On implicit coupled systems of fuzzy fractional delay differential equations with triangular fuzzy functions
In this paper, we introduce and study an implicit coupled system of fuzzy fractional delay differential equations involving fuzzy initial values and fuzzy source functions of triangular type. We assume that these initial values and source functions are triangular fuzzy functions and define the solut...
Saved in:
| Published in: | AIMS mathematics Vol. 6; no. 4; pp. 3741 - 3760 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
AIMS Press
01.01.2021
|
| Subjects: | |
| ISSN: | 2473-6988, 2473-6988 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we introduce and study an implicit coupled system of fuzzy fractional delay differential equations involving fuzzy initial values and fuzzy source functions of triangular type. We assume that these initial values and source functions are triangular fuzzy functions and define the solution of the implicit coupled system as a triangular fuzzy function matrix consisting of real functional matrices. The method of triangular fuzzy function, fractional steps and fuzzy terms separation are used to solve the implicit coupled systems. Further, we prove existence and uniqueness of solution for the considered systems, and also construct a solution algorithm. Finally, an example is given to illustrate our main results and some further work are presented. |
|---|---|
| AbstractList | In this paper, we introduce and study an implicit coupled system of fuzzy fractional delay differential equations involving fuzzy initial values and fuzzy source functions of triangular type. We assume that these initial values and source functions are triangular fuzzy functions and define the solution of the implicit coupled system as a triangular fuzzy function matrix consisting of real functional matrices. The method of triangular fuzzy function, fractional steps and fuzzy terms separation are used to solve the implicit coupled systems. Further, we prove existence and uniqueness of solution for the considered systems, and also construct a solution algorithm. Finally, an example is given to illustrate our main results and some further work are presented. |
| Author | Liu, Chang-jiang Wu, Yu-ting Lan, Heng-you |
| Author_xml | – sequence: 1 givenname: Yu-ting surname: Wu fullname: Wu, Yu-ting – sequence: 2 givenname: Heng-you surname: Lan fullname: Lan, Heng-you – sequence: 3 givenname: Chang-jiang surname: Liu fullname: Liu, Chang-jiang |
| BookMark | eNptUMtqwzAQFCWFpmlu_QB9QJNaD1v2sYQ-AoFe2rNYy1KiINupJFOSr6-dB5TS0y6zM8PO3KJR0zYaoXuSzFnB-GMNcTOnCSWU0is0plywWVbk-ejXfoOmIWyTZGBxKvgYufcG23rnrLIRq7bbOV3hsA9R1wG3BpvucNhj40FF2zbgcKUd7HFljdFeN9H2kP7qYLgG_G3jBkdvoVl3DvxF3TVHdbhD1wZc0NPznKDPl-ePxdts9f66XDytZsAJjTOT5yITxnClM6oFY5oYylPGgBR9wKIStFKmECplpTAVT0soBKUcygQ0ywiboOXJt2phK3fe1uD3sgUrj0Dr1xJ8tMppKThVRcaJUhnhmamAqaLkkKVMkETppPeiJy_l2xC8NrJv6hg3erBOkkQO9cuhfnmuvxc9_BFdnviX_gOCGIui |
| CitedBy_id | crossref_primary_10_3390_fractalfract6030132 crossref_primary_10_1007_s00521_022_07696_2 |
| Cites_doi | 10.1016/j.fss.2017.10.002 10.1007/s00500-019-04619-7 10.1016/j.chaos.2017.08.035 10.3934/dcdsb.2010.14.289 10.1016/j.jmaa.2007.06.021 10.1186/s13661-015-0475-5 10.1016/S0019-9958(65)90241-X 10.1186/s13662-019-2246-6 10.1186/s13661-019-1230-0 10.1016/j.fss.2015.12.002 10.20852/ntmsci.2017.180 10.1007/s00500-017-2818-x 10.1007/978-0-387-21593-8 10.2478/s13540-012-0040-1 10.1186/s13661-019-1222-0 10.2307/1940005 10.1016/j.cnsns.2012.06.008 10.3390/e17020885 10.2298/FIL1912795S 10.1016/j.carbpol.2014.07.047 10.4995/agt.2019.11683 10.1007/s10483-015-1914-6 10.3934/jimo.2018139 10.1007/s10700-018-9296-1 10.1155/2019/4208636 10.1016/j.fss.2019.10.012 10.1016/j.ins.2015.05.002 10.1007/978-1-4419-7646-8 10.1109/TFUZZ.2017.2659731 10.1016/j.aml.2015.10.004 10.1007/978-3-642-14003-7_11 |
| ContentType | Journal Article |
| CorporateAuthor | South Sichuan Center for Applied Mathematics, and Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing, 643000, Zigong, Sichuan, P. R. China College of Mathematics and Statistics, Sichuan University of Science & Engineering, 643000, Zigong, Sichuan, P. R. China |
| CorporateAuthor_xml | – name: College of Mathematics and Statistics, Sichuan University of Science & Engineering, 643000, Zigong, Sichuan, P. R. China – name: South Sichuan Center for Applied Mathematics, and Sichuan Province University Key Laboratory of Bridge Non-destruction Detecting and Engineering Computing, 643000, Zigong, Sichuan, P. R. China |
| DBID | AAYXX CITATION DOA |
| DOI | 10.3934/math.2021222 |
| DatabaseName | CrossRef Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 3760 |
| ExternalDocumentID | oai_doaj_org_article_742c9641cc6146fda3c9b4a653710ce0 10_3934_math_2021222 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
| ID | FETCH-LOGICAL-a412t-f88767ff4ce62e733e1f24533a192029d72dcf97c53b7fd45ba97224ab0ae3613 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672862500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:51:52 EDT 2025 Sat Nov 29 06:04:16 EST 2025 Tue Nov 18 22:22:01 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-a412t-f88767ff4ce62e733e1f24533a192029d72dcf97c53b7fd45ba97224ab0ae3613 |
| OpenAccessLink | https://doaj.org/article/742c9641cc6146fda3c9b4a653710ce0 |
| PageCount | 20 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_742c9641cc6146fda3c9b4a653710ce0 crossref_citationtrail_10_3934_math_2021222 crossref_primary_10_3934_math_2021222 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2021 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | key-10.3934/math.2021222-9 key-10.3934/math.2021222-24 key-10.3934/math.2021222-23 key-10.3934/math.2021222-7 key-10.3934/math.2021222-26 key-10.3934/math.2021222-8 key-10.3934/math.2021222-25 key-10.3934/math.2021222-28 key-10.3934/math.2021222-27 key-10.3934/math.2021222-29 key-10.3934/math.2021222-20 key-10.3934/math.2021222-22 key-10.3934/math.2021222-21 key-10.3934/math.2021222-1 key-10.3934/math.2021222-2 key-10.3934/math.2021222-5 key-10.3934/math.2021222-6 key-10.3934/math.2021222-3 key-10.3934/math.2021222-4 key-10.3934/math.2021222-13 key-10.3934/math.2021222-35 key-10.3934/math.2021222-12 key-10.3934/math.2021222-34 key-10.3934/math.2021222-15 key-10.3934/math.2021222-37 key-10.3934/math.2021222-14 key-10.3934/math.2021222-36 key-10.3934/math.2021222-17 key-10.3934/math.2021222-39 key-10.3934/math.2021222-16 key-10.3934/math.2021222-38 key-10.3934/math.2021222-19 key-10.3934/math.2021222-18 key-10.3934/math.2021222-31 key-10.3934/math.2021222-30 key-10.3934/math.2021222-11 key-10.3934/math.2021222-33 key-10.3934/math.2021222-10 key-10.3934/math.2021222-32 |
| References_xml | – ident: key-10.3934/math.2021222-20 doi: 10.1016/j.fss.2017.10.002 – ident: key-10.3934/math.2021222-19 doi: 10.1007/s00500-019-04619-7 – ident: key-10.3934/math.2021222-2 doi: 10.1016/j.chaos.2017.08.035 – ident: key-10.3934/math.2021222-39 doi: 10.3934/dcdsb.2010.14.289 – ident: key-10.3934/math.2021222-8 doi: 10.1016/j.jmaa.2007.06.021 – ident: key-10.3934/math.2021222-12 doi: 10.1186/s13661-015-0475-5 – ident: key-10.3934/math.2021222-37 doi: 10.1016/S0019-9958(65)90241-X – ident: key-10.3934/math.2021222-36 doi: 10.1186/s13662-019-2246-6 – ident: key-10.3934/math.2021222-38 doi: 10.1186/s13661-019-1230-0 – ident: key-10.3934/math.2021222-4 doi: 10.1016/j.fss.2015.12.002 – ident: key-10.3934/math.2021222-7 doi: 10.20852/ntmsci.2017.180 – ident: key-10.3934/math.2021222-15 doi: 10.1007/s00500-017-2818-x – ident: key-10.3934/math.2021222-3 – ident: key-10.3934/math.2021222-18 doi: 10.1007/978-0-387-21593-8 – ident: key-10.3934/math.2021222-1 doi: 10.2478/s13540-012-0040-1 – ident: key-10.3934/math.2021222-5 doi: 10.1186/s13661-019-1222-0 – ident: key-10.3934/math.2021222-9 doi: 10.2307/1940005 – ident: key-10.3934/math.2021222-24 doi: 10.1016/j.cnsns.2012.06.008 – ident: key-10.3934/math.2021222-29 doi: 10.3390/e17020885 – ident: key-10.3934/math.2021222-23 – ident: key-10.3934/math.2021222-31 doi: 10.2298/FIL1912795S – ident: key-10.3934/math.2021222-27 doi: 10.1016/j.carbpol.2014.07.047 – ident: key-10.3934/math.2021222-33 doi: 10.4995/agt.2019.11683 – ident: key-10.3934/math.2021222-6 – ident: key-10.3934/math.2021222-26 doi: 10.1007/s10483-015-1914-6 – ident: key-10.3934/math.2021222-11 – ident: key-10.3934/math.2021222-17 – ident: key-10.3934/math.2021222-35 doi: 10.3934/jimo.2018139 – ident: key-10.3934/math.2021222-13 – ident: key-10.3934/math.2021222-14 doi: 10.1007/s10700-018-9296-1 – ident: key-10.3934/math.2021222-32 doi: 10.1155/2019/4208636 – ident: key-10.3934/math.2021222-21 doi: 10.1016/j.fss.2019.10.012 – ident: key-10.3934/math.2021222-16 doi: 10.1016/j.ins.2015.05.002 – ident: key-10.3934/math.2021222-30 doi: 10.1007/978-1-4419-7646-8 – ident: key-10.3934/math.2021222-28 – ident: key-10.3934/math.2021222-25 doi: 10.1109/TFUZZ.2017.2659731 – ident: key-10.3934/math.2021222-10 doi: 10.1016/j.aml.2015.10.004 – ident: key-10.3934/math.2021222-22 – ident: key-10.3934/math.2021222-34 doi: 10.1007/978-3-642-14003-7_11 |
| SSID | ssj0002124274 |
| Score | 2.1588902 |
| Snippet | In this paper, we introduce and study an implicit coupled system of fuzzy fractional delay differential equations involving fuzzy initial values and fuzzy... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 3741 |
| SubjectTerms | existence and uniqueness fuzzy fractional delay differential equation fuzzy terms separation method implicit coupled system solution algorithm triangular fuzzy function |
| Title | On implicit coupled systems of fuzzy fractional delay differential equations with triangular fuzzy functions |
| URI | https://doaj.org/article/742c9641cc6146fda3c9b4a653710ce0 |
| Volume | 6 |
| WOSCitedRecordID | wos000672862500019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQxQAD4lOUL3mACUVNHMepR0CtWFoYQOoWxWdbqlSlpUmR2oHfzjlOqzIgFpYM8cWyTme_O8d-j5DbCAQHCE0AgqmAp4oHKuE6UIDpOXClddeLTaTDYXc0kq9bUl_uTJinB_aO62DpBlLwCACBRFidxyAVz0USIzaCqat1zHq2iim3BuOCzLHe8ifdYxnzDuZ_7t8DNjD2A4O2qPprTOkfkoMmGaQPfhBHZMcUx2R_sGFSLU_I5KWg4_rU97iiMF3MJkZTT79c0qmldrFaLamd-_sJ2JljfVzSte4Jzt8JNR-ez7ukbteVOqGOwinQz9dfI7bV7afkvd97e3oOGoWEIOcRqwKLS4RIreVgBDNpHJvIMo4ZXI6JW8ikTpkGK1NIYpVazROVyxRBO1dhbmJE8jPSKqaFOSc0lFor5i435ZwDdpxg7RIJCcK6iQRtcr_2WQYNfbhTsZhkWEY4D2fOw1nj4Ta521jPPG3GL3aPzv0bG0d2Xb_AEMiaEMj-CoGL_-jkkuy5MfndlSvSquYLc0124bMal_ObOrrwOfjqfQOGo9hW |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+implicit+coupled+systems+of+fuzzy+fractional+delay+differential+equations+with+triangular+fuzzy+functions&rft.jtitle=AIMS+mathematics&rft.au=Wu%2C+Yu-ting&rft.au=Lan%2C+Heng-you&rft.au=Liu%2C+Chang-jiang&rft.date=2021-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=6&rft.issue=4&rft.spage=3741&rft.epage=3760&rft_id=info:doi/10.3934%2Fmath.2021222&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2021222 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |