From Molecules to Interactions to Crystal Engineering: Mechanical Properties of Organic Solids

Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with diverse fields such as mechanochemistry, phase transformations, polymorphism, and chemical, mechanical, and materials engineering have slowed und...

Full description

Saved in:
Bibliographic Details
Published in:Accounts of chemical research Vol. 51; no. 11; p. 2957
Main Authors: Saha, Subhankar, Mishra, Manish Kumar, Reddy, C Malla, Desiraju, Gautam R
Format: Journal Article
Language:English
Published: United States 20.11.2018
ISSN:1520-4898, 1520-4898
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with diverse fields such as mechanochemistry, phase transformations, polymorphism, and chemical, mechanical, and materials engineering have slowed understanding. Any such understanding also needs conceptual advances-sophisticated instrumentation, computational modeling, and chemical insight-lack of such synergy has surely hindered progress in this important field. This Account describes our efforts at focusing down into this interesting subject from the viewpoint of crystal engineering, which is the synthesis and design of functional molecular solids. Mechanical properties of soft molecular crystals imply molecular movement within the solid; the type of property depends on the likelihood of such movement in relation to the applied stress, including the ability of molecules to restore themselves to their original positions when the stress is removed. Therefore, one is interested in properties such as elasticity, plasticity, and brittleness, which are linked to structural anisotropy and the degree to which a structure veers toward isotropic character. However, these matters are still by no means settled and are system dependent. While elasticity and brittleness are probably displayed by all molecular solids, the window of plasticity is perhaps the one that is most amenable to crystal engineering strategies and methods. In all this, one needs to note that mechanical properties have a kinetic component: a crystal that is elastic under slow stress application may become plastic or brittle if the same stress is applied quickly. In this context, nanoindentation studies have shown themselves to be of invaluable importance in understanding structural anisotropy. Several problems in solid state chemistry, including classical ones, such as the melting point alternation in aliphatic straight chain dicarboxylic acids and hardness modulation in solid solutions, have been understood more clearly with this technique. The way may even be open to picoindentation studies and the observation of molecular level movements. As in all types of crystal engineering, an understanding of the intermolecular interactions can lead to property oriented crystal design, and we present examples where complex properties may be deliberately turned on or off in organic crystals: one essentially fine-tunes the degree of isotropy/anisotropy by modulating interactions such as hydrogen bonding, halogen bonding, π···π interactions, and C-H···π interactions. The field is now wide open as is attested by the activities of several research groups working in the area. It is set to take off into the domains of smart materials, soft crystals, and superelasticity and a full understanding of solid state reactivity.
AbstractList Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with diverse fields such as mechanochemistry, phase transformations, polymorphism, and chemical, mechanical, and materials engineering have slowed understanding. Any such understanding also needs conceptual advances-sophisticated instrumentation, computational modeling, and chemical insight-lack of such synergy has surely hindered progress in this important field. This Account describes our efforts at focusing down into this interesting subject from the viewpoint of crystal engineering, which is the synthesis and design of functional molecular solids. Mechanical properties of soft molecular crystals imply molecular movement within the solid; the type of property depends on the likelihood of such movement in relation to the applied stress, including the ability of molecules to restore themselves to their original positions when the stress is removed. Therefore, one is interested in properties such as elasticity, plasticity, and brittleness, which are linked to structural anisotropy and the degree to which a structure veers toward isotropic character. However, these matters are still by no means settled and are system dependent. While elasticity and brittleness are probably displayed by all molecular solids, the window of plasticity is perhaps the one that is most amenable to crystal engineering strategies and methods. In all this, one needs to note that mechanical properties have a kinetic component: a crystal that is elastic under slow stress application may become plastic or brittle if the same stress is applied quickly. In this context, nanoindentation studies have shown themselves to be of invaluable importance in understanding structural anisotropy. Several problems in solid state chemistry, including classical ones, such as the melting point alternation in aliphatic straight chain dicarboxylic acids and hardness modulation in solid solutions, have been understood more clearly with this technique. The way may even be open to picoindentation studies and the observation of molecular level movements. As in all types of crystal engineering, an understanding of the intermolecular interactions can lead to property oriented crystal design, and we present examples where complex properties may be deliberately turned on or off in organic crystals: one essentially fine-tunes the degree of isotropy/anisotropy by modulating interactions such as hydrogen bonding, halogen bonding, π···π interactions, and C-H···π interactions. The field is now wide open as is attested by the activities of several research groups working in the area. It is set to take off into the domains of smart materials, soft crystals, and superelasticity and a full understanding of solid state reactivity.Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with diverse fields such as mechanochemistry, phase transformations, polymorphism, and chemical, mechanical, and materials engineering have slowed understanding. Any such understanding also needs conceptual advances-sophisticated instrumentation, computational modeling, and chemical insight-lack of such synergy has surely hindered progress in this important field. This Account describes our efforts at focusing down into this interesting subject from the viewpoint of crystal engineering, which is the synthesis and design of functional molecular solids. Mechanical properties of soft molecular crystals imply molecular movement within the solid; the type of property depends on the likelihood of such movement in relation to the applied stress, including the ability of molecules to restore themselves to their original positions when the stress is removed. Therefore, one is interested in properties such as elasticity, plasticity, and brittleness, which are linked to structural anisotropy and the degree to which a structure veers toward isotropic character. However, these matters are still by no means settled and are system dependent. While elasticity and brittleness are probably displayed by all molecular solids, the window of plasticity is perhaps the one that is most amenable to crystal engineering strategies and methods. In all this, one needs to note that mechanical properties have a kinetic component: a crystal that is elastic under slow stress application may become plastic or brittle if the same stress is applied quickly. In this context, nanoindentation studies have shown themselves to be of invaluable importance in understanding structural anisotropy. Several problems in solid state chemistry, including classical ones, such as the melting point alternation in aliphatic straight chain dicarboxylic acids and hardness modulation in solid solutions, have been understood more clearly with this technique. The way may even be open to picoindentation studies and the observation of molecular level movements. As in all types of crystal engineering, an understanding of the intermolecular interactions can lead to property oriented crystal design, and we present examples where complex properties may be deliberately turned on or off in organic crystals: one essentially fine-tunes the degree of isotropy/anisotropy by modulating interactions such as hydrogen bonding, halogen bonding, π···π interactions, and C-H···π interactions. The field is now wide open as is attested by the activities of several research groups working in the area. It is set to take off into the domains of smart materials, soft crystals, and superelasticity and a full understanding of solid state reactivity.
Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with diverse fields such as mechanochemistry, phase transformations, polymorphism, and chemical, mechanical, and materials engineering have slowed understanding. Any such understanding also needs conceptual advances-sophisticated instrumentation, computational modeling, and chemical insight-lack of such synergy has surely hindered progress in this important field. This Account describes our efforts at focusing down into this interesting subject from the viewpoint of crystal engineering, which is the synthesis and design of functional molecular solids. Mechanical properties of soft molecular crystals imply molecular movement within the solid; the type of property depends on the likelihood of such movement in relation to the applied stress, including the ability of molecules to restore themselves to their original positions when the stress is removed. Therefore, one is interested in properties such as elasticity, plasticity, and brittleness, which are linked to structural anisotropy and the degree to which a structure veers toward isotropic character. However, these matters are still by no means settled and are system dependent. While elasticity and brittleness are probably displayed by all molecular solids, the window of plasticity is perhaps the one that is most amenable to crystal engineering strategies and methods. In all this, one needs to note that mechanical properties have a kinetic component: a crystal that is elastic under slow stress application may become plastic or brittle if the same stress is applied quickly. In this context, nanoindentation studies have shown themselves to be of invaluable importance in understanding structural anisotropy. Several problems in solid state chemistry, including classical ones, such as the melting point alternation in aliphatic straight chain dicarboxylic acids and hardness modulation in solid solutions, have been understood more clearly with this technique. The way may even be open to picoindentation studies and the observation of molecular level movements. As in all types of crystal engineering, an understanding of the intermolecular interactions can lead to property oriented crystal design, and we present examples where complex properties may be deliberately turned on or off in organic crystals: one essentially fine-tunes the degree of isotropy/anisotropy by modulating interactions such as hydrogen bonding, halogen bonding, π···π interactions, and C-H···π interactions. The field is now wide open as is attested by the activities of several research groups working in the area. It is set to take off into the domains of smart materials, soft crystals, and superelasticity and a full understanding of solid state reactivity.
Author Reddy, C Malla
Mishra, Manish Kumar
Saha, Subhankar
Desiraju, Gautam R
Author_xml – sequence: 1
  givenname: Subhankar
  orcidid: 0000-0001-6619-9591
  surname: Saha
  fullname: Saha, Subhankar
  organization: Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur Campus, Mohanpur 741 246 , India
– sequence: 2
  givenname: Manish Kumar
  orcidid: 0000-0002-8193-3499
  surname: Mishra
  fullname: Mishra, Manish Kumar
  organization: Department of Pharmaceutics, College of Pharmacy , University of Minnesota , 9-127B Weaver-Densford Hall, 308 Harvard Street S.E. , Minneapolis , Minnesota 55455 , United States
– sequence: 3
  givenname: C Malla
  orcidid: 0000-0002-1247-7880
  surname: Reddy
  fullname: Reddy, C Malla
  organization: Indian Institute of Science Education and Research (IISER) Kolkata , Mohanpur Campus, Mohanpur 741 246 , India
– sequence: 4
  givenname: Gautam R
  orcidid: 0000-0002-7708-9176
  surname: Desiraju
  fullname: Desiraju, Gautam R
  organization: Solid State and Structural Chemistry Unit , Indian Institute of Science , Bangalore 560 012 , India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30351918$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1OwzAQhC0Eoj_wBgjlyCXFdpzE5oaqFiq1KhJwJbKdTTFK7GI7h749AYrEaXZG3660M0Gn1llA6IrgGcGU3EodZlJr19sYZlxhzGh-gsYkpzhlXPDTf_MITUL4wBhTVpTnaJThLCeC8DF6W3rXJRvXgu5bCEl0ycpG8FJH4-yPn_tDiLJNFnZnLIA3dneXbEC_S2v0kD95twcfzbDtmmTrd9958uxaU4cLdNbINsDlUafodbl4mT-m6-3Dan6_TiUjLKYKK9XUteA51kLRAupSiRqILhrMFdBSilppKHLNM501uWTDL7pgXBKly0LQKbr5vbv37rOHEKvOBA1tKy24PlSU0JyKkhdsQK-PaK86qKu9N530h-qvE_oFStFpxw
CitedBy_id crossref_primary_10_1002_anie_202001060
crossref_primary_10_1002_adom_202000926
crossref_primary_10_1002_chem_202403293
crossref_primary_10_1002_chem_201904481
crossref_primary_10_1002_smll_202401317
crossref_primary_10_1016_j_cej_2022_138333
crossref_primary_10_1039_D5SC01260K
crossref_primary_10_1134_S0022476625050154
crossref_primary_10_1039_D2CC02047E
crossref_primary_10_1002_adma_202102811
crossref_primary_10_1002_adma_202200471
crossref_primary_10_1021_jacs_5c10439
crossref_primary_10_1002_chem_202301825
crossref_primary_10_1016_j_cbpa_2021_06_006
crossref_primary_10_1016_j_jlumin_2025_121423
crossref_primary_10_1002_ange_202011857
crossref_primary_10_1016_j_cclet_2022_03_090
crossref_primary_10_1107_S2052520620006113
crossref_primary_10_1002_advs_202403949
crossref_primary_10_1002_ange_202113073
crossref_primary_10_1016_j_powtec_2021_117066
crossref_primary_10_1039_D5CE00397K
crossref_primary_10_1126_science_abg3886
crossref_primary_10_1002_pol_20210290
crossref_primary_10_1107_S205225251901604X
crossref_primary_10_1002_adma_202209166
crossref_primary_10_3389_fchem_2022_858946
crossref_primary_10_1002_ange_202114985
crossref_primary_10_1107_S2052252519004755
crossref_primary_10_1002_ange_202411405
crossref_primary_10_1002_ange_202113988
crossref_primary_10_1002_chem_202103559
crossref_primary_10_1016_j_chempr_2024_01_019
crossref_primary_10_1021_acs_cgd_4c00187
crossref_primary_10_1103_PhysRevResearch_5_033185
crossref_primary_10_1134_S0022476624090099
crossref_primary_10_1016_j_ifset_2022_103193
crossref_primary_10_1002_smll_202412561
crossref_primary_10_1002_anie_202217547
crossref_primary_10_1002_anie_201914026
crossref_primary_10_1002_smll_202006795
crossref_primary_10_1002_smll_202501145
crossref_primary_10_1107_S2053229623004072
crossref_primary_10_1039_D3SC03267A
crossref_primary_10_1002_ange_201811313
crossref_primary_10_1002_anie_202108441
crossref_primary_10_1016_j_ijpharm_2024_123837
crossref_primary_10_1038_s41598_021_82703_5
crossref_primary_10_1002_adma_202203842
crossref_primary_10_1002_ange_202424496
crossref_primary_10_1021_acs_cgd_5c01046
crossref_primary_10_1002_anie_201905769
crossref_primary_10_1016_j_jics_2021_100202
crossref_primary_10_1038_s41467_019_11657_0
crossref_primary_10_1002_anie_202202708
crossref_primary_10_1002_anie_202500151
crossref_primary_10_1016_j_cherd_2024_08_042
crossref_primary_10_1002_ange_202006474
crossref_primary_10_1002_ange_202201234
crossref_primary_10_1039_D1RA03943A
crossref_primary_10_1039_D2SC05217B
crossref_primary_10_1002_adom_202000959
crossref_primary_10_1016_j_compositesa_2024_108311
crossref_primary_10_1021_jacs_0c03643
crossref_primary_10_1038_s41467_022_35647_x
crossref_primary_10_1007_s00894_020_04624_w
crossref_primary_10_1002_ange_202407924
crossref_primary_10_1016_j_molstruc_2022_133293
crossref_primary_10_1016_j_molstruc_2019_06_073
crossref_primary_10_1002_ange_202500151
crossref_primary_10_1002_ejoc_202001564
crossref_primary_10_1002_anie_202320223
crossref_primary_10_1016_j_matt_2025_102098
crossref_primary_10_1016_j_tet_2024_134245
crossref_primary_10_1021_jacs_4c11689
crossref_primary_10_1002_smtd_202400982
crossref_primary_10_1007_s11224_023_02200_5
crossref_primary_10_1039_D2SC06470G
crossref_primary_10_1002_anie_202114985
crossref_primary_10_1021_acs_cgd_5c00491
crossref_primary_10_1002_anie_202215286
crossref_primary_10_1002_adom_202201150
crossref_primary_10_1016_j_molstruc_2025_142700
crossref_primary_10_1021_acs_inorgchem_5c00943
crossref_primary_10_1038_s41467_023_35924_3
crossref_primary_10_1107_S2052520619000441
crossref_primary_10_1002_ange_201914026
crossref_primary_10_1002_anie_202212688
crossref_primary_10_1002_anie_202011857
crossref_primary_10_1002_anie_202420139
crossref_primary_10_1002_smll_202412482
crossref_primary_10_1002_anie_202417409
crossref_primary_10_1002_anie_202005738
crossref_primary_10_1002_ange_202110716
crossref_primary_10_1021_jacs_2c00724
crossref_primary_10_1039_D2SC03729G
crossref_primary_10_1039_D2RA02205B
crossref_primary_10_3390_ma15227958
crossref_primary_10_1016_j_polymer_2023_126305
crossref_primary_10_1002_chem_202200905
crossref_primary_10_1016_j_colcom_2021_100534
crossref_primary_10_1002_ange_202420139
crossref_primary_10_1021_acsmaterialslett_5c01042
crossref_primary_10_3390_sym12122022
crossref_primary_10_1002_chem_202002238
crossref_primary_10_1016_j_molstruc_2021_132317
crossref_primary_10_1002_chem_202300554
crossref_primary_10_1016_j_addr_2022_114167
crossref_primary_10_1038_s41467_023_43084_7
crossref_primary_10_1002_ange_202215286
crossref_primary_10_1002_chem_202203178
crossref_primary_10_1134_S0022476624040085
crossref_primary_10_1016_j_poly_2021_115503
crossref_primary_10_1021_jacs_9b07645
crossref_primary_10_1002_chem_202003311
crossref_primary_10_1021_jacs_3c00132
crossref_primary_10_1107_S2052252525000363
crossref_primary_10_1002_adom_201900927
crossref_primary_10_1021_jacs_5c00598
crossref_primary_10_1021_jacs_2c13210
crossref_primary_10_1002_anie_201907889
crossref_primary_10_1002_anie_202411405
crossref_primary_10_1016_j_dyepig_2022_110428
crossref_primary_10_1038_s41467_023_42131_7
crossref_primary_10_1039_D3SC03155A
crossref_primary_10_1002_anie_202110716
crossref_primary_10_1002_ange_202005738
crossref_primary_10_1002_ange_202417409
crossref_primary_10_1002_chem_202404229
crossref_primary_10_1002_jcc_26507
crossref_primary_10_1039_D3SC06800E
crossref_primary_10_1002_ange_202212688
crossref_primary_10_1002_anie_202006474
crossref_primary_10_1002_anie_202115359
crossref_primary_10_3390_inorganics8030018
crossref_primary_10_1021_jacs_5c05118
crossref_primary_10_1002_ange_201907889
crossref_primary_10_1002_anie_202201234
crossref_primary_10_3390_cryst11111397
crossref_primary_10_1016_j_chempr_2022_06_007
crossref_primary_10_1002_ange_202003820
crossref_primary_10_1002_ange_202417459
crossref_primary_10_1002_anie_201914798
crossref_primary_10_1038_s41467_024_47881_6
crossref_primary_10_1002_ange_202320223
crossref_primary_10_1073_pnas_2426814122
crossref_primary_10_1002_agt2_500
crossref_primary_10_1007_s00894_021_04743_y
crossref_primary_10_1039_D2SC03414J
crossref_primary_10_1002_chem_202301437
crossref_primary_10_1038_s42004_025_01527_w
crossref_primary_10_1107_S2052520619012514
crossref_primary_10_1002_ange_202108441
crossref_primary_10_1021_acs_cgd_4c01559
crossref_primary_10_1002_anie_202424496
crossref_primary_10_1002_cplu_202000362
crossref_primary_10_1246_bcsj_20220040
crossref_primary_10_1002_chem_202202598
crossref_primary_10_1021_jacs_3c06371
crossref_primary_10_1039_D5CC01375E
crossref_primary_10_1002_sus2_70034
crossref_primary_10_1016_j_chempr_2022_02_011
crossref_primary_10_1039_D3SC06462J
crossref_primary_10_1002_chem_202501777
crossref_primary_10_1002_adom_202400539
crossref_primary_10_1021_jacs_2c12951
crossref_primary_10_1039_D3RA08885E
crossref_primary_10_1093_nsr_nwac090
crossref_primary_10_1002_anie_202407924
crossref_primary_10_1002_ange_202217547
crossref_primary_10_1016_j_ica_2024_122335
crossref_primary_10_1002_chem_202103286
crossref_primary_10_1016_j_molstruc_2024_140229
crossref_primary_10_1002_ange_202001060
crossref_primary_10_1021_jacs_0c11122
crossref_primary_10_1021_jacs_9b03369
crossref_primary_10_1021_acs_chemmater_5c01859
crossref_primary_10_1002_anie_202009714
crossref_primary_10_1007_s11426_021_1203_3
crossref_primary_10_1002_adfm_202103285
crossref_primary_10_1039_D2SC02969C
crossref_primary_10_1063_5_0059919
crossref_primary_10_1002_aoc_6698
crossref_primary_10_1002_anie_202113988
crossref_primary_10_1016_j_saa_2023_123093
crossref_primary_10_1002_anie_201811313
crossref_primary_10_1016_j_rechem_2022_100336
crossref_primary_10_1021_jacs_1c05647
crossref_primary_10_1208_s12249_023_02522_x
crossref_primary_10_1002_adom_202001768
crossref_primary_10_1016_j_cej_2024_157905
crossref_primary_10_1002_anie_202113073
crossref_primary_10_1016_j_molstruc_2021_132182
crossref_primary_10_1002_anie_202207817
crossref_primary_10_1021_jacs_5c02849
crossref_primary_10_1016_j_ccr_2022_214890
crossref_primary_10_1021_jacs_1c10263
crossref_primary_10_1007_s10870_021_00885_2
crossref_primary_10_1021_acs_cgd_5c00097
crossref_primary_10_1002_adfm_202211760
crossref_primary_10_1016_j_dyepig_2019_03_030
crossref_primary_10_1002_sstr_202100163
crossref_primary_10_1016_j_carbon_2020_07_061
crossref_primary_10_1002_chem_202103228
crossref_primary_10_1002_anie_202002627
crossref_primary_10_1016_j_molstruc_2025_143876
crossref_primary_10_1016_j_molstruc_2020_128914
crossref_primary_10_1007_s44211_025_00778_w
crossref_primary_10_1107_S205225251900890X
crossref_primary_10_1002_adfm_202202364
crossref_primary_10_1002_advs_202302426
crossref_primary_10_1021_acs_molpharmaceut_5c00188
crossref_primary_10_1002_jcc_27549
crossref_primary_10_1016_j_xphs_2021_03_010
crossref_primary_10_1107_S205322962201018X
crossref_primary_10_1002_asia_202401518
crossref_primary_10_1039_D3NR02229C
crossref_primary_10_1002_ange_202115359
crossref_primary_10_1002_chem_202002641
crossref_primary_10_1002_ange_201905769
crossref_primary_10_1002_chem_202101732
crossref_primary_10_1016_j_cclet_2022_108057
crossref_primary_10_1021_jacs_4c07370
crossref_primary_10_1007_s11426_024_2321_3
crossref_primary_10_1134_S1070363225604259
crossref_primary_10_1002_anie_202001544
crossref_primary_10_1002_ange_202009714
crossref_primary_10_1002_ange_202202708
crossref_primary_10_1002_anie_202000570
crossref_primary_10_1016_j_molstruc_2022_133670
crossref_primary_10_1002_anie_202007760
crossref_primary_10_1002_ange_201914798
crossref_primary_10_1002_anie_202417459
crossref_primary_10_1007_s11095_024_03712_3
crossref_primary_10_1002_prep_202000306
crossref_primary_10_1002_anie_202003820
crossref_primary_10_1007_s40843_021_1989_8
crossref_primary_10_1021_jacs_0c05440
crossref_primary_10_1002_smll_202403035
crossref_primary_10_1002_ange_202001544
crossref_primary_10_1002_adma_202311762
crossref_primary_10_1038_s41467_025_58138_1
crossref_primary_10_1007_s11095_020_02850_8
crossref_primary_10_1039_D4SC04157G
crossref_primary_10_1002_adfm_202004116
crossref_primary_10_1002_smm2_1213
crossref_primary_10_1002_ange_202000570
crossref_primary_10_1002_ange_202007760
crossref_primary_10_1039_D4SC07313D
crossref_primary_10_1002_ange_202207817
crossref_primary_10_1107_S205322962200081X
crossref_primary_10_1002_ejic_201900244
crossref_primary_10_1016_j_molstruc_2021_130765
crossref_primary_10_1007_s11172_024_4359_7
crossref_primary_10_1002_ange_202002627
crossref_primary_10_1038_s41467_020_15663_5
crossref_primary_10_1016_j_molstruc_2024_140533
crossref_primary_10_1002_chem_202203462
crossref_primary_10_1007_s10854_023_10362_5
crossref_primary_10_1016_j_jphotochemrev_2021_100479
crossref_primary_10_1002_cplu_202100042
crossref_primary_10_1038_s41467_022_34351_0
crossref_primary_10_1134_S0022476621100164
crossref_primary_10_1002_tcr_202200173
crossref_primary_10_1016_j_heliyon_2024_e34875
crossref_primary_10_1002_adom_202201518
ContentType Journal Article
DBID NPM
7X8
DOI 10.1021/acs.accounts.8b00425
DatabaseName PubMed
MEDLINE - Academic
DatabaseTitle PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
ExternalDocumentID 30351918
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
6P2
7~N
85S
AABXI
ABJNI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CS3
CUPRZ
D0L
EBS
ED~
EJD
F5P
GGK
GNL
IH2
IH9
JG~
LG6
NPM
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
XSW
YIN
YZZ
ZCA
~02
7X8
ABBLG
ABLBI
ABUFD
ID FETCH-LOGICAL-a414t-b0bbfdd9850c9b26ed7b9de1c6f08be27a9dbce65c83c3f5a4000c648a1bc7692
IEDL.DBID 7X8
ISICitedReferencesCount 431
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000451245900039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1520-4898
IngestDate Sun Nov 09 09:56:08 EST 2025
Wed Feb 19 02:36:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-a414t-b0bbfdd9850c9b26ed7b9de1c6f08be27a9dbce65c83c3f5a4000c648a1bc7692
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6619-9591
0000-0002-8193-3499
0000-0002-7708-9176
0000-0002-1247-7880
PMID 30351918
PQID 2125297864
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2125297864
pubmed_primary_30351918
PublicationCentury 2000
PublicationDate 2018-11-20
PublicationDateYYYYMMDD 2018-11-20
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc Chem Res
PublicationYear 2018
SSID ssj0002467
Score 2.6864495
Snippet Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2957
Title From Molecules to Interactions to Crystal Engineering: Mechanical Properties of Organic Solids
URI https://www.ncbi.nlm.nih.gov/pubmed/30351918
https://www.proquest.com/docview/2125297864
Volume 51
WOSCitedRecordID wos000451245900039&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA7qCnrx_VhfRPBat2mbNPEisrh4cJcFFfZkyaQJLKzt2q6C_96kD9aLIHgp7aGQTCYzX2Yy8yF0JYmWNKTgaQmh5xC4x5l9MxArCQK4b6ru-o_xaMQnEzFuAm5lc62ytYmVoU5z5WLkPWtiaWCPPCy6nb97jjXKZVcbCo1V1AktlHFXuuLJslt4EFUMstZF-V7EBW9L5wLSk6q0A674GMprXuvu7yCzcjaD7f8OcwdtNTAT39V6sYtWdLaHNvotu9s-eh0U-Rse1uS4usSLHFfBwbrOofruF18WOs7wj5aFN3ioXamwW1k8dnH8wjVkxbnBdVGnwk_5bJqWB-hlcP_cf_AargVPRiRaeOADmDQVnPpKQMB0GoNINVHM-Bx0EEuRgtKMKh6q0FBp976vWMQlARUzERyitSzP9DHC2sjU-kDDiBIRRBSAcBUKXxpqQPOgiy5b0SV20i5BITOdf5TJUnhddFTLP5nXTTeS0KU8BeEnf_j7FG1aXMNdyWDgn6GOsTtZn6N19bmYlsVFpST2ORoPvwFjT8qs
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Molecules+to+Interactions+to+Crystal+Engineering%3A+Mechanical+Properties+of+Organic+Solids&rft.jtitle=Accounts+of+chemical+research&rft.au=Saha%2C+Subhankar&rft.au=Mishra%2C+Manish+Kumar&rft.au=Reddy%2C+C+Malla&rft.au=Desiraju%2C+Gautam+R&rft.date=2018-11-20&rft.issn=1520-4898&rft.eissn=1520-4898&rft.volume=51&rft.issue=11&rft.spage=2957&rft_id=info:doi/10.1021%2Facs.accounts.8b00425&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-4898&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-4898&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-4898&client=summon