCPPCy6nb97jjXKZVcbCo1V1AktlHFXuuLJslt4EFUMstZF-V7EBW9L5wLSk6q0A674GMprXuvu7yCzcjaD7f8OcwdtNTAT39V6sYtWdLaHNvotu9s-eh0U-Rse1uS4usSLHFfBwbrOofruF18WOs7wj5aFN3ioXamwW1k8dnH8wjVkxbnBdVGnwk_5bJqWB-hlcP_cf_AargVPRiRaeOADmDQVnPpKQMB0GoNINVHM-Bx0EEuRgtKMKh6q0FBp976vWMQlARUzERyitSzP9DHC2sjU-kDDiBIRRBSAcBUKXxpqQPOgiy5b0SV20i5BITOdf5TJUnhddFTLP5nXTTeS0KU8BeEnf_j7FG1aXMNdyWDgn6GOsTtZn6N19bmYlsVFpST2ORoPvwFjT8qs |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Molecules+to+Interactions+to+Crystal+Engineering%3A+Mechanical+Properties+of+Organic+Solids&rft.jtitle=Accounts+of+chemical+research&rft.au=Saha%2C+Subhankar&rft.au=Mishra%2C+Manish+Kumar&rft.au=Reddy%2C+C+Malla&rft.au=Desiraju%2C+Gautam+R&rft.date=2018-11-20&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=51&rft.issue=11&rft.spage=2957&rft_id=info:doi/10.1021%2Facs.accounts.8b00425&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon |